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ABSTRACT

Non-negative spectral factorisation with long temporal context has

been successfully used for noise robust recognition of speech in

multi-source environments. Sparse classification from activations of

speech atoms can be employed instead of conventional GMMs to

determine speech state likelihoods. For accurate classification, cor-

rect linguistic state labels must be assigned to speech atoms. We

propose using non-negative matrix deconvolution for learning the

labels with algorithms closely matching a framework that separates

speech from additive noises. Experiments on the 1st CHiME Chal-

lenge corpus show improvement in recognition accuracy over labels

acquired from original atom sources or previously used least squares

regression. The new approach also circumvents numerical issues en-

countered in previous learning methods, and opens up possibilities

for new speech basis generation algorithms.

Index Terms— Automatic speech recognition, noise robust-

ness, non-negative matrix factorization, sparse classification

1. INTRODUCTION

Conventional automatic speech recognition (ASR) systems have typ-

ically been based on calculating the likelihoods of short-time frame

spectra for phonetic state models derived from training speech. For

clearly articulated speech in good conditions, representations such

as mel-frequency cepstral coefficients (MFCCs) of short-term spec-

tra suffice for classification and recognition. However, especially

additive, non-stationary noise rapidly corrupts the immediate spec-

trum to the extent that simple compensation methods cannot restore

the features adequately. With multiple active sources such as com-

peting speakers and background noise, the problem often becomes

ill-posed for a single-channel input.

In recent years, noise robust ASR has gained increasing atten-

tion due to its high relevance for everyday applications. Several al-

ternative enhancement and recognition approaches and their com-

binations have been proposed [1]. In single-channel recognition,

a common trend is increasing the temporal context of observation

windows in order to recognise characteristic spectro-temporal pat-

terns of sources from mixtures. A context of 100+ milliseconds has

been used e.g. in longest segment matching [2], deep belief networks

[3] and spectrogram separation via non-negative matrix factorisation

(NMF) [4, 5, 6]. Combination of multiple long-context algorithms

has recently produced state-of-the-art results in the 2nd CHiME sep-

aration and recognition challenge [7, 8].

Two different recognition methods have been demonstrated for

NMF-based modelling. The common approach is using speech and

noise spectrogram estimates as an enhancement filter for an exter-

nal back-end. Alternatively, the activations of speech dictionary

T. Virtanen has been funded by the Academy of Finland, grant #258708.

atoms themselves provide clues about the content of observed speech

[9]. Deriving the phonetic state likelihoods directly from activa-

tions is dubbed (non-negative) sparse classification or sparse cod-

ing, (N)SC. The method could be considered an extension of early

template matching algorithms. A major benefit of the approach is

its ability to bypass the GMM block of conventional back-ends. A

large part of recognition can be conducted already within the factori-

sation framework. We have observed ASR results favouring either

feature enhancement (FE) or sparse classification depending on the

task, dictionary size and back-end training [4, 6]. Furthermore, FE

and SC streams have been found to complement each other [10] with

further gains from combination to neural networks [5, 8]. Outside

ASR, sparse classification has been used e.g. for face recognition

[11], music genre classification [12] and speaker identification [13].

In this work we address a persistent issue in sparse classifica-

tion, namely translating the activation weights of speech atoms into

state likelihoods. We have previously seen that in some cases the

correspondence between atoms and linguistic states is not entirely

straightforward. As one solution, ordinary and partial least squares

regression (OLS, PLS) were used to learn the mappings [14]. Espe-

cially for small template dictionaries, such mappings produced im-

provements in accuracy over original atom labels [6]. However, ap-

plying common linear regression methods to NMF/SC data involves

numerical issues affecting both accuracy and complexity of learn-

ing and recognition. Therefore we propose a new learning algorithm

based on the same non-negative modelling that is used for separa-

tion of spectrograms. Experiments on the 1st CHiME Challenge data

show uniform improvements in recognition rates using SC, while the

model also fits inherently better to the separation framework.

