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Binary non-negative matrix deconvolution for audio
dictionary learning

Szymon Drgas, Tuomas Virtanen, Jorg Liicke, Antti Hurmalainen

Abstract—In this study we propose an unsupervised method
for dictionary learning in audio signals. The new method,
called binary non-negative matrix deconvolution (BNMD), is
developed and used to discover patterns from magnitude-scale
spectrograms. The BNMD models an audio spectrogram as a sum
of delayed patterns having binary gains (activations). Only small
subsets of patterns can be active for a given spectrogram excerpt.
The proposed method was applied to speaker identification and
separation tasks. The experimental results show that dictionaries
obtained by the BNMD bring much higher speaker identification
accuracies averaged over a range of SNRs from -6 dB to 9
dB (91.3%) than the NMD-based dictionaries (37.8-75.4%). The
BNMD also gives a benefit over dictionaries obtained using vector
quantization (87.8%). For bigger dictionaries the difference
between the BNMD and the VQ is getting smaller. For the speech
separation task the BNMD dictionary gave a slight improvement
over the VQ.

Index Terms—Sparse coding, speaker recognition, speech sep-
aration

I. INTRODUCTION

Many classes of audio signals can be treated as a com-
position of repeating acoustic events. In the case of music
these acoustic events are notes, in the case of environmental
noise these can be sounds specific for various sources (for
example in a street it can be a passing car), for speech signals
recurring acoustic events are for example phones. Representing
audio recordings as a combination of atoms has been used to
obtain state-of-the-art results in many domains. Application of
such techniques for speech separation was reported e.g. in [1],
[2]. This kind of techniques has also been employed in
speech/speaker recognition systems [3], [4]. In the second
CHIME speech separation and recognition challenge [5], in
the best performing system in the Track 1 [6] non-negative
matrix factorization was used to separate a speech signal from
unwanted sounds. NMF in this case was used to represent a
noisy signal as a combination of exemplars sampled directly
from training data. Another system that gave good results in
the CHiME challenge was also based on exemplars with NMF,
but the recognition was done in a different way [7]. Other
examples of applications where dictionaries are used in state-
of-the-art solutions, are automatic music transcription [8] or
instrument recognition [9].
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The discovery of atoms that reflect repeating sounds can
be done by means of unsupervised learning methods. One
of the simplest approaches obtaining a collection of atoms
that represent acoustic events is to sample spectra or spectro-
temporal patches. For large sets of atoms, this method can
lead to good results for the speech recognition task [10].
A possibility to reduce the number of atoms and to obtain
possibly more meaningful patterns is to use a clustering
method (for example k-means [11]).

In the k-means algorithm, each cluster is represented by
its mean. The means obtained by this algorithm form the set
of atoms which is in this context often called a ’codebook’.
Codebook learning using k-means can be described as finding
the best set of atoms so that each observation (spectrum or
spectro-temporal excerpt) is well approximated by one of the
atoms. This approach can be generalized by requiring that each
of the observations is well approximated by a linear combina-
tion of atoms. The set of learned atoms is in this context often
called a ’dictionary’ (while dictionary learning also sometimes
includes codebook learning as special case). A dictionary
learning approach is called ’sparse’ if only few atoms (on
average) are of significance for each linear reconstruction.
Typically, sparsity refers to reconstruction weights with high
values for some atoms and values close to zero for most others.
If the coefficients for most atoms are exactly zero, we speak of
‘hard sparsity’ [12], [13], [14]. The problem of finding sparse
representations (i.e., sparse dictionaries) is computationally
intractable in general. Therefore, a number of approximations
have been developed ranging from deterministic approaches
such as matching pursuit [15], orthogonal matching pursuit
[16], K-SVD, ICA [17], [18] to probabilistic approaches such
as sparse coding [19] and its different versions.

