
Modelling Primitive Streaming of Simple Tone Sequences Through
Factorisation of Modulation Pattern Tensors

Tom Barker1, Hugo Van hamme2, Tuomas Virtanen1

1Tampere University of Technology, Finland, 2KU Leuven, Belgium
Thomas.Barker@tut.fi, Hugo.Vanhamme@esat.kuleuven.be, Tuomas.Virtanen@tut.fi

Abstract
We present a novel method for determining how the perceptual

organisation of simple alternating tone sequences is likely to occur
in human listeners. By training a tensor model representation
using features which incorporate both low-frequency modulation
rate and phase, a set of components is learned. Test patterns
are modelled using these learned components, and the sum of
component activations is used to predict either an ‘integrated’ or
‘segregated’ auditory stream percept. We find that for the basic
streaming paradigm tested, our proposed model and method is
able to correctly predict either segregation or integration in the
majority of cases.
Index Terms: auditory modelling, stream segregation, tensor
factorisation

1. Introduction
Blind computational speech source separation is a difficult and
unsolved research problem. Although fairly effective techniques
for separating speech from background noise exist [1, 2], these
generally require an explicit model of either speech or noise, and
performance of blind methods [3], is not yet close to that of the
human auditory system. It therefore makes sense to look to the
human auditory system for inspiration in terms of features and
mechanisms which can be used to produce successful sound-source
separation algorithms.

The human auditory system is extremely good at grouping
sensory inputs which occur in the environment into perceptual
objects which relate to their true source. The formation of these
auditory ‘objects’ [4], a process commonly referred to as auditory
scene analysis (ASA) can take place at one (or more) of a number
levels within the auditory system; indeed it is proposed in [5] that
‘primitive’ processes in ASA occur automatically, and are data-
driven, whilst ‘schema-based’ processes are more reliant upon
the listener’s attention and cognitive input, hence rely on higher
level cognitive functions. By modelling the primitive processes,
we can gain insight into how various features of a signal affect
the mechanisms of perceptual grouping by the auditory system,
although many behaviours are already fairly well documented
[5, 6], the mechanisms behind such groupings are still subject to
much investigation.

In van Noorden’s classic experiments [7], it was shown that for
an alternating sequence of two pure tones, A and B, the formation
of the percept of either a single stream or two separate streams
depends upon tone repetition time and frequency difference, ∆f
(see Figure 1). We train a model with data generated from such
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Figure 1: An example of possible perceptual organisation for pure-tone
sequences. Depending on both the frequency separation, ∆f , and tone-
repetition-time (TRT), the percept of either a single continuous sequence
of alternating tones (integration, middle axis), or two separate sequences
of tones (segregation, right axis) is produced.

results, and investigate the use of such a signal representation to
estimate the percept to be generated by novel stimuli.

To date, multiple attempts have been made to model auditory
system stream formation behaviours. It is proposed and modelled
in [8] that temporal coherence between neuron responses from
the primary auditory cortex is one of the key features in stream
formation, and strength of either an integrated or segregated per-
cept is estimated via an eigenvalue ratio of the result of temporal
coherence analysis. This work is extended in [9], where a biologi-
cally inspired auditory front-end, [10] is used to first pre-process
the stimulus, whilst using the coherence analysis proposed in [8]
as a back-end. Earlier models such as in [11] rely on frequency
separation between tones presented, and grouping is based on
activations of strongly overlapping auditory ‘channels’, but do not
account for the integration of tones with common onset and offset
(simultaneous grouping).

We propose the use of a novel feature representation, and
supervised tensor factorisation method to learn features from
training data. Supervised factorisation methods have been used
to produce good audio source separation [1], but have not taken
account of underlying representations within the auditory system.
Our approach inherently considers the phase of components within
a sequence, as in [8, 9], but instead makes a prediction as to an
‘integrated’ or ‘segregated’ percept based on the number and
strength of learned component activations rather than eigenvalue
ratios.