In Section 2 we introduce briefly the underlying factorisation

model and formulae employed in the new algorithm. Previous and

proposed learning methods are given in Section 3. The experimental

set-up on CHiME data is described in Section 4. Results, discussion

and conclusions follow in Sections 5 and 6.

2. CONVOLUTIVE NON-NEGATIVE MODELLING

The fundamental concept in non-negative spectrogram factorisation

is modelling a B× Tutt spectrogram matrixY as an additive combi-

nation of shorter,B×T atoms over the utterance’s duration. HereB

is the number of spectral bands in all data, Tutt is the total number of

frames in an utterance, and T is the number of frames in an atom. We

have used two methods for modelling observations where Tutt > T ;

a sliding window method where overlapping window spectrograms

of length T are picked from Y and factored individually, and non-

negative matrix deconvolution (NMD, or convolutive NMF, CNMF)

where the whole observation is modelled jointly by all activations

[15, 16]. The focus of this work is on NMD as it has shown more

promise for compact and adaptive models required in real world ap-

plications [6].



Let us define a matrix convolution operator ⊛, which produces

aB×Tutt spectrogram estimateΨ from an L×W activation matrix

X and a basis arrayA which contains theB×T spectrograms of L

atoms. Its arrangement may vary depending on the implementation

so we treat it as an abstract data container. W = Tutt − T + 1 is
the number of window indices in a convention where all occurrences

of atoms are expected to fit entirely within the output spectrogram

matrix. A commonly used formulation [15, 16] is

X⊛A =

T
∑

t=1

At

→(t−1)

X (1)

where each At contains the t
th frames of atoms in a B × L ma-

trix and operator→ shiftsX right in a L × Tutt zero-padded matrix

starting from its leftmost position. An alternative formulation,

X⊛A =

L
∑

l=1

Tl
∑

t=1

Al,t

→(t−1)

Xl (2)

is used especially for variable-length atoms where atom duration Tl

may vary between atom indices l [17, 18]. In this caseAl,t is the t
th

frame column vector of atom l andXl the l
th row vector ofX. The

number of eligible window indices is set for each atom separately to

Wl = Tutt − Tl + 1.
Given a fixed basis arrayA, the activations are obtained as

Xopt = argmin
X

[

d(X⊛A,Y) + c(X)
]

(3)

for a spectral distance measure d and an (optional) activation cost

function c. Generalised Kullback-Leibler divergence and L1 spar-

sity cost have been commonly employed in speech separation. All

matrices are assumed non-negative. Iterative algorithms for solving

the problem are presented in literature [15, 16, 17]. In our sepa-

ration task, the basis is concatenated from speech and noise atoms

(As, An), which correspondingly produce speech and noise activa-

tions Xs, Xn. Single-source estimates from equations (1,2) can be

used for spectral separation, or the speech halfXs ofXopt itself for

sparse classification.

In our SC approach, speech is recognised by finding a Q × Tutt

state likelihood estimate matrix Ẑ giving the likelihoods of all Q

linguistic states of the system for each frame. The matrix is decoded

with a pre-determined language model and Viterbi algorithm exactly

as if the likelihoods were acquired from GMM evaluation of frame

features. We generate the matrix from speech activationsXs as

Ẑ = X
s
⊛B (4)

where arrayB contains aQ× T label matrix for each atom, reflect-

ing the atom’s correspondence to linguistic states over its duration.

Notably, the model is the same as in spectrogram estimation, only

with linguistic states replacing spectral bands as the feature vector

dimension. The problem to be solved is finding the ideal label con-

tent forB to maximise recognition accuracy.

3. FINDING LABEL MATRICES FOR ATOMS

All label acquisition methods rely on having transcribed training

data. Forced alignment with a conventional GMM-HMM recogniser

is used to find state sequences for training files, assigning each ut-

terance frame index τ to one state qτ of the linguistic model. We

can represent the same state information as a binary state matrix Z

(Q × Tutt), whose each column vector zτ has a single ‘1’ entry at

index qτ , while the rest is zeros. This is also the ideal likelihood

matrix whose decoding would produce perfect recognition results.

