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ABSTRACT

This paper proposes a noise robust exemplar-based speech recog-

nition system where noisy speech is modeled as a linear combina-

tion of a set of speech and noise exemplars. The method works by

finding a small number of labeled exemplars in a very large col-

lection of speech and noise exemplars that jointly approximate the

observed speech signal. We represent the exemplars using mel-

energies, which allows modeling the summation of speech and noise,

and estimate the activations of the exemplars by minimizing the gen-

eralized Kullback-Leibler divergence between the observations and

the model. The activations of the speech exemplars are directly be-

ing used for recognition. This approach proves to be promising,

achieving up to 55.8% accuracy at signal-to-noise ratio −5 dB on
the AURORA-2 connected digit recognition task.

Index Terms— Speech recognition, exemplar-based, noise ro-

bustness, non-negative matrix factorization, sparsity

1. INTRODUCTION

For the last 30 years Automatic Speech Recognition (ASR) has

been completely dominated by the use of Hidden Markov Models

(HMMs) [1]. HMM-based ASR performance, however, degrades

substantially when speech is corrupted by background noise not seen

during training. Additionally, it has become clear that not all speech

phenomena can be covered in the form of HMMs. There is a gen-

eral agreement in the speech community about the need for novel

approaches for handling phenomena that HMMs do not account for

(cf. [2] and the references therein).

One of these approaches, exemplar-based speech recognition,

is based on a psycholinguistic theory which states that mental rep-

resentations of speech include a record of detail of actual speech

signals (called episodes or exemplars). These exemplars may be be

linked to information about idiosyncrasies of the speaker and possi-

bly even the context in which an utterance was produced [3]. Recent

advances in computational power have led to an renewed interest in

the exemplar-based ASR [1; 4].

In [5; 6] a new approach to exemplar-based speech recognition

was introduced. The approach, dubbed sparse classification (SC),

is based on the idea that speech signals can be represented as a lin-

ear combination of a small set of suitably selected exemplars. The

classification is done by finding the smallest number of labeled ex-

emplars in a very large collection of exemplars that jointly approxi-

mate the observed speech signal. Because there is no need for these

exemplars to be close to each other in the original space, SC differs
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from other exemplar-based approaches to speech recognition, which

invariably search for exemplars with the smallest distance to the ob-

served speech signal.

In [5] it was shown that SC can be made noise robust using a

missing data technique (MDT) [7]: prior to decoding it is estimated

which spectro-temporal elements of the acoustic representations are

dominated by speech (‘reliable’) and which are dominated by back-

ground noise (‘unreliable’ or ‘missing’). Decoding is then done by

using only the reliable speech features, disregarding the unreliable

ones. While this approach proved to be very effective when the iden-

tity of reliable features were accurately estimated, the weakness of

the method is that it proved sensitive to mask estimation errors.

In this paper, we propose a novel approach to noise robust

exemplar-based speech recognition in which noisy speech is mod-

eled by a linear combination of speech and noise exemplars and the

activations of the speech exemplars are directly used for recognition.

All speech exemplar are associated with one or more state labels;

thus, the linear combination of exemplars that represents the noisy

speech results in a vector of state activation scores. The activations

of the noise exemplars are ignored. This approach avoids having

to estimate which feature are unreliable, and recognition is done by

finding the optimal sequence of states using a conventional Viterbi

decoding backend.

In order to find the linear combination of exemplars we apply

non-negative matrix factorization (NMF) which previously has been

used for source separation [8; 9; 10]. The main difference with pre-

vious NMF approaches is that our approach allows us to do speech

decoding directly on exemplar activations, thus avoiding the im-

pact of the otherwise unavoidable reconstruction errors. Another

difference is that in many approaches the feature vectors used to

represent the noisy speech observations are determined online [11;

10] while we determine these in advance and keep them fixed during

decoding. This is somewhat similar to the supervised NMF approach

in which NMF [8] or mixture modeling [9] are used to train the fea-

ture vectors in advance.