2. Model Description
The proposed model represents tone sequences as a sum of com-
ponents which are learned through factorisation of a number of
training examples. Each training example is modelled over 3
dimensions, with different auditory model-based frequency bands
being represented in terms of modulation frequency and phase
(see Section 3). A 4th dimension holds the weights of the compo-
nents for each example and during testing, these weights are used
to make a prediction as to whether a sequence of tones will be



perceived as integrated or segregated. Components in the first 3
dimensions are first learned during training, and then remain fixed
for the test phase, whilst a new set of weights is learned for each
example under test.

Lower weights suggest the stimulus requires fewer compo-
nents to accurately approximate it, and would produce an in-
tegrated percept, whilst higher weights are more complex and
produce a segregated percept. The model’s capacity to make
accurate predictions on novel data demonstrates the ability of the
proposed data representation to capture relevant features for the
formation of auditory streams.

3. Audio Representation
Audio is represented in terms of both modulation frequencies and
phases across distinct auditory channels. A similar representation
has been used in previous work, where phase independent modu-
lation patterns have been used to group components originating
from the same source in both unsupervised and semi-supervised
manners [3, 12]. Here, the incorporation of phase is important
since it allows the capture of co-occurrence or discrepancies be-
tween temporal onset times, which will allow useful extension to
the model for more complex tone sequences. Phase information
is encoded by quantising the phase component of the discrete
Fourier transform (DFT) of modulation envelopes.

To represent audio, the following method is used: A training or
test example, is normalised based on its RMS power, filtered with a
constant-phase gammatone filterbank [13], withR = 20-channels,
then halfwave-rectified and lowpass filtered (LPF) with a single-
pole filter with 30Hz cutoff to produce a modulation envelope
(ME) representation for each filterbank sub-band. This is similar to
the front-end processing in many auditory models [14]. Since high
frequencies are removed by the LPF operation, downsampling
to 60Hz is performed to reduce data complexity. Each auditory
channel is processed with a sliding window DFT; due to the
repetitive nature of the stimuli considered in this paper, each
DFT output frame should contain similar magnitude information
which varies only in phase. Different phase shifts of the same
DFT result are therefore considered equivalent within the model
framework. It should be noted that the representation could
accomodate temporally dynamic stimuli by considering multiple
frames of audio input across the 4th dimension. A single time
frame of sufficient length is able to characterise a periodic signal,
and so each training example is represented by such. We use a
single window of 0.5 seconds (30 samples) for each example.
Phase components of the DFT result exist over a continuous range
of 0− 2π. This range is quantised to 30 bins, and the magnitude
of each DFT frequency bin is assigned to the appropriate quantised
phase bin. The processing described is represented in Figure 2.

The phase-quantised representation of such a complex number
used in our model, T , is produced by considering the phase Zφ in
each auditory channel r, DFT bin q, and for each training example
h is quantised such that:

Tr,q,n,h =

{
|Z|r,q,h if ( 2π(n−1)

V
) ≤ Zφr,q,h < ( 2πn

V
)

0 otherwise
(1)

where V is the number of quantisation bins.

4. Rotated Tensor Factorisation
Training data is factorised in order to identify redundant patterns,
which form the generalised model, the components of which are
used for the representation of new data. The aim is to learn a set
of components which best approximate the features which are
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Figure 2: Schematic overview of the process to produce a 3-Dimensional
Tensor representation of a single audio example. The phase rotation
operation is applied prior to quantisation in each case.

commonly occurring in stimuli from which the tensor model is
generated, with the aim that they will also fit new data well.

