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Abstract—A machine learning method for the automatic de-
tection of pronunciation errors made by non-native speakers of
English is proposed. It consists of training word-specific binary
classifiers on a collected dataset of isolated words with possible
pronunciation errors, typical for Finnish native speakers. The
classifiers predict whether the typical error is present in the
given word utterance. They operate on sequences of acoustic
features, extracted from consecutive frames of an audio recording
of a word utterance. The proposed architecture includes a
convolutional neural network, a recurrent neural network, or
a combination of the two. The optimal topology and hyperpa-
rameters are obtained in a Bayesian optimisation setting using a
tree-structured Parzen estimator. A dataset of 80 words uttered
naturally by 120 speakers is collected. The performance of the
proposed system, evaluated on a well-represented subset of the
dataset, shows that it is capable of detecting pronunciation errors
in most of the words (46/49) with high accuracy (mean accuracy
gain over the zero rule 12.21 percent points).

Index Terms—Computer-assisted language learning, pronunci-
ation learning, computer-assisted pronunciation training CNN,
GRU, CRNN.

I . I N T R O D U C T I O N

Learning a foreign language has traditionally been associated
with the need for face-to-face tutoring. Computer-assisted
language learning (CALL), on the other hand, can be mobile,
cost-efficient, and capable of providing individual tutoring using
advances in machine learning. Flashcard-based vocabulary
exercises are a common kind of CALL due to the established
theory behind the optimisation of memorisation [1]. Other
learning aspects have also been emerging in a CALL setting. In
this work, we focus on computer-assisted pronunciation training
(CAPT). Machine learning methods are crucial in this task, as
they enable reaction to the correctness of the pronunciation,
giving the learner individually tailored feedback and instructions
for correcting the detected errors. CAPT is an active research
area, and its applications have been shown to have a highly
significant and measurable impact on language learning [2].

The following works on the subject have been published
recently. In [3], the problem of particular pronunciation error
detection in non-native Dutch speech has been addressed using
decision trees and linear discriminant analysis (LDA). However,
the study was limited to only three phonemes. In [4], an LDA-

based system has been developed for quantity contrast between
short and long vowels in Norwegian.

In [5], a long short-term memory (LSTM) based system has
been used for predicting the so-called proficiency score, defined
subjectively on the training set of non-native English speech.
As features, the authors used the output of a SpeechRater [6]: a
system developed using TOEFL Practice data to capture among
others prosody information, phoneme content and speaker voice
quality of the input speech. The features include average chunk
length in words, articulation rate, duration of silences and long
pauses, frequency of long pauses etc.

In [7], a method for pronunciation error detection using
Hidden Markov models performing phoneme recognition has
been proposed. In the training dataset, in the cases of errors,
annotations have been provided indicating the true transcription
of the utterances, with distortion-type errors represented by
newly created phoneme symbols. In [8], an extended recognition
network-based approach has been used to discover individual
error patterns from a student’s speech, as well as a classifier-
based approach, consisting of a convolutional neural network
(CNN) with two branches, one for audio and the other for
textual input. The output indicates whether the provided audio
and the transcription match. The method allows for efficient data
generation by creating infinite pairs of mismatched utterances
and transcriptions.

In this paper, we propose a method for detecting typical
pronunciation errors made by native Finnish speakers when
speaking English. The system does not rely on phoneme
recognition and does not require detailed phoneme-level an-
notations, but is rather trained with binary annotations of
expected common errors occurring in the given utterances.
Since the kinds of typical errors can be defined for each
word separately, tailored instructions for their correction become
possible. We propose convolutional (CNN) and recurrent neural
networks (RNN), as well as their combination (CRNN), for
detecting typical pronunciation errors (Section II). We collect a
dataset of real utterances from 120 speakers (Section III) and
evaluate the proposed methodology on 49 words with various
primary error types (Section IV), showing optimal topology and
hyperparameters for each word and each error type.



I I . M E T H O D O L O G Y

We formulate a supervised machine learning problem, where
a system is trained with examples of errors typically made by
native Finnish-speaking learners in a selected set of English
words, as well as examples of utterances where there are no such
errors. The obtained models are then used to detect the target
errors in the utterances of new, previously unheard speakers.