As in [6], we employ a sliding time window approach which al-

lows the exemplars to span multiple time frames. In previous studies

it was found that increasing the window length had a large influ-

ence on the recognition accuracy. The reason for this is that includ-

ing more time context constrains the search for suitable exemplars,

thus increasing accuracy. It seems likely that this effect will only be

greater at lower signal-to-noise ratios (SNR’s) since the inclusion of

more time context should reduce possible confusions with the (less

structured) noise exemplars. Using the connected digit recognition

task AURORA-2 , we explore the influence of window size and SNR.

The rest of the paper is organized as follows. In Section 2 we

introduce our noisy speech representation model and describe the

sliding window approach. In Section 3 we describe how we retrieve

the linear combination of exemplars used to represent speech. In



Section 4 we explain how the exemplar activations are used to do

speech recognition. In Section 5 we investigate recognition accuracy

as a function of window size and SNR. We present the results in

Section 6 and we give our conclusions and plans for future work in

Section 7.

2. MODEL FOR NOISY SPEECH

2.1. A sparse representation of noisy speech

In ASR speech signals are represented as a spectro-temporal distri-

bution of acoustic energy, called a power spectrogram, which is rep-

resented as a K × T dimensional matrix (with K frequency bands
and T time frames). The power spectrogram of noisy speech is (ap-
proximately) equal to the sum of the underlying clean speech and

noise power spectrograms. We use this property to directly model

noisy speech as a linear combination of speech and noise exemplars.

Unlike in most studies, where a log-power representation of speech

is used, we use a linear-power representation to ensure additivity of

noise and speech exemplars. We express the spectrogram Y as a

single column vector y of length D = K · T by concatenating T
subsequent time frames.

We use a training corpus to create a dictionary sm, (1 ≤ m ≤
S) of speech exemplars, which are speech spectrograms reshaped
into vectors as above. Matrix S is formed as S = [s1 s2 . . . sS ].
Similarly, a set of N noise exemplar vectors is used to form matrix
N where each column corresponds to an individual exemplar. The

speech and noise exemplars are concatenated so as to form a single

dictionaryA = [S N]. The matrixA has dimensionality D ×M ,
where M = S + N . The columns of A are denoted as am, 1 ≤
m ≤M .
We assume that each vector y, reshaped from a noisy speech

spectrogramY, can be expressed as a linear, non-negative combina-

tion of exemplars am:

y =

M∑

m=1

xmam = Ax s.t. x ≥ 0 (1)

with x aM -dimensional activation vector. The non-zero entries in x

that correspond to speech exemplars, and the state labels associated

with these exemplars, carry the information required to decode the

words in the speech, as explained in Section 4.

The use of noise exemplars enables finding a representation

where the acoustic mismatch caused by noise is compensated. We

include several types in the dictionary of noise exemplars in order

not to limit ourselves to speech contaminated by a specific noise

type (described in Section 5). The magnitude of noise exemplar ac-

tivations allows matching different noise levels.

As in [12], we require that x is sparse, i.e. most of the weights

should be equal to zero so that the noisy speech becomes represented

as a combination of a small set of exemplars. The algorithm for

finding the value of x is explained in Section 3.

2.2. Sliding window approach for time-continuity

In order to decode utterances of arbitrary lengths, we adopt a sliding

time window approach as in [6]. Using this approach we do not have

to pre-segment the utterance, and avoid problems at segment bound-

aries. Consider a speech utterance U represented as a spectrogram

of sizeK× I . We slide a windowY spanning T frames throughU,
with shifts of∆ frames. For each position ofY inU, we express the

K

I

∆

T

UtteranceU
Sliding windowY

Fig. 1: Schematic diagram of time-continuous classification using

overlapping windows.

spectrogram Y as a single vector y as described above. The num-

ber of windows needed for processing the entire speech signal U is

given byW = ceil((I − T )/∆) + 1.
The utterance U is now represented by theW subsequent win-

dows: vectors yw, 1 ≤ w ≤ W . Concatenating these we form a
new matrix Ψ of dimensions D ×W . The ratio of ∆ and T deter-
mines the degree with which subsequent windows overlap. Larger

step sizes ∆ reduce computational effort but might decrease recog-
nition accuracy. In this paper we keep the shift constant at ∆ = 1
frame.