In conventional shifted-factorisation approaches [15], shifts
are applied to one or more dimensions and to one or more of the
factor matrices in an attempt to better fit the data. We want to
make no distinction between the same (periodic) signal sampled
at different time points or shifts. The magnitude of the DFT
of such a signal would be identical regardless of sample time,
but phase would not. We therefore treat phase shifted versions
of each training example h as identical, and modify the phase
accordingly to minimise the Kullback-Leibler (KL) divergence
between the training data tensor T and its approximation. A phase
shift equivalent to a single sample in the (downsampled) time
domain delay is applied by multiplication of the complex DFT
result with a complex exponential, similarly to as in [16], which
removes the need for an exhaustive search over all integer shifts
of the tensor. Furthermore, a simple shift in the tensor domain
would produce an equal phase shift for each frequency bin, which
would be equivalent to a different time shift for each modulation
frequency present in the signal, and thus not accurately represent
time-shifted samples of the same stimulus.

A phase shifted version of complex data Z in the DFT domain,
Zτ , with a shift of τ time-domain samples, can be produced by
multiplication with a complex exponential prior to the quantisation
operation,

Zτr,q,h = Zr,q,he
j 2πqτ
N (2)

where r is the filterbank channel, q is the DFT result sample index,
h is the training or test example and N is the DFT length.

4.1. Tensor Model Updates

The 4-dimensional training data tensor representation is modelled
by the summation of components learned through tensor factori-
sation. The training tensor T , of dimensions R×Q×N ×H
(number of auditory channels × DFT bins × phase quantisation
bins × training examples) is the sum of K components, each of
which is a product of the factors contained in matrices C (size
R×K), M (size Q×K), P (size N ×K) and D (size H×K).
Each of the K columns of the factor matrices describes a compo-
nent of the tensor decomposition. The model for T is denoted T̂
such that:

Tr,q,n,h ≈ T̂r,q,n,h =

K∑
k=1

Cr,kMq,kPn,kDh,k (3)

4.2. Update Equations

The components in matrices C, M, P and D are learned through
update equations which minimise the KL-divergence via an alter-
nating least squares approach, whilst enforcing sparsity over the
D dimension. Model parameters are learned by minimising the
Kullback-Leibler (KL) divergence D between T and T̂ :



D(T ||T̂ ) =
∑
r,q,n,h

Tr,q,n,h log
Tr,q,n,h
T̂r,q,n,h

− Tr,q,n,h + T̂r,q,n,h

(4)
whilst imposing a sparsity penalty on the matrix D. The row-
normalised L1-norm for D is used as a sparsity cost and is defined
as: K∑

i=1

∑H
j=1 Di,j√∑H
j′=1 D

2
i,j′

(5)

where we also vary the weights of this for each row with the vector
λ = [0, 1...H] which holds the sparsity coefficient for each row
in D.

The multi-dimensional estimation problem is reduced to a
set of matrix factorisation problems through matricisation and
solving over each mode of the tensor T successively. Following
each set of updates over all dimensions, T is rotated over all
possible integer time domain sample shifts τ to again minimise
KL-divergence. The mode-n matricised (unfolded) version of a
tensor T is denoted as T(n) as in [17]. We defineQ as T /T̂ and
its matricised representation as Q(n) and 1(n) is a matrix of 1s
with the same dimensionality as Q(n). The Khatri-Rao product
(see also [17]) is denoted by the � operator, and element-wise
multiplication by ⊗.

The update equation which minimises KL-divergence between
T and T̂ for C is:

C← C⊗
Q(1)[M�P�D]T

1(1)[M�P�D]T
. (6)

Similarly, M is updated via:

M←M⊗
Q(2)[C�P�D]T

1(2)[C�P�D]T
(7)

and P by:

P← P⊗
Q(3)[C�M�D]T

1(3)[C�M�D]T
(8)

whereas the update rule for D also minimises the cost function
defined in Equation 5 and thus becomes:

D← D⊗

(
Q(4)[C�M�P]T +∇c−s (D)

1(4)[C�M�P]T +∇c+s (D)

)
(9)

where ∇c−s (Dh,t) = λh
dh,t
√
K
∑K
i=1 dh,i

(
∑K
i′=1 d

2
h,i′)

3/2
(10)

and
∇c+s (Dh,t) = λh

1√
1
K

∑K
i=1 d

2
h,i

. (11)

Each component k in C, M and P is also L1 normalised
after each application of the corresponding update equation.