A. Classification setup

The system is intended to be used in a language learning
scenario, where the word, whose pronunciation correctness is
to be assessed, is known in advance. Therefore, the classifiers
can be built for each word separately, with certain typical error
types defined for each word based on the collected data.

The proposed methodology consists of performing classi-
fication on the input sequence of feature vectors, described
in more detail in Section II-B. Here, the sequence refers to
a consecutive set of feature vectors obtained from the whole
utterance of the word, which may or may not include a typical
target error in a particular phoneme. The set of typical errors
is defined by linguistic professionals with expertise in teaching
English to Finnish students. The modelling of the errors in the
non-segmented utterances of the words is performed with neural
networks composed of convolutional layers and/or bidirectional
gated recurrent units (for the details see Section II-C).

An alternative approach of isolating the phoneme in which
the target error could occur prior to performing the classification
was initially considered. Forced alignment could be employed
in order to obtain the timestamps of the phonemes constituting
a whole-word utterance. However, for the given problem of
detecting erroneous pronunciation, the forced aligner, trained on
mostly non-erroneous speech, may fail. Unreliable segmentation
of the target phonemes is not suitable for use in an automatic
system. Additionally, focusing only on the phoneme where the
expected error could occur results in discarding information on
co-articulation, potentially valuable for the classification task.

Instead, we treat the whole utterance of a word as the
classification instance. Each of these instances is associated with
the target value. We consider a binary classification scenario,
where the target takes the value 1 if the typical error occurs in
the utterance and 0 if it is absent. The whole system consists
of independent classifiers, trained for each word separately.

A three-run Monte-Carlo cross-validation setup is used, with
a training–validation–test split proportion of roughly 0.6–0.2–
0.2. Since multiple word instances can be uttered by the same
speaker in the dataset, the split is performed in terms of speaker
IDs. This leads to a fair evaluation with no speaker being present
in more than one subset. The splits are obtained by shuffling
the user IDs multiple times until the resulting class balance
in the subsets is similar (up to 10% imbalance mismatch was
tolerated). The alternative, k-fold cross-validation setup, was
deemed unrealistic due to the difficulty of class stratification
when splitting the speakers into folds. The assignment of subsets
to the utterances of all the words for all runs of cross-validation
is performed in advance, so that all the hyperparameter search
trials would naturally operate on identical data.

B. Features

Both Mel-frequency cepstral coefficients (MFCCs) and mel
spectograms are supported in the proposed system. The original
idea behind computing MFCCs in speech recognition is that it
enables extraction of the information about the spectral envelope.
Its importance is considered high as it allows the detection
of formants, which characterise the speech content for speech
recognition tasks [9], [10]. In this work, from 10 to 40 (an
optimised hyperparameter) MFCCs are extracted from 40 to 120
mel bands computed from amplitude-normalised audio in frames
of 46 ms with a 75% overlap. Features are then optionally (a
hyperparameter) normalised to zero-mean, unit variance using
scaling factors from the training subset. Additionally, in line
with the developments in deep learning for speech analysis [11],
mel spectrogram features (40 to 120 bins) are supported, with
the same parameters for frame blocking. Whether to use MFCCs
or mel spectrograms is also one of the hyperparameters of the
system (see Section II-D).

The only data augmentation performed is random time
shifting by zero padding of the input signals on both sides.
All the signals were padded to be of two seconds duration as
the maximum duration of an utterance in the collected dataset
is 1.93 seconds (see Section III).

C. Neural network

The proposed architectures include either convolutional
(CNN), recurrent layers (more specifically, gated recurrent units,
GRU [12]) or their combination (a convolutional recurrent neural
network, CRNN), with possible additional fully-connected (FC)
layers. The translation-invariance properties of CNNs and
the temporal modelling capabilities of GRUs allow for direct
training on the whole utterance without the need of segmentation
of the phonemes in which the target error is expected to occur.
The importance of the GRUs is particularly apparent when
taking into account the modelling of longer-term phenomena,
such as co-articulation. We use the bidirectional [13] variant
of the architecture (BiGRU), which allows using the data both
from past and future frames of a sequence, thus increasing the
amount of information available for the network at each time
step. The CRNN architecture, consisting of a set of convolutional
layers followed by the recurrent ones, aims at combining the
benefits of both and has been successfully used for the tasks of
speech [14], music [15] and environmental audio analysis [16].

