
2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 20-23, 2013, New Paltz, NY

MUSIC SELF-SIMILARITY MODELING USING AUGMENTED NONNEGATIVE MATRIX
FACTORIZATION OF BLOCK AND STRIPE PATTERNS

Joonas Kauppinen1∗ Anssi Klapuri2 Tuomas Virtanen2

1 School of Information Sciences, University of Tampere, Finland, joonas.kauppinen@uta.fi
2 Department of Signal Processing, Tampere University of Technology, Finland,

anssi.klapuri@tut.fi, tuomas.virtanen@tut.fi

ABSTRACT

Self-similarity matrices have been widely used to analyze the sec-
tional form of music signals, e.g. enabling the detection of parts
such as verse and chorus in popular music. Two main types of struc-
tures often appear in self-similarity matrices: rectangular blocks
of high similarity and diagonal stripes off the main diagonal that
represent recurrent sequences. In this paper, we introduce a novel
method to model both the block and stripe-like structures in self-
similarity matrices and to pull them apart from each other. The
model is an extension of the nonnegative matrix factorization, for
which we present multiplicative update rules based on the gener-
alized Kullback–Leibler divergence. The modeling power of the
proposed method is illustrated with examples, and we demonstrate
its application to the detection of sectional boundaries in music.

Index Terms— Music structure analysis, nonnegative matrix
factorization, self-similarity

1. INTRODUCTION

Music structure analysis has been an active area of research in the
field of music information retrieval. Its aim is to discover the sec-
tional form of musical works by segmenting them into series of con-
sistent, possibly recurrent parts at a relatively large time scale. The
information on sectional form can then be utilized in other tasks
such as music summarization, synchronization, and visualization,
as well as cover song identification [1].

Many diverse structure analysis systems have been proposed so
far, some of which have been evaluated in annual MIREX evalu-
ation campaigns [2]. Typically, the main goal of these systems is
the ability to output accurate segment boundary locations together
with labels that have some musical meaning comparable with those
perceived by a human listener [3].

A comprehensive survey of audio-based structure analysis
methods has previously been presented in [1]. Most of the methods
have made use of a self-similarity matrix (SSM) constructed from
a time series of acoustic feature vectors representing a song. Two
main types of structures often emerge in SSMs: rectangular blocks
corresponding to textures of within-parts similarities and diagonal
stripes corresponding to recurrent sequences of features. The usual
approach is to generate a number of candidate segment boundaries
(as described in Section 2.1) and then compute the average similar-
ity within the blocks of the SSM or employ dynamic programming
to identify diagonal stripes running across those blocks.
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Recently, a handful of approaches have exploited the ability of
the nonnegative matrix factorization (NMF) to extract parts-based
representations. For instance, the basic form of NMF has been ap-
plied to SSMs to assist in segment clustering [4]. In [5], NMF is
applied to a specific score matrix combining harmonic and timbral
information. Moreover, sparse, convolutive NMF has been applied
to spectrogram data in order to locate recurrent harmonic motifs as
well as to infer high-level structure [6].

In this paper, we introduce a model for factorizing SSMs. The
model is an extension of the NMF, and its two parts model the
blocks and stripes appearing in SSMs. We demonstrate that the
model has potential in detecting such sectional boundaries in music
that a traditional block-only approach cannot detect.

The remainder of this paper is organized as follows. Section 2
reviews some background related to SSMs and NMF. The main con-
tribution of this paper, the NMF-based model of block and stripe
structures, is presented in Section 3. Section 4 demonstrates the
application of the model to the detection of sectional boundaries in
music. Finally, Section 5 concludes the paper.

2. BACKGROUND

The structure in music is often immensely hierarchical. Take West-
ern popular music, for instance: each of the high-level parts—such
as verse, bridge, and chorus—tend to consist of phrases of related
structure, and these phrases in turn tend to consist of more or less
recurrent patterns of notes. SSMs and the NMF provide ways of
visualizing and analyzing these structures.