Using the notation introduced above, we write (1) compactly as:

Ψ = AX s.t. X ≥ 0 (2)

with the matrix X = [x1 x2 . . . xW ]. X now describes the activa-
tions of the exemplars for the entire utterance.

3. FINDING THE ACTIVATIONS

In order to obtain X we look for values which are able to represent

the noisy speechΨwith the modelAX, while using a small number

of non-negative entries in X. A practical solution is to minimize a

cost function

d(Ψ,AX) +

M∑

m=1

W∑

w=1

[X. ∗Λ]m,w s.t., X ≥ 0 (3)

with .∗ denoting element-wise multiplication. The first term mea-
sures the distance between the noisy observation and the model us-

ing function d. The second term penalizes non-zero entries of X
weighted by matrix Λ, controlling the degree of sparseness of re-

sulting X. Only non-negative entries of X are allowed, since a

negative activation would correspond to subtracting a power spec-

trogram, which is not physically realistic. Unlike in most studies,

where a single scalar weight is used to penalize all non-zero entries

equally, we allow different weights for different types of exemplars

in the dictionary. In our experiments enforcing sparseness of noise

exemplars was not found to increase the recognition accuracy, while

the sparseness of speech exemplars was found to be very important.

As a distance measure we use the generalized Kullback-Leibler

(KL) divergence

d(Ψ, Ψ̂) =

D∑

d=1

W∑

w=1

Ψd,w log(Ψd,w/Ψ̂d,w)−Ψd,w + Ψ̂d,w (4)

which has been found to produce good results in sound source sep-

aration [11]. Our previous studies [5; 6] used the squared Euclidean

distance between the vectors for a log-power feature representation.

Since in this study we use linear-power feature representation, the



KL divergence reflects the distribution of natural speech and noise

energies better.

The cost function (3) is minimized by first initializing the acti-

vationsX to unity, and then iteratively applying the update rule

X← X. ∗ (AT(Ψ./(AX)))./(AT
1 + Λ). (5)

with ./ denoting element-wise division and 1 an all-one matrix hav-

ing dimensionsD ×W .
The cost function (3) is non-increasing under the update rule.

This can be proven as in [13] with the Gamma prior having scale 1

and shape 1/[Λ]m,w.

4. CLASSIFICATION

Each exemplar in the speech part of the dictionary A is labeled us-

ing HMM-state labels obtained from a conventional HMM-based de-

coder. Exemplars that contain multiple time frames may be associ-

ated to more than one state. Using a frame-by-frame state descrip-

tion of the training data used to construct the dictionary, we associate

every exemplar sm with a label vector lm. Denoting the total num-

ber of state labels with Q, lm is a vector of length Q of which the
nonzero elements indicate the number of frames in that exemplar

that are associated with the states q ∈ Q.
We obtain a label matrix L of dimensionsQ×S by concatenat-

ing all exemplar labels lm: L = [l1 l2 . . . lS ]. Using only the part
of the activation matrix X which pertains to speech exemplar acti-

vations, denoted Xs, we can now map the observed speech to state

likelihoods using:

L = LXs (6)

with L a state-likelihood matrix of dimensions Q ×W . The values
in L are normalized between zero and unity.
In the current implementation, silence states are not activated if

there is no speech activity, since the NMF algorithm does not select

exemplars containing only silence. In order to reduce the number of

insertion errors caused by spurious non-silence state activations dur-

ing silence, it was found beneficial to increase the state likelihoods

pertaining to silence.