The proposed architecture (Figure 1) consists of a variable
number of CNN, BiGRU and FC layers, and a one-unit output
layer, predicting the likelihood of a pronunciation error. The
temporal dimension of the input is supported to be arbitrary
(as long as it is constant within each minibatch), even though
in our experiments the inputs were padded to be of the same
length for simplicity. The recurrent layer activation is tanh and
the output neuron activation is sigmoid.

An option of regularising the convolutional part of the
network using dropout [17] is supported, with its rate being
a hyperparameter. For the BiGRU layers, however, recurrent
dropout [18] is not used as it is not supported in the cuDNN-
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Fig. 1: The proposed system architecture and the hyperparameter search space.

based implementation, which was preferred due to its noticeable
computational efficiency.

For the CNN layers, batch normalisation [19] is supported.
A maxpooling operation is performed after each layer, reducing
the feature dimension by half, while preserving the original time
resolution. A global max pooling operation is then performed
after the last convolution in the case of the CNN architecture.
For the CRNN architecture, the feature dimension of the output
of the last convolutional layer is maxpooled down to one, while
the time dimension is left untouched and is represented by the
time steps of the downstream BiGRU layers. In the case of the
RNN architecture, the extracted features are fed directly to the
BiGRU layers. The output of the last BiGRU layer at the last
time step is then fed into the fully-connected layer afterwards.

Binary crossentropy loss is used as the training objective and
is optimised with Adam [20], whose learning rate is also to
be found in the hyperparameter search. The learning rate is
reduced by half when the monitored validation loss does not
decrease over the patience period of 50 epochs. The training is

performed in up to 500 epochs with early stopping after 200
epochs of no improvement of the validation loss. The models
are saved based on the best achieved validation loss.

D. Hyperparameter optimisation

For each word, hyperparameter optimisation experiments are
performed over the duration of 35 hours on a GPU (Tesla K40
and Tesla P100 cards were used), resulting in an average of
193 trials per word. The objective is to maximise the average
balanced validation accuracy (the average of recall obtained on
each class) over the runs of cross-validation. When the balanced
validation accuracy within one run of cross-validation yields
50%, the remaining runs with that search space sample are
terminated to reduce computational cost.

The following hyperparameters are optimised (when appli-
cable): architecture type (CNN, RNN, CRNN); feature type
(MFCCs or mel spectrograms); number of mel bands; number
of coefficients; feature normalisation flag; number of hidden
units in the convolutional, recurrent and fully-connected layers;
number of those layers; dropout rate and batch normalisation
flag in the convolutional layers; and the initial learning rate
(0.0001, 0.001 or 0.01). The search space of the parameters of
the architecture is defined in Figure 1. Sequential model-based
optimisation (SMBO), is used in the hyperparameter search as
it yields better performance on the test set and requires fewer
trials than the random or grid search strategies [21]. In SMBO,
the objective function is modelled with a surrogate probabilistic
surface, constructed using the information from each evaluation,
and the next hyperparameter candidates are selected to maximise
the expected improvement. In this work, the surrogate model is
created using the tree-structured Parzen estimator [22], suitable
for high search space dimensions and low evaluation budgets.

I I I . D ATA C O L L E C T I O N

To evaluate the proposed method, a dataset was collected. It
includes recordings of 120 speakers pronouncing 80 distinct
words twice or thrice, as well as annotations of typical errors
being present or absent in each utterance. The following sections
describe the collection, annotation and post-processing of the
dataset.

A. Selection of the words

Prior to the recording, three English teachers, one of whom
is a native English speaker, agreed upon a list of words whose
pronunciation tends to be problematic for Finnish natives.
The initial intention was to cover most of the common error
types. However, the likelihood of their occurrence could not be
guaranteed in the dataset of real utterances to be collected.