2.1. Self-similarity matrix

Following the seminal work of Foote [7], many of the previous
structure analysis methods have utilized SSMs to detect locations of
recurrent patterns in songs. Standard practice is to first decompose
an input audio waveform into short frames with some overlapping,
and construct feature vectors that capture certain sound characteris-
tics of songs to be analyzed. The deployed feature representations
should resemble those properties of music that are known to have
impact on human perception of musical structure (see [3]). Com-
monly used features include those related to timbre, such as the
mel-frequency cepstral coefficients (MFCCs), besides those related
to musical harmony (e.g. chroma), rhythm, and dynamics. An SSM
(or its dual, a self-distance matrix) is then constructed by using an
appropriate similarity (distance) measure to compute pairwise sim-
ilarities (distances) between extracted feature vectors.

An idealized SSM is illustrated in Fig. 1a. It represents the oc-
curences of three contrasting parts (A, B, and C) in time, and shows
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Figure 1: Panel (a) illustrates an idealized self-similarity matrix
with three contrasting parts in seven segments. Darker pixels cor-
respond to higher similarities. Correlating the Gaussian weighted
checkerboard kernel of size 32× 32 (b) along the main diagonal of
the self-similarity matrix yields the novelty curve (c).

rectangular, homogeneous blocks as well as diagonal stripes off and
parallel to the main diagonal. Furthermore, a checkerboard-like
structure appears along the main diagonal at sectional boundaries.
Variations in tempo would show the recurrent sequences as curved
stripes. However, using beat-synchronous features, i.e. computing
one feature vector for each inter-beat interval, effectively straight-
ens the stripes in SSMs.

A common, matched-filter approach to structural segmentation
(first proposed in [8]) is to correlate a suitably sized, checkerboard-
like kernel (Fig. 1b) along the main diagonal of an SSM. This yields
a novelty curve (Fig. 1c). A peak detection algorithm can then be
employed to catch the main temporal change points that in turn can
be considered as candidates for sectional boundaries.

Some musical works, however, show less conspicuous block
structures but several recurrent sequences. Indeed, the matched-fil-
ter approach fails to utilize the stripe information in SSMs and thus
also fails to recognize boundaries between successive repetitions of
a segment. For example, in the case of Fig. 1, the boundary between
the two A parts at time 64 is not reflected by the novelty curve.

2.2. Nonnegative matrix factorization

The NMF aims at approximating a nonnegative matrix by a prod-
uct of two lower-rank matrices. First introduced by Lee and Se-
ung [9], the NMF and its various extensions have recently been ap-
plied to numerous problems in image processing, microarray anal-
ysis, sound recognition, and text mining to name but a few [10].

Let S denote a matrix of size I × J with nonnegative elements
Si,j . Then, the NMF of S is given by S ≈ V = WH , where
W and H are nonnegative basis and gain matrices of sizes I ×K
and K × J , respectively. Scalar K denotes the rank of the ap-
proximation, i.e. number of components. Matrices W and H are
chosen so that their product V gives an optimal approximation to
S w.r.t. given cost function. Commonly used cost functions in-
clude the sum of squared Euclidean distances and the generalized

Kullback–Leibler (KL) divergence, the latter of which is defined as

KL (S,V ) :=
∑
i,j

(
Si,j log

Si,j
Vi,j
− Si,j + Vi,j

)
. (1)

3. PROPOSED MODEL

In this section, we propose to factorize SSMs using an augmented
NMF that is specifically tailored to represent the block and stripe
structures in SSMs.

3.1. Block structures

Let S denote an SSM of size I × I . Since S is symmetric, we
propose to approximate S by the structured, symmetric NMF [11]:

Si,j ≈ Vi,j =

K∑
k=1

Ai,kBk,kAj,k, (2)

where A is I×K and B is diagonalK×K. Each matrix has non-
negative elements only. The partial derivatives of (1) with respect
to elements Ai,k and Bk,k lead to multiplicative update rules

Ai,k ← Ai,k

∑
j Ri,jAj,k∑

i,j Ri,jAi,kAj,k
, (3)

Bk,k ← Bk,k

∑
i,j

Ri,jAi,kAj,k, (4)

where Ri,j = Si,j/Vi,j . The KL divergence is nonincreasing un-
der these rules.