In our approach, we increase the silence states likelihood as

a function of the speech activity. We measure the speech activ-

ity in window w by αw =
∑S

m=1
[Xs]m,w, and add term γ(1 −

αw/ maxw′{αw′}) to the silence state likelihoods in window w.
The parameter γ is an empirically determined constant.
Finally, as in [6] we decode the speech utterance by using a

Viterbi search for the state sequences which maximize likelihood.

5. EXPERIMENTS

For our recognition experiments we used test set ‘A’ and ‘B’ of the

AURORA-2 corpus [14]. Test set ‘A’ comprises 1 clean and 24 noisy
subsets, containing four noise types (subway, car, babble, exhibi-

tion hall) at six SNR values, 20, 15, 10, 5, 0 and −5 dB. Test set ‘B’
contains four different noise types (restaurant, street, airport, train

station). Each subset contains 1001 utterances with one to seven dig-
its ‘0-9’ or ‘oh’. To reduce computation times, we used a random,

representative subset of 10% of the utterances (i.e. 400 utterances
per SNR level). Acoustic feature vectors consisted of mel frequency

power spectra, spanningK = 23 bands, a frame shift of 10ms and a
frame length of 25ms.

We created a dictionary of 4000 noise and 4000 clean speech
exemplars by randomly selecting windows from the noise and clean

speech in the multicondition training set. The multicondition train-

ing set of AURORA-2 contains 8440 utterances with the same noises
as in test set ‘A’, at SNR values SNR= 20, 15, 10, 5 dB.We repeated
the random selection for 4 window lengths, T ∈ {5, 10, 20, 30}
frames. The spectrograms were reshaped to vectors and subse-

quently added as the columns of the dictionary A as described in

Section 2.1. The dictionary A was normalized by fixing the Eu-

clidean norm to unity along both dimensions. Finally, each observa-

tionΨ was scaled using the normalization matrices applied toA.

HMM-state based labels of the exemplars were obtained via

a forced alignment with the orthographic transcription using the

HMM-based recognizer described in [15]. Digits were described

by 16 states with an additional 3-state silence word, resulting in a
Q = 179 dimensional state-space. The rows of the label matrix L

were normalized to have Euclidean unit norm.

The speech decoding system was implemented in MATLAB.

The NMF update rule (5) was run for 200 iterations. The optimal
value for the sparsity parameter Λ for speech exemplars was de-

termined by maximizing recognition accuracy on a random subset

of 250 utterances of the multicondition training database and set to
0.65. Λ was set to zero for noise exemplars. Likewise, the silence
state boost parameter γ was determined using the same subset and
set to 0.005. Viterbi decoding was done using the backend of the
HMM-based decoder described in [15]. That same decoder, which

can optionally perform MDT noise-robust decoding, was used for

our baseline recognition experiments. When using MDT, the de-

coder replaces unreliable features with Gaussian-conditioned clean

speech estimates using a realistic, binary missing data mask [15].

We carried out recognition experiments with a number of win-

dow lengths: T ∈ {5, 10, 20, 30} frames. Recognition accuracies
were averaged over the four noise types at each SNR level. To keep

correspondence with noise robust ASR research using the AURORA-

2 database, we also present the average recognition accuracy over

the SNR range 20 to 0 dB.

6. RESULTS AND DISCUSSION

From the recognition accuracies in Tables 2a and 2b it can be ob-

served that the best results for clean speech are achieved using a

window length of T = 10 frames. This is in correspondence with
the results obtained in [6], where we employed a log-power represen-

tation. The best accuracy achieved on clean speech is 95.5%, which
is slightly lower than the 96.6% accuracy observed in [6] when us-
ing 4000 speech exemplars. While performance seems quite dis-
appointing, it should be noted that in [6], we reached up to 98.2%
accuracy when using 16000 exemplars. It is likely the recognition
accuracy will improve when using more speech exemplars. Further

research is necessary to explore the influence of feature representa-

tion (linear-power rather than log-power features) and distance mea-

sure (Euclidean distance vs KL divergence).