B. Recording process

There were 120 speakers in total (65 females, 55 males), 110
of whom were native Finnish speakers. The rest were native
English speakers. The speakers were university and high school
students aged between 17 and 30.

Each speaker was instructed to read through three or occa-
sionally two lists of 80 words, each list containing the same



words but in a different order. The word prompts were shown
on a tablet. After reading each word aloud, the speaker would
tap the screen, prompting the software to show the next word.
We had randomised the list of words into 10 different orders.
This was done to mitigate any possible bias in pronunciation
that might result from speakers always reading the words in the
same order (e.g. tiredness). Each speaker read the words in two
or three different orders, thus providing two to three utterances
per word.

The recordings were made in an acoustically treated noise-
insulated room with dimensions 4.53 m × 3.96 m × 2.59 m and
a reverberation time of 0.26 s. A single Røde NT55 condenser
microphone and a Focusrite Scarlett 2i2 audio interface were
used. The speakers were standing approximately 40 cm away
from the microphone while recording, . The parameters of the
recordings were: sampling frequency 44.1 kHz, bit depth 16 and
PCM encoding. The statistics for the duration of the collected
utterances are: mean 1.14, standard deviation 0.18, maximum
1.94, minimum 0.78 seconds.

C. Annotation

The single-word utterances from the continuous recordings of
individual speakers were manually segmented into separate files.
They were then grouped into playlists where all the utterances
of the same word were combined.

Two experts in linguistics performed the annotations. They
first went briefly through the examples of each word to get the
big picture and to define the primary and possible secondary
error types. Next, they listened through the whole dataset,
independently performing the annotations of all the utterances,
marking whether they were correct, contained the specified
primary or secondary error, or some other kind of error. Ad-
ditionally, they had an option to mark the utterance as to be
discarded due to some technical issue (e.g. noise or distortion).
All the samples of a word were automatically played back in
sequence with a four-second pause in between. However, the
annotators had the option of listening multiple times to an
utterance and to compare it with the other speakers’ utterances
of the same word.

D. Dataset organisation

The focus of this work was to detect the most common
pronunciation errors. Detecting secondary errors with a machine
learning system was deemed unfeasible due to the insufficient
amount of data in which those occur (only 2.4% of the
samples). Therefore, the annotations of the secondary errors
were ignored in this work, and the system output only predicted
the presence or absence of a typical error. Additional post-
processing was performed by discarding samples over which
the annotators had disagreed. Such cases were most likely
due to the non-binary scale of the error and a degree of
subjectivity of the problem. The classifier was only trained with
the agreed samples whose certainty was thus maximised, in
line with the binary label format. The possibility of training the
network with uncertain data and advanced methods of combining
contradictory annotations [23] are left for future investigation.
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Fig. 2: Primary groups of errors discovered in the dataset and corresponding
counts of unique words with such errors as primary ones. The error classes
are defined as the follwing:

• vowel: a vowel error (e.g. vowel [I] becoming [e] on the first syllable of
the word begin),

• dentalisation: bilabial [w] becomes labio-dental [v] (words worse, wet,
wine),

• silent: silent letters (b in bomb, p in psychology, l in walk, h in hour)
being pronounced,

• approximant: phoneme [v] is rather an approximant than a fricative (words
very, vet, vine, voice, verse),

• plosive: D not dental enough (tongue should be between the teeth),
pronounced like Finnish [t] (with slight aspiration) (words through, than,
thin, weather),

• aspiration: missing aspiration in phonemes [p] (push, prince, pull, pear),
[t] (fantastic, tie), [k] (cave, control, card, coat)

• voicing: voiced consonants becoming voiceless ([z] in goes, ([D] in bathe,
[dZ] in joke, [d] in bed)

• other: various kinds of other errors, shared across many words in the
dataset (“rolling r”, afficate [tS] or fricative [S] becomes like plosive [t]
in the word structure, alveolar [s] instead of palate-alveolar [S] in the
words education and fish, affricate [tS] becoming more like combination
[ts] in the word rich.