4.3. Training the Model

A number of training examples are generated, based on audio data
which is regarded to be perceived as unambiguously integrated or
segregated. Each example is formed as per the process in Figure 2,
and the H examples are used to form the 4-dimensional tensor
which is factorised, as in Figure 3. The factorisation process
is performed by initialising C, M, P and D with random non-
negative values and then repeating the following until convergence
(negligible change in the overall cost function):

1. Update C, M, P, D in turn, using the rules defined in
Equations (6 - 9)

Quantised Phase,
N

Auditory
Channels,

R

D
FT

M
agnitude,

Q

Trial/Example H

Independent phase rotation
for each trial during

factorisation

Figure 3: The 4 dimensions of the training tensor which is decomposed
through non-negative PARAFAC factorisation.

2. For each h, rotate T through all possible integer phase
shifts.

3. Set each h in T to the rotation which minimises KL diver-
gence defined in Equation 4 for the next round of updates.

4.4. Using training data on novel stimuli

Following training of the model, new examples can be modelled
using the learned components contained in matrices C, M and
P. These components are used to model the test examples, and
depending upon the weights of activations, an estimation as to the
likelihood of either an integrated or segregated percept is produced.
We simplify the problem domain by considering only integrated
or segregated percepts, and do not attempt to model or classify
ambiguous percepts.

Each test example is formed into a tensor, X , of dimensions
R×Q×N×1 . For each test example, a vector, D′ of dimension
1×K is initialised with positive random values, and used in the
approximation X̂ by minimising the KL-divergence and sparsity
constraint:

Xr,q,n ≈ X̂r,q,n =

K∑
k=1

Cr,kMq,kPn,kD
′
k (12)

Since the integrated/segregated percept is inherently modelled
by the rank of the decomposition, the number of active components
is generalised by the sum of the activations. For each trial under
test, the sum of activation energies is compared to a threshold.
Values above the threshold should be stimuli which favour the
segregated percept, whilst those below it are more likely to be
perceived as integrated. The threshold T is taken as the mean
activation sum, µ of matrix D:

T = µ

K∑
k=1

Dh,k (13)

although other methods for determining the appropriate threshold
could be employed. The key point is that enough separation exists
between the distribution of activations sums for the integrated and
segregated examples.

5. Experimental Evaluation
It has been experimentally determined that for A-B patterns (Fig-
ure 1) of tones of alternating pitch, the sequential organisation of
the tones forms one of three percepts: integration, segregation, or
an ambiguous percept where neither of the two alternate states
dominate, and switching between percepts occurs [7, 18]. The
frequency difference between tone pairs, ∆f , and the time be-
tween successive onsets of the same tone, the tone repetition time



Tone A Frequency 250 500 750 1000 1250 1500 1750 2000 2500 3000 Average

Tone Duration (ms) Integrated Percept
20 94 78 78 94 100 100 89 78 83 94 88,8
30 89 89 89 83 83 83 83 72 78 78 82,7
40 100 89 89 89 89 89 83 83 78 78 86,7
50 94 83 83 88 94 89 78 78 67 83 83,7
60 94 94 94 89 100 94 89 89 89 94 92,6

Mean 94,2 86,6 86,6 88,6 93,2 91 84,4 80 79 85,4 86,9
Segregated Percept

20 78 83 83 83 83 83 89 72 83 78 81,5
30 72 83 89 89 83 83 89 89 89 89 85,5
40 78 94 84 84 84 84 89 89 89 83 85,8
50 67 83 72 83 78 78 83 83 83 72 78,2
60 50 78 61 72 61 66 78 78 72 61 67,7

Mean 69 84,2 77,8 82,2 77,8 78,8 85,6 82,2 83,2 76,6 79,74

Table 1: Average classification accuracy over 36 different trials at various tone-A frequencies and tone durations.