3.1. Earlier methods

In speech basis generation methods where exemplars are sampled

directly from training utterances, the easiest approach is to observe

which spectral frames of Y were used for the atom, and to select

the corresponding T columns of Z as the label matrix. The matrix

will be binary, and we call the method canonical or sourcemapping.

If atoms are acquired by averaging multiple training segments, the

label matrix is similarly averaged from their Z ranges.

However, especially in word-based state systems, the same spec-

tral features may match multiple states, and more generally the cor-

respondence to states is not strictly binary. Therefore we have pro-

posed using least squares regression for learning the label matrices,

given the atom activations of training speech [14]. Each frame col-

umn bt of label matrices in B is determined by factoring labelled

training files and then solving a least squares problem between acti-

vations and columns of Z with a t − 1 frame delay. Improvements
over source mapping were observed [6, 14], but the method has its

drawbacks. First, least squares is a free-signed algorithm which oc-

casionally produces negative state likelihoods to B, violating our

non-negative activation and likelihood model. Second, its temporal

model was accurate for sliding window factorisation but becomes

inaccurate in convolutive modelling. Finally, for large bases and

especially partial LS, large-scale numerical operations arise which

become inconveniently slow. Therefore it would be favourable to

find a more accurate and preferably computationally faster learning

algorithm for the labels.

3.2. Proposed NMD learning

Interestingly, efficient mappings can be found by slightly unusual

application of the same matrix deconvolution algorithm that is used

for spectrogram factorisation. While in conventional NMF/NMD

we are primarily learning the activations and possibly some of the

atoms, label learning does the opposite. First, we factor clean train-

ing utterances using a fixed speech basis and thus gain activation

matrices X for each utterance. Then, we switch the target observa-

tion from spectrogram matrix Y to the ideal state likelihood matrix

Z and solve the new basis of atom labels alone as

Bopt = argmin
B

d(X⊛B,Z) (5)

over all X/Z pairs for a single label array Bopt, which will be our

mapping data. The usual iterative solving methods apply, only with

activations being fixed and the basis updated in minimisation. The

label array can be first initialised e.g. to ones or randomly.

In conventional unsupervised or semi-supervised NMF/NMD

learning tasks it is customary to normalise basis atoms between it-

erations to stabilise convergence speed and sparsity between atoms.

In label learning there is better justification for not normalising the

atoms, hence allowing the algorithm to allocate varying amounts of

state content to label matrices. Atoms with highly ambiguous corre-

spondence to states receive less classifying power, while atoms with

consistent behaviour get more significance.

The distance measure d can be chosen equivalently to spectro-

gram factorisation, although it is not compulsory. Whereas KL-

divergence has been found useful for emphasising small spectral

details of sound [19], our target label data is strictly binary so the

requirement does not apply. In addition, the KL measure

dKL(zi, ẑi) = zi log
zi

ẑi
− zi + ẑi (6)

is not well defined for zeros which dominate Z. Therefore another

measure like Euclidean distance dEuc may be preferable for states.



Fig. 1. Data structures and algorithm steps of a sparse classification system with NMD label learning.
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The data structures and algorithm steps of the overall SC frame-

work are illustrated in Figure 1. The leftmost segment a) shows how

each utterance is represented by a spectrogram and a corresponding

state content matrix. Segment b) shows how training files are used

for basis acquisition and training factorisation, whereafter label ma-

trices are solved by optimising B. In segment c) state likelihoods

are found for a test utterance by factoring it with speech and noise

bases, and computing Ẑ from speech activations and atom labels. Fi-

nal recognition is performed by decoding Ẑwith HMM probabilities

of the language model.