Finally, the counts of agreed correct and target error samples
were computed for all the collected 80 words. As a rule, most of
the words showed significant class imbalance, with the correct
pronunciation occurring much more often than errors. This issue
does raise challenges for the data-driven approach. For training
and evaluation of the proposed system, a subset of 49 words
was selected based on two criteria: at least 10 samples of either
class needed to be present in all the training, validation and test
sets for the three distinct splits, and a rough (10% tolerance)
stratification should be achieved after 10 000 shuffling attempts
at most. This way, we were able to discard the words for which
we expected it to be unfeasible to develop machine learning
methods due to the lack of available data.

The word-wise details on the target errors, the agreement rate
between the annotators and the counts of samples belonging to
either class are presented later in the summary Table II. For
the aggregated statistics on the discovered primary error types
in the collected dataset, see Figure 2. We see that the voicing
error turned out to be the dominant one across the words, which
could be explained by the scarcity of voiced consonants in the
Finnish language.



I V. E VA L U AT I O N

A. Metrics

Within each run of the search, in addition to computing the
balanced accuracy on the validation set as the hyperparameter
optimisation objective, evaluation metrics were computed on the
test set and stored for the final analysis. Test set performance
was kept apart from all the experimentation and had no effect on
the decisions made by the experimenter. The following metrics
were computed: F1-score, area under a receiver operating
characteristic curve (AUC), accuracy and zero rule. The latter,
defined as the accuracy of always predicting the majority class,
is useful for gaining a better insight into the meaning of the
accuracy score in an unbalanced problem.

B. Overall results

The results are illustrated in Figure 3 and in more detail in
Table II. We see that for the words with class priors closest
to equal, i.e. with large numbers of samples belonging to
both classes, the performance of the proposed system is most
prominent (an average 17.84 percentage point accuracy gain
over the zero rule for the 20 most represented words). For the
words with highly unbalanced classes, the problem becomes
more challenging. Still, the system beats the zero rule in 46
cases of all the 49 evaluated words and produces an average
accuracy gain over the zero rule of 12.21 percentage points.

C. Hyperparameter-specific results

Interesting observations can be made about the results of
the hyperparameter search. Figure 4 presents the counts of
systems with certain values of hyperparameters, selected for
each word as yielding the best validation accuracies. There is a
certain preference of RNNs over CNNs and CRNNs. This can
be explained by the fact that “classical” features were supported,
and so the benefit of convolutional layers as a feature extractor
was thus not as prominent. Temporal modelling with BiGRUs
appeared to be beneficial for the majority of the words.

MFCCs were selected more often than mel spectrograms,
contrary to recent trends in machine listening [11]. The dimen-
sionality reduction properties of MFCCs may explain this. While
the network should be able to learn from the higher-dimensional
mel spectrograms, and the hyperparameter optimisation should
be able to select the optimal number of features, the system
may overfit more easily given the insufficient amount of data,
thus rendering MFCCs a more appropriate feature choice.

Concerning the depth of the neural networks, all the architec-
tures benefit from a larger depth of convolutional layers, while
the number of RNN layers was preferred to be moderately large
for purely RNN architectures. Batch normalisation in the CNN
layers was useful in the majority of the cases. Moderate rates
of dropout were preferred. In the case of CRNN architectures,
half of the systems preferred not to perform any dropout at all.

Aggressively large learning rates during the initial stages were
shown to be beneficial. Naturally, since the reduction of the
learning rate on a validation loss plateau was always supported,
the potential drawbacks of excessively large learning rates were
controlled.

TABLE I: Error type-wise details of the preferred parameters and performance.

error type preferred
architecture

preferred
features

avr. #
epochs

avr. gain
over ZR

approximant RNN, 3/3 cases MFCC, 2/3 52 16.93
aspiration CRNN, 4/8 MFCC, 5/8 54 11.44
plosive CNN, 3/7 MFCC, 4/7 60 11.16
other CNN, 4/7 melsp, 4/7 61 12.39
silent RNN, 3/4 MFCC, 4/4 88 10.80
voicing CNN, 8/17 MFCC, 12/17 83 12.49
dentalisation RNN, 2/2 MFCC, 2/2 74 17.88

D. Error-specific results

Next, we consider the performance and parameters of the
systems in relation to the types of pronunciation errors (see
Table I). The vowel error type, represented in the dataset by
the word “begin” is excluded as the gain over zero rule could
not be achieved with this word, rendering the hyperparameter
values irrelevant. The most noticeable improvement over the
zero rule was observed with [v] and [w] related errors, with
other consontant errors also being detected with high accuracies.