A desirable property for spectrogram representations is to
allow only constructive combinations of atoms. By a con-
structive combination we mean a combination in which its
component can be only added [20]. It (on average)is obtained
by constraining values of atoms and their activations to be
non-negative. Mathematical models that characterize data by
constructive combination are named compositional. A popular
compositional model is non-negative matrix factorization [21].
Non-negative matrix factorization is an algorithm in which a
dictionary can be learned for a representation of spectra. An
example of using NMF to learn a dictionary can be found, e.g.,
in [22]. In addition to the originally deterministic definitions
of NMF, probabilistic version have become popular in recent
years [23], [12]. In this article we deal with models that are
both compositional and sparse. An example of non-negative
sparse representation with [; norm-based sparse coding is
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sparse non-negative matrix factorization (sparse NMF) [24].
In dictionary-based methods an observation is represented
as a combination of atoms. Atoms may correspond to its
parts. For example, a spectrogram excerpt can be the ob-
servation, while its parts can correspond to acoustic events.
This representation can be potentially more robust than clus-
tering approaches, as distortion of one part is only partially
detrimental for interpretation of the observation. However,
dictionary learning including NMF may for our purposes
have the notable downside of separately representing units of
speech both spectrally and temporally into multiple atoms.
For example, a phone that is characterized by a particular
structure of formants may become split into several single-
formant atoms, which are also activated during other speech
or noise events. Consequently, the separation and classification
capability of such atoms is lower than for atoms which model
their corresponding speech patterns as a whole [3, p. 27].
Models using “hard sparsity’ have in this context been found to
be comparably high performing for classification [25], which
argues for improved discriminative power of their learned
atoms. An interesting model for NMF is therefore binary NMF
(BNMF) [12] which enforces hard sparsity for compositional
and non-negative sparse dictionaries. In addition to potentially
improved atoms, e.g., for classification, it is straight-forward
to interpret the sparsity parameter of binary models as the
average number of activated (non-zero) atoms (in contrast to
sparsity imposed using an [; penalty term for instance). This
makes it possible to constrain the number of activated atoms
in a specific way, or to potentially learn the sparsity from data.
For the purposes of this work, the basic use of the sparse
representation techniques is to learn a representation of short
time spectra that is composed of atoms. As mentioned earlier,
sparse representations can be also used to represent spec-
trogram excerpts. Dictionary learning for longer spectrogram
excerpts may result in atoms containing spectro-temporal
patterns characteristic to sound sources. Modeling of such
spectro-temporal patterns can be done by using a sliding
window approach [26]. Frames of a spectrogram are windowed
and concatenated. For each shift of the sliding window, sparse
representation is obtained independently. In methods known
from the literature, window lengths between 100 and 500 ms
are used [26], [10]. In this case, the window spans a phoneme
or a whole syllable. Another possibility is to use a convolutive
model, where a modeled spectrogram is represented as a
combination of temporally shifted atoms that contain spectro-
temporal patterns. In [27] and independently in [28], non-
negative matrix deconvolution (also known as convolutive
NMF) was introduced. It was shown that atoms learned using
this method have phoneme-like structure. Similarly in [29], it
was shown that sparsity of activations helps to learn phonemes.
In this study, a novel binary non-negative matrix decon-
volution (BNMD) is proposed to model a spectrogram. This
model is similar to non-negative matrix deconvolution but
the elements of the activation matrix can have binary values
only. It can be applied to spectrograms in magnitude-scale,
and it uses linear superposition to model a mixture of sounds
coming from several sources. The information contained in
the extracted components is evaluated in terms of speaker-

dependent information. Instead of a greedy method or ;-
regularized sparse coding, we apply truncated EM approxi-
mations to train a probabilistic data model. Truncated approx-
imations have previously been used for dictionary learning
and are particularly well suited for models with hard sparsity
[12], [13], [14]. For our purposes, we develop a truncated
approximation for BNMD assuming a Poisson distribution as
noise model, which can be interpreted as using KL-divergence
as an error measure of fitting the model to the data (compare
[21]). The proposed method is compared with sparse NMD
and vector quantization. In vector quantization method, obser-
vations are obtained using a sliding window, without taking
into account different temporal alignments of data within a
window. Accurate representation using such model requires
one centroid to represent each temporal alignment of data,
which makes it in- efficient, and results in temporally blurred
centroids.

This article is structured as follows: In Section II, dictionary
learning using linear models with sparsity imposing criteria are
discussed in detail. Next, in Section III, the BNMF algorithm
which is the basis of the proposed BNMD is described. This is
followed by the presentation of the BNMD method. In Section
VI, experimental results are shown. Finally, conclusions are
enumerated in Section VIIL

II. NON-NEGATIVE MATRIX DECONVOLUTION

Linear non-negative models which use atoms spanning
multiple frames, model magnitude spectrogram Y e RZXY,
where D is a number of frequency bands and N is a number
of spectrograms’ frames, as a linear combination of temporally
shifted atoms as

) t—1-
Y ~ Z W(t) S (1)
t=1
where W (t) € RQOXH is a dictionary matrix with non-negative

entries. The dictionary contains H atoms. Variable S € RZ N
denotes an activation matrix. The dictionary dependence on ¢
means that there is a temporal structure in the atoms. This
means that each atom W, = [wy(1) wp(T)], where
wp(t) is the h’th column of W (¢), corresponds to a D x T

spectro-temporal patch spanning 7T’ frames of a spectrogram.