60 80 100 120 140

0

5

10

TRT (ms)

∆
f(

se
m

ito
ne

s)

1kHz, 0.5kHz, 2kHz, 1kHz, 0.5kHz, 2kHz,

Figure 4: Data used to train the model. Solid filled data points were used
as the ‘segregated’ training data, whilst hollow formed the ‘integrated’.
Each data point shows the tone-A frequency, TRT and ∆f of a particular
training example. The dotted line is the temporal coherence boundary,
(TCB) whilst the solid line forms the fission boundary (FB).

(TRT), affect the segregation of the stimulus. Van Noorden deter-
mined thresholds as a function of ∆f and TRT which describe
the points at which either segregation or integration is consistently
experienced [7]. The temporal coherence boundary (TCB) is the
boundary above which the A and B tones split into two separate
streams. The fission boundary divides the region below which a
single stream is always perceived. Such boundaries are shown as
a function of ∆f and TRT alongside training data in Figure 4.

We train the model using tone sequences which would produce
either an integrated or segregated percept, as per van Noorden’s
experiments, then use the results of the training to classify new
tone sequences, distinct from the training data.

5.1. Training Data

The model is trained by presenting it with 27 examples of ‘segre-
gated’ tone sequences and 27 ‘integrated’. The sparsity weights
for integrated sequence examples are set to 0.8 and for segregated
to 0.2, to encourage a lower number of components to be learned
in the model of integrated percepts. A sequence of alternating
high and low tones is generated, with differing TRTs and ∆f for
each example. TRT and ∆f values are randomly chosen, with the
constraint that they lie either above the TCB for the segregated
percept, or below the FB for the integrated percept. Tone duration
in all training examples is 40 ms, with a 5 ms raised cosine onset
and offset. 9 examples with A-tone frequencies of 500 Hz, 1 kHz
and 2 kHz were used for each training percept, and the training
data parameters are shown in Figure 4.

5.2. Modelling Stream Segregation as a function of Tone
Repetition Time and Frequency Separation

In this set of experiments, new test examples were generated
for each tone distinct from the training set following the A-B
tone paradigm used in training. Additionally, the length of the
tones was varied across trials, from 20-60ms at 10ms increments.
Frequency of the A tone was varied from 250Hz to 3000Hz, and
TRT and ∆f randomly selected to lie either above the TCB or
below the FB. A sparsity coefficient of 0.5 (midway between the
integrated and segregated sparsity coefficients used in training)
was used on all test examples.

5.3. Results

The average classification accuracy over 18 trials for each tone
duration and tone-A frequency are shown in Table 1. The experi-
mental evaluation demonstrated that in the majority of cases, a
correct prediction could be produced by the model as to either an
integrated or segregated percept. On average, a correct integrated
prediction was produced in 86.9% of test cases and segregated
predictions had lower success, at 79.7% correct. For segregated
predictions, highest accuracy was achieved for lower tone dura-
tions, with average prediction performance falling as duration
increased. Interestingly, for the integrated data, the converse was
true, with highest accuracy achieved for 60ms tone durations.
There does not appear to be a strong trend in terms of tone-A
frequency on prediction accuracy.

6. Conclusions
A feature representation and model was proposed which allowed
the prediction of either an integrated or segregated auditory percept
for a sequence of tones. It was shown that with a fairly low
number of training examples, the proposed model can classify new
audio examples of similar form, but distinct from training data.
This suggests that audio representation in terms of components
approximating modulation frequency and phase, learned through
factorisation, is a viable approach for auditory stream segregation
modelling.

The model and tests covered in this paper could be extended to
cover temporal variation in patterns and percepts. Sparsity weight,
and thus, the liklihood of a particular percept, could be updated on
a frame-by-frame basis. By taking into account the probability
of a different percept occuring based on the current percept state,
similar to as in [19], a more perceptually realistic behavioural
simulation could be achieved. Such an extension would be useful
in working towards incorporating such a signal representation into
useful real-world sound-source separation algorithms.
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