3.2. Stripe structures

We propose to extend (2) with a term capable of representing stripe
structures:

Si,j ≈ Vi,j =

K∑
k=1

Ai,kBk,kAj,k+

L∑
`=1

Ci−j+1,`D`,i+j−1, (5)

where A and B are as in (2), i ≥ j, and the nonnegative matrices
C and D are I × L and L × (2I − 1), respectively. Rules (3)
and (4) clearly hold for minimizing (1) for (5). For the latter part
of (5), we index the rows of C by τ := i − j + 1 and columns
of D by t := i + j − 1. This corresponds to modeling S in a
45-degrees-rotated fashion as illustrated in Fig. 2.

Following the approach of [12], we obtain new estimates for
Cτ,` and D`,t by multiplying the previous estimate by the ratio of
negative and positive terms of the corresponding partial derivative.
We get the following update rules:

Cτ,` ← Cτ,`

∑I
i=τ p (τ) ·Ri,i−τ+1D`,2i−τ∑I

i=τ p (τ) ·D`,2i−τ
, (6)

D`,t ←D`,t

∑min(t,I)

i=bt/2c+1 q (i, t) ·Ri,t−i+1C2i−t,`∑min(t,I)

i=bt/2c+1 q (i, t) ·C2i−t,`
, (7)

where b·c denotes the floor function, and functions p and q are de-
fined as

p (τ) :=

{
1 if τ = 1,

2 if τ 6= 1,
q (i, t) :=

{
1 if t = 2i− 1,

2 otherwise.
(8)

The multipliers p and q are needed because only the elements cor-
responding to the lower triangular part of S are updated.



2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 20-23, 2013, New Paltz, NY

1 2 3 · · I

1

2

3

·

·

I

1
2

3
·
·

I

1
2
3
·
·
·
·
·
·
2I −

1

Blocks ABA′

Stripes CD

Figure 2: Illustration of the block and stripe parts of the proposed
model. Only elements marked with a dot are utilized for estimating
the stripe part of the model.

Algorithm 1 Estimate A, B, C, and D in (5)
1: initialize Ai,k, Bk,k, Cτ,`, and D`,t to random positive values

for all i, k, τ , `, and t
2: normalize A and B such that

∑
iAi,k = 1 for all k and∑

kBk,k =
∑
i,j Si,j as proposed in [11]

3: compute V using (5) and set Ri,j ← Si,j/Vi,j for all i and j
4: repeat
5: update B, A, D, and C using (4), (3), (7), and (6), respec-

tively, ensuring no element is set to exactly zero; after each
of these, update V using (5) and set Ri,j ← Si,j/Vi,j for
all i and j

6: until convergence
7: return A, B, C, D

3.3. Algorithm

Algorithm 1 gives an overview of estimating the matrices in (5).
Choosing suitable convergence criteria and numbers of components
K and L is beyond the scope of this paper. Hence, we will use fixed
numbers of components and iterations in the following Section 4. In
a more sophisticated approach, a relatively large number of compo-
nents could be estimated, clustering similar components together at
a later stage. For our model, the numbers of clustered components
K? and L? should roughly correspond to the number of musical
parts and the number of parallel stripes in the lower triangular part
of S, respectively.

4. CASE STUDY

We demonstrate a system for detecting sectional boundaries in mu-
sic based on the proposed model. Fig. 3 shows an overview of the
system. In this paper, we use The Beatles song “All My Loving” as
an example.
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Figure 3: Overview of the proposed boundary detection system. See
Section 4 for further details.
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Figure 4: Self-similarity matrices of The Beatles song “All My Lov-
ing” computed using beat-synchronous features. Darker pixels cor-
respond to higher similarities. The approximation of (a) can be ex-
pressed as the sum of the estimated block structures (b) and stripe
structures (c).