Among the proposed architectures, RNNs were selected most
often for the [v] and [w] related error types, as well as for silent
phonemes. Aspiration-related errors were detected most often
with a CRNN, and the rest of the error types found CNN to
be sufficient. MFCCs were a clear primary choice of features
except for the “other” error types. All the networks reached
best validation scores very fast, in under 100 epochs.

E. Bayesian optimisation performance

The best validation accuracy, used for selecting the hy-
perparameters, was achieved on average after 60% of the
trials (translating into an average trial number of 120). The
mean mismatch between the validation and corresponding test
accuracies of the selected systems was 6.73 percentage points.
If knowing which hyperparameters would achieve the best
test accuracy was possible (the so-called oracle case), this
mismatch would have been 3.45 percent points. This suggests
that the systems generalise well, the defined setup is reasonable,
and further optimisation is unlikely to produce any noticeable
improvement in performance.

V. C O N C L U S I O N

Systems based on CNN, RNN and CRNN architectures were
proposed for detecting common pronunciation errors in isolated
word utterances. Optimal hyperparameters were obtained for
each word and type of error. The performance was evaluated
with a collected annotated dataset of utterances from 120 people.
The system showed good performance: for the twenty words
with the most available data for each class, it achieved an average
17.84 percentage point accuracy gain over the zero rule. Overall,
it has beaten the zero rule in 46 out of the 49 evaluated words.
The method is capable of solving the problem of pronunciation
error detection without resorting to hand-crafted features or
massive datasets (successful performance was observed with as
few as 24 examples of target errors in the dataset).
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However, the systems were trained and evaluated in a some-
what idealistic scenario. The signals were noiseless and recorded
with the same equipment, and the samples with contradictory
annotations were not used. The future work directions include
methods for noise, room and device robustness, as well as
for learning from contradictory annotations. Additionally, joint
training of multiple words as opposed to the proposed separate
classifiers could confer the benefit of an increased amount of
training data. Finally, transfer learning methods will be studied,
e.g. by using models, pre-trained on a speech recognition task.
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TABLE II: Evaluation results and dataset statistics for the 49 evaluated words. Correct count and tar. er. count stand for the numbers of ground truth correct
utterances and target error utterances in the agreed subset of the dataset. The test accuracies are in bold face when they exceed the zero rule.

word phoneme error type annot.
agr., %

correct
count

tar. er.
count

ZR, % acc., % AUC F1, % # params feature archit.