4. EXPERIMENTS

4.1. Corpus and recognition task

Different label assignment methods were compared using the 1st

CHiME Challenge task [20]. In its default language model, 250 sub-

word states are used to represent a small 51-word vocabulary origi-

nating from the GRID corpus [21]. Utterances follow a linear verb-

colour-preposition-letter-digit-adverb grammar with classes having

cardinalities of 4, 4, 4, 25, 10 and 4, respectively. Performance is

scored by correct recognition of ‘letter’ and ‘digit’ keywords.

Due to the word-based model, there are several states whose

spectral features are effectively identical. For example, words

‘please’ and ‘place’ bear high similarity in most of their states. Even

more crucially, many of the letter name keywords (‘b’, ‘c’, ‘d’ etc.)

only differ in one phone, which produces several spectrally similar

states across words. Consequently there is a considerable chance of

misclassification if too strict assignment to states is used for atoms

with partially ambiguous spectral content.

The 1st CHiME corpus contains 500 training utterances for each

of its 34 speakers. These have no additive noise. Evaluation is car-

ried out on 600-utterance development and test sets, which have ad-

ditive, highly non-stationary room noise at SNRs ranging from +9 to

-6 dB in 3 dB steps. The development set is also available as ‘clean’,

that is, no added noise. All audio has room reverberation.

4.2. Speech bases

For comparison of labelling methods, we used factorisation results

acquired previously with two different compact speech models. In

the first one, a 250-atom basis is generated for each speaker by mod-

elling spectral features of one state and its neighbouring context at a

time. In this model, window length is fixed to 25 frames [6]. More

recently, a heuristic clustering algorithm has been used to generate

variable-length bases, where the number of atoms and the distribu-

tion of atom lengths is allowed to vary between speakers [18]. Here

we use the basis variant where combined label and spectrum data

was used for finding recurring segments, because it appeared to pro-

duce the best sparse classification results of studied variable-length

methods [18]. The average size of these bases is 182 atoms, whose

average length is 22.2 frames.

4.3. Factorisation model

The factorisation framework was otherwise identical for both basis

types apart from the variable-length convolution model required

by the second type. CHiME audio was converted into 40-band

mel-spectral monaural features. Factorisation was performed with

speaker-dependent speech bases matching each target speaker. For

noisy development and test utterances, 250 fixed-length (25 frames)

noise atoms were extracted from the noise context of ‘embedded’

utterances. All activation matrices used in these mapping experi-

ments come directly from the previously presented studies with no

re-factorisation. The details of factorisation parameters are given in

the original articles [6, 18].

For each speaker, 300 training utterances were used to construct

the basis, while the other 200 were factored to get activation matrices

for learning the mappings.

4.4. Acquiring labels

Three label assignment methods were compared:

1. Source mapping, where each label matrix is averaged from

the state matrices of training segments which were used to

generate the atom.

2. Ordinary least squares (OLS) mapping, learnt with regres-

sion between activation matrices and transcriptions of 200

factored training utterances [14].

3. Convolutive learning with the proposed algorithm described

in Section 3.2 and the same subsets of training utterances as

in OLS.

The convolutive algorithm was further tested with Kullback-Leibler

(‘NMD/KL’) and Euclidean (‘NMD/Euc’) criteria for similarity. For

each basis and learning method, the mapping matrices Bl had iden-

tical length Tl to their corresponding atoms, fixed or variable de-

pending on the experiment. The number of NMD iterations in con-

volutive learning was determined by observing performance on the

development set. As in earlier work, final likelihoods for test utter-

ances were generated by computing Ẑ = X
s
⊛ B matrices, which

were then decoded using the default CHiME HMMs.



5. RESULTS AND DISCUSSION

5.1. Parameters for learning

Before moving on to final evaluation, two algorithmic choices re-

garding NMD learning were considered; first, which distance mea-

sure to use and second, how many iterations are required. These

were grid-scanned by generating mappings for multiple parameter

combinations and calculating keyword recognition rates for noisy

development data. Results are shown in Figure 2. Average accu-

racy over the six SNRs is plotted as a function of learning iterations.