4.1. Beat-level feature extraction

As the first task, we extract MFCCs and chroma to represent the
timbral and harmonic content of the input audio signal using the
MATLAB toolbox described in [13]. These features are computed
in 213/44100 ≈ 0.186-second frames with 75% overlapping. For
the chroma, the tuning is estimated beforehand by applying the
method detailed in [14] with 1/100 semitone precision. The ob-
tained features are averaged over beat frames after applying the beat
tracking algorithm of [15]. For the purpose of illustrations, we per-
form the averaging over frames of 4 beats.

Finally, each element of the beat-synchronous MFCC vectors
is standardized to mean zero and unit variance over the song under
investigation. The chroma are nonnegative and are not normalized
as they represent the energy associated with each of the 12 pitch
classes: scaling to, say, unit sum would put more weight to oc-
curences of rare pitch classes compared to frequent ones.

4.2. Self-similarity matrix computation

Let fi and gi denote the feature vectors containing MFCCs and
chroma, respectively, at time point i. Based on the cosine of the
angle between two vectors, we use the following metric to represent
the similarity of features between time points i and j:

Si,j :=

(
1

2
+

f ′
ifj

2 ‖fi‖ ‖fj‖
+

g′
igj

‖gi‖ ‖gj‖

)/
2, (9)

where ‖·‖ denotes the Euclidean (L2) norm. Metric (9) corresponds
to the average of two similarity measures, one for MFCCs and one
for the chroma, each of which can have values between zero and
one. Computing (9) for all tuples (i, j) yields the SSM (Fig. 4a).
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L = 0 L = 4 L = 8 L = 12 L = 16
K = 0 — 42.4 22.2 11.1 5.3
K = 2 37.6 19.0 10.4 5.3 2.4
K = 4 14.2 7.3 4.4 2.8 1.8
K = 6 5.6 3.0 2.2 1.6 1.0
K = 8 2.7 1.8 1.4 1.0 0.8

Table 1: KL divergences between the original self-similarity matrix
of the example song (Fig. 4a) and approximations obtained using
different numbers of components K and L.
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Figure 5: Panel (a) illustrates a global novelty curve as a function of
time (see Section 4.4). Ground truth locations of sectional bound-
aries are shown as dashed lines. Panel (b) shows the estimated basis
components.

4.3. Self-similarity matrix factorization

Running the Algorithm 1 with K = 4 and L = 4 yields Fig. 4b
and Fig. 4c displaying the estimated block and stripe structures of
Fig. 4a. We observe that the algorithm does well in estimating the
lags between recurrent patterns but fails to recognize clear start and
end points of them. In addition, some noise can be seen at the cor-
ners of Fig. 4c due to the smaller amount of data.

Table 1 illustrates the behavior of the KL divergence values af-
ter 1,000 iterations as a function ofK andL. To obtain these values,
same initial values where used for the factor matrices. As expected,
the stripe components seem to model a relatively small area of the
SSM under investigation.

4.4. Novelty curve computation and segmentation

We compute a global novelty curve by applying a checkerboard
kernel (see Fig. 1) on the reconstruction of the ABA′ part of the
model. We pick n largest peaks from the curve with the constraint
that the minimum distance between two consecutive peaks is 8 sec-
onds. The curve and peaks are shown in Fig. 5a.

Fig. 5b illustrates the basis components in C. A Gaussian ker-
nel has been convoluted along them. The peaks correspond to lags
between recurrent patterns. The exact mechanism of using these
components for segmentation is beyond the scope of this paper.

5. CONCLUSIONS

We have introduced an NMF-based model that estimates block and
stripe structures in SSMs simultaneously. Multiplicative update
rules based on the KL divergence were presented. In addition, we

demonstrated the potential the model has for improving the perfor-
mance of sectional boundary detection.

On the one hand, we have observed that the stripe part of the
model is able to pick the lags between recurrent patterns adequately.
On the other hand, we have noticed that is is not able to produce
clear structures in gains of the estimated stripes. Therefore, we are
currently investigating several variants that exploit time-lag matri-
ces corresponding to SSMs. We plan to inquire into these models
with additional sparsity constraints and to perform extensive evalu-
ations with annotated music collections spanning several genres.
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