although [D] voicing 92.99 221 28 83.16 83.73 0.60 25.18 201.73K MFCC CRNN

bacteria [b] voicing 85.20 224 23 79.83 75.79 0.51 11.91 4.94M MFCC CNN

bag [g] other 89.56 215 33 76.39 91.32 0.85 74.17 26.42K melsp CNN

bathe [D] voicing 76.17 79 124 59.29 78.79 0.79 77.60 29.31K MFCC RNN

bed [d] voicing 76.17 152 88 61.57 83.73 0.83 79.70 451.20K melsp RNN

begin [I] vowel 89.41 244 40 78.47 78.42 0.65 45.74 106.18K melsp CNN

bomb silent b silent 92.83 228 64 79.91 90.76 0.88 78.74 30.21K MFCC RNN

bush [b] voicing 92.52 249 27 82.77 91.20 0.80 68.03 215.30K MFCC RNN

busy [z] voicing 80.53 139 115 61.04 87.41 0.87 88.51 317.50K MFCC CNN

card [k] aspiration 92.83 270 27 81.58 91.78 0.83 74.35 1.67M melsp CRNN

cave [k] aspiration 95.33 274 32 82.25 93.84 0.91 84.99 2.24M melsp CRNN

cold [k] aspiration 87.07 198 32 77.96 91.42 0.80 74.78 2.88M melsp RNN

dry [d] voicing 79.60 186 58 76.52 88.25 0.84 75.24 3.41M MFCC CRNN

fantastic [t] aspiration 85.05 230 42 76.80 89.04 0.83 70.75 1.27M MFCC CNN

gin [dZ] voicing 86.14 208 58 78.18 86.02 0.85 72.43 2.82M MFCC RNN

goes [z] voicing 86.45 40 233 78.12 88.15 0.76 92.76 3.42M MFCC CNN

gold [g] voicing 91.28 237 25 81.35 84.60 0.74 53.87 700.67K MFCC RNN

hit [I] other 67.76 147 70 62.68 93.04 0.93 90.53 1.62M MFCC RNN

issue [S] other 93.15 240 29 79.98 87.98 0.73 57.68 437.76K MFCC CNN

job [dZ] voicing 73.68 203 30 77.52 96.14 0.91 89.24 104.03K melsp CNN

join [dZ] voicing 83.96 198 70 70.15 93.76 0.92 90.38 6.86M melsp CRNN

joke [dZ] voicing 76.48 148 95 63.27 84.63 0.85 79.77 4.92M MFCC CNN

knee silent k silent 96.42 223 85 70.02 95.13 0.94 92.40 54.27K MFCC CNN

prince [p] aspiration 88.01 246 35 78.00 87.18 0.79 67.75 2.80M MFCC RNN

prize [z] voicing 83.64 142 119 62.84 72.69 0.76 70.60 1.68M melsp CNN

psychology silent p silent 69.94 133 39 77.16 79.47 0.82 66.60 3.98M MFCC RNN

pull [p] aspiration 97.82 279 35 84.12 99.05 0.98 97.52 439.87K MFCC CRNN

push [p] aspiration 94.70 234 56 81.51 92.65 0.86 79.32 414.91K MFCC CNN

raise [z] voicing 80.22 81 174 72.40 88.47 0.84 91.83 78.27K MFCC CNN

ridge [dZ] voicing 60.59 92 87 63.29 75.29 0.72 67.86 80.39K melsp CNN

robe [b] voicing 87.69 218 50 77.17 82.12 0.70 51.42 184.10K MFCC RNN

rope [r] other 95.33 269 27 82.17 88.52 0.77 54.26 1.05M melsp CRNN

structure [tS] other 94.24 268 27 81.85 79.36 0.48 0.00 3.28M melsp CNN

sugar [S] other 96.26 219 88 71.94 94.36 0.94 90.30 103.39K melsp CNN

teeth [8] plosive 92.21 260 34 81.52 90.02 0.82 73.62 704.51K MFCC RNN

than [D] plosive 86.76 168 43 79.04 93.83 0.90 84.90 1.65M melsp CNN

thank [8] plosive 94.24 260 39 79.67 94.40 0.93 86.32 1.70M melsp CRNN

that [D] plosive 88.01 197 38 78.79 90.24 0.79 70.37 724.61K MFCC RNN

thin [8] plosive 94.39 256 39 82.52 91.15 0.81 72.56 3.29M MFCC CNN

through [8] plosive 91.59 194 73 74.98 88.18 0.89 80.66 3.98M MFCC RNN

tie [t] aspiration 91.90 266 24 82.13 90.91 0.77 56.62 1.55M MFCC CRNN

very [v] approximant 55.30 103 55 62.72 86.79 0.87 84.14 3.11M melsp RNN

vet [v] approximant 54.21 73 52 64.64 78.26 0.77 71.12 4.05M MFCC RNN

vine [v] approximant 60.90 88 42 67.66 80.77 0.75 63.07 997.12K MFCC RNN

walk silent l silent 91.28 261 27 81.61 86.54 0.63 35.52 256.67K MFCC RNN

weather [D] plosive 89.10 237 37 77.19 84.02 0.73 59.57 313.25K melsp CNN

wet [w] dentalisation 97.82 275 36 83.94 96.86 0.90 88.97 423.73K MFCC RNN

worse [w] dentalisation 89.88 213 67 68.56 91.41 0.89 85.65 2.86M MFCC RNN

zip [ts] other 92.21 242 30 80.74 87.89 0.76 63.77 278.91K MFCC RNN