Four combinations of fixed/variable length bases and KL/Euclidean

distance are plotted as separate curves.

We notice that the highest recognition accuracy is reached in

only a few iterations, in stark contrast to supervised spectral sepa-

ration experiments where hundreds of iterations still improved the

results [10]. A likely reason is that the binary target matrices lead

to rapid convergence, whereafter overlearning may take place due to

the small size of training sets, e.g. on average just eight instances

of each ‘letter’ keyword in the 200 utterances. Similar trends have

been observed in NMD-based speech and noise basis learning, where

a low iteration count prevents overadaptation and yields better re-

sults than letting the minimisation algorithm converge completely

[22, 23, 24].

Unfortunately more detailed conclusions are difficult to deter-

mine because the different parameters show varying and often con-

tradictory behaviour. No truly consistent trend takes place in the

iteration count. Eventually we settled for using four iterations for

all methods. Further iterations only increased the computation time

with no observable effect on the combined recognition accuracy. Re-

garding distance measures, for fixed length bases both choices per-

form equally well, but in variable length modelling KL-divergence

falls below all other combinations. Exact reasons for this differing

behaviour are not well known yet. Nevertheless, both basis types

and distance measures were included in final evaluation.

5.2. Test set results

The final results for different mapping algorithms are shown in Ta-

bles 1 and 2. Four labelling methods are compared: direct assign-

ment from atom sources (‘source’), ordinary least squares regres-

sion (‘OLS’) [14], and proposed NMD learning with KL and Eu-

clidean distance measures (‘NMD/KL’, ‘NMD/Euc’). Results for

fixed-length speech modelling are given in Table 1, and for variable-

length modelling in Table 2. In each case, recognition accuracies

are listed for each SNR level of development and test sets, and as

averages over noisy conditions. For each set and condition, the best

result among different mapping methods is highlighted. However,

note that clean and single-SNR sets comprise only 600 utterances

and 1200 keywords each, thus each hit or miss accounts for roughly

0.1% difference. Noisy averages, containing six times more trials,

can be considered more reliable.

5.3. Discussion

In general the proposed methods — especially with Euclidean dis-

tance — yield consistent improvement over using the atom source

transcriptions as labels and in most cases also over OLS mapping.

For a comparison, the average results using 20 times larger exemplar

bases were 85.9 and 85.8% for development and test sets, respec-

tively [6]. Therefore gaining up to 3.5% absolute improvement in

test set accuracy with compact bases just by better interpretation of

the same activations can be considered significant.

Fig. 2. Recognition accuracy (average of noisy development data)

over the number of NMD iterations used for learning the mappings.

Results are shown separately for fixed and variable length bases, and

KL and Euclidean distance measures.
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While determining strictly optimal labelling would be effec-

tively impossible, we can speculate that the proposed methods are

getting close to the limits set by factorisation output. The con-

volutive mapping model closely reflects the activation pattern of

NMD factorisation, hence the significance of different atoms and

atom-frames in separation and classification can be captured accu-

rately. The development graphs in Figure 2 suggest that with the

selected training data, the system is already prone to overlearning

even though a closer absolute match to training transcriptions could

be found by further iterations. Similar behaviour has also been seen

in basis learning with NMD [22, 23, 24]. Because early halting

of the descent does not produce repeatable results across different

initialisation values and optimisation algorithms, it might be worth

studying if overlearning could be prevented by regularisation of the

label matrix content instead.

The remaining clean speech recognition errors mostly arise from

difficult ‘letter’ keyword pairs like ‘m’/‘n’ and ‘b’/‘v’, which cannot

be classified reliably with the employed mel-spectral features and

speech bases regardless of mapping. Noisy conditions obviously in-

troduce their additional errors, which must be solved primarily with

better noise modelling. However, as the original 1st CHiME cor-

pus had no noisy training data, mappings were learnt from clean

speech factorisation. Learning labels from multi-condition factorisa-

tion might provide improved robustness due to capturing confusion

of speech atoms with noise, which was not possible in the presented

experiments.