In Table 2a we observe that the best recognition accuracy ob-

tained at SNR −5 dB is 55.8% for test set ‘A’. With the baseline
method only achieving 17.1% accuracy, this shows that the proposed
method is quite noise robust. The reason for this large difference

is that our approach does not suffer from errors in the estimation

of which features are unreliable and errors in the reconstruction of

these features. Moreover, the average accuracy over the SNR range

20 − 0 dB is competitive with that of the baseline, even though the
accuracy at high SNR’s is substantially lower.

From Tables 2a and 2b it can be inferred that longer window

lengths are found to be optimal at lower SNR’s. The reason for this

is that including more time context prevents confusion with noise ex-



Table 1: Word recognition accuracy for several window lengths and SNR’s.

SNR [dB] clean 20 15 10 5 0 -5 Avg0−20

baseline 99.7 97.9 95.5 91.4 82.6 62.1 17.1 85.9

T=5 88.7 84.9 81.4 73.9 60.5 38.6 20.9 67.9

T=10 95.5 93.8 92.7 90.2 83.8 69.5 41.0 86.0

T=20 93.5 92.3 91.9 88.8 83.8 72.0 49.3 85.8

T=30 89.5 88.4 88.0 85.5 82.6 74.9 55.8 83.9

(a) Test set ‘A’

SNR [dB] clean 20 15 10 5 0 -5 Avg0−20

baseline 99.7 95.3 91.2 84.3 70.4 40.2 12.2 76.3

T=5 88.7 85.8 83.7 75.6 63.1 40.7 17.3 69.8

T=10 95.5 93.7 90.4 84.6 73.5 50.6 21.2 78.5

T=20 93.5 91.6 88.6 80.8 69.1 45.1 23.3 75.0

T=30 89.5 87.2 85.2 80.4 71.8 54.8 32.4 75.9

(b) Test set ‘B’

emplars. At the same time, accuracy at higher SNR’s decreases when

using longer time windows due to an increased number of deletions:

it becomes more difficult to recognize digits with a duration much

smaller than the length of the exemplar. This suggests a need for a

decoding approach in which multiple window lengths are combined.

When studying the results on test set ‘B’, displayed in Table 2b,

we can observe that recognition accuracy, while still higher than the

baseline results for the lower SNR’s, drops faster as a function of

SNR than in test set ‘A’. An obvious explanation would be that this

is caused by the mismatch between the noises in the dictionary and

the noises observed in test set ‘B’. However, noise characteristics

may also be play a role, since we observe a similar drop in accuracy

for the baseline method which does not make explicit assumptions

about the corrupting noise.

It is likely that the noise robustness of our approach can be fur-

ther improved by reducing the mismatch between the noises in the

noise dictionary and those observed in the noisy speech exemplars.

This can be done by creating a much larger collection of noise types

in the dictionary which will reduce the risk of noise mismatch. Fur-

thermore, the flexibility of the approach allows for extending and

updating of the noise dictionary, even during decoding.

7. CONCLUSIONS AND FUTUREWORK

We proposed a novel approach to noise robust exemplar-based

speech recognition in which noisy speech is modeled by a linear

combination of speech and noise exemplars, with the activations of

the speech exemplars directly being used for recognition.

This approach proved to be promising, achieving a substan-

tial improvement over baseline recognition accuracies at lower

SNR’s.The approach is straightforward, flexible and easy to im-

plement. As such, it can serve as a platform for new research in

exemplar-based speech recognition, and noise robust speech recog-

nition in particular.

Future work will focus on improving clean speech accuracy.

Several approaches are possible, such as adapting the speech dictio-

nary to the speaker during decoding, or using different cost functions

which emphasize the small-scale structure normally emphasized by

using the log-power feature representation. Additionally, it is con-

ceivable that better results can be obtained using a more informed,

non-random, sampling method to construct the noise and speech dic-

tionary.
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