The obvious benefit of the proposed method is that its convo-

lutive structure is similar to our spectrogram modelling, and it pro-

duces inherently non-negative mapping data which is directly appli-

cable for decoding. Its computational complexity depends on design

aspects such as data dimensions, solving algorithm, iteration count

and exploitation of sparsity. Nevertheless, the problem can be easily

split and solved in a small memory space, unlike least squares which

typically requires matrix inversion increasing in size along dimen-

sionality. Learning time with MATLAB prototype code was about 5

minutes per speaker on a dual-core desktop PC.

Regarding future work on SC-based speech recognition, focus

should be shifted back on feature spaces, basis acquisition methods,

factorisation algorithms and possibly language and state models. In-

terestingly, the proposed algorithm may prove helpful in optimising

these components. Because NMD learning is able to allocate state

weight on atoms with most consistent classification capability, it can



Table 1. Keyword recognition rates (%) for the 1st CHiME Challenge corpus using sparse classification, fixed-length speech bases, and four

methods for assigning state labels to atoms. Results are shown individually for each SNR level of development and test sets, and averages

over noisy conditions. For each condition, the highest result across methods is highlighted.

labelling development set test set

method clean 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB n.avg 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB n.avg

source 91.3 88.7 86.8 83.7 76.5 69.3 62.9 78.0 87.2 86.4 81.5 80.3 70.3 63.9 78.3

OLS 91.7 88.7 86.8 83.7 76.5 69.3 62.9 78.0 89.8 89.0 84.3 81.8 73.9 65.8 80.8

NMD/KL 91.5 89.3 87.9 86.5 79.9 73.9 66.4 80.7 90.6 89.0 85.3 83.0 75.6 67.4 81.8

NMD/Euc 91.7 90.1 88.4 85.7 80.4 72.8 65.9 80.5 90.8 88.8 85.5 82.6 75.4 67.5 81.8

Table 2. 1st CHiME corpus keyword recognition rates (%) using variable-length speech bases. Results are formatted equivalently to Table 1.

labelling development set test set

method clean 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB n.avg 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB n.avg

source 90.3 88.3 87.0 85.4 78.1 72.3 64.9 79.4 88.2 87.3 83.3 80.3 72.4 65.1 79.4

OLS 90.7 88.3 87.2 84.7 78.4 72.9 66.8 79.7 88.7 87.1 83.3 81.7 74.0 67.2 80.3

NMD/KL 90.2 87.5 87.8 84.6 78.3 73.2 66.4 79.6 89.2 87.2 83.6 80.8 74.8 66.6 80.4

NMD/Euc 91.0 88.8 88.0 85.8 79.0 74.0 67.3 80.5 89.2 87.4 84.0 82.2 75.3 67.3 80.9

be used to determine redundant or unreliable atoms during basis gen-

eration, and to evaluate whether classification from acquired activa-

tion weights is possible in the first place. Therefore we can predict

development of more closely integrated NMD systems handling both

spectral and state content simultaneously in model construction and

processing of input utterances.

6. CONCLUSIONS

A method based on convolutive non-negative matrix modelling was

proposed for learning linguistic state content of atoms in sparse

classification of speech. Acquired labels were evaluated on the 1st

CHiME noisy speech recognition task and compared to alternative

state mapping algorithms. Consistent improvements were achieved

in speech recognition accuracy compared to using baseline atom

identity or least squares regression for determining the correspon-

dence of speech atoms to language model states. The proposed

algorithm also circumvents earlier numerical issues in learning, and

facilitates closer integration of spectral and state components in a

factorisation-based speech recognition framework. We expect to

employ the algorithm in further experiments on standalone sparse

classification and joint methods, which have been found effective in

noise robust speech recognition.
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