An operator over the activation matrix S denotes the shift of
each column of matrix S to the right. The ¢ first columns are
padded with zeros. For example:

12 3 4 2> [0 0 1 2
S_{5678} S_[OOE)G}' @

The parameters of this model, namely matrices W (¢) and S
can be estimated by minimizing the Kullback-Leibler diver-
gence

i Y W
woo o K HZ

s.t. W(t) > 0 3)
diag(WTW) =
S>0,

ESYETF
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where K L(+||-) is the Kullback-Leibler divergence defined as

ZZ%@B )

L(A|B) =

matrix W is defined as
W(1)
W = : ) 4)
W(T)

diag(-) is a vector that contains diagonal elements of a given
matrix, and 1 is a vector with all elements equal to 1. As
in sparse modeling a small number of active components is
desired, /3 norm (|| - ||1) is used to impose sparsity on the
activation matrix by adding a term A||S||;, where A is the
regularization parameter. In [23] and [30], it was shown that
NMF can be interpreted as a generative model where W (¢)
and S are deterministic parameters. The modeled spectrogram
is treated as a set of random variables Yy,

T H
Yan = > > Cantn - 6)

t=1 h=1

Latent variables in the model are Cl,¢+, with the Poisson prior
distribution

Canth ~ P(Canth; Wan(t)Shn—t+1) (N

k
where P(k;\) = ’\exkipl(_’\). Because of the superposition
property of the Poisson distribution, Yy, has the Poisson
distribution

Yon ~ (Ydm > Cdnth) : ®)

t=1 h=1

The parameters of the generative model can be estimated using
the expectation-maximization (EM) algorithm, by iterating ex-
pectation (E) and maximization (M) steps. The M-step update
expressions can be derived by equating partial derivatives of
the free energy function

F=" a(Cann)logp(Y.CIW(1),S) +Hlg] (9

Cantn

to zero with respect to the optimized parameters. Function ¢(-)
is an approximation of posterior distribution of latent variables
Cantn (Whose parameters are estimated during E-step), while
H[q] is its Shannon entropy. In this case, M-step update
formulas are exactly the same as formulas derived by Lee and
Seung [21]. Both formulas depend on the sufficient statistics
of the posterior distribution of Cl,,;;, Which is multinomial.
The NMD with [; sparsity term can be interpreted as a
model specified by Equations (6) and (7), with the difference
that Sy, denotes latent variables distributed according to
the gamma distribution with the shape parameter equal to
1 [31]. Although this unimodal, decaying distribution leads
to very good results in many applications, substantial part
of mass of the prior distribution of activations is for small
values of activations. It is not realistic in the case of atoms
representing recurring speech patterns. In this case, most of
atoms are not active in a given observation. There is a small

number of active components that have non-zero values of the
activations. An example of a distribution that can be more
suitable is the Bernoulli distribution of the binary random
variables. An example of a model with latent binary random
variables is BNMF [12], which is described in the following
section. Additionally, there is no direct relation between the
sparsity parameters and the number of active atoms in a given
observation. In the case of models with binary activations, the
sparsity parameter is directly related to the expected number
of active atoms.

III. BINARY NON-NEGATIVE MATRIX FACTORIZATION

The expectation-truncation NMF [12], which is referred to
as binary non-negative matrix factorization (BNMF), is a prob-
abilistic model in which an observation is treated as a linear
combination of atoms. In contrast to NMF, the activations are
binary and distributed according to the Bernoulli distribution.
BNMF thus models the presence or absence of a component
(dictionary element) rather than its intensity. Priors enforcing
exact ‘hard’ zeros were in other studies found to result in
better features for classification [25], which motivates the use
of binary priors for this study. The distribution of activations
Sp, can be written as

Shn ~ B(Sh,n; 77) )

I

where s,, = [S1, ... Sgn|t and 7 is the parameter of the
Bernoulli distribution. In [12], this parameter is the same for
all elements of vector s,,. Parameter 7 can be fixed [32], [12],
optimized with respect to a task or updated during M-step
[13], [33]. The observed variables Yy, are normally distributed
around >, WapShn:

(10)

1 Shn
b

Y

D H
p(ynlsn) = [T N Van: D WanSin,0®),  (12)
d=1 h=1

where y, = [Yin ... Ypa]T, Wy is an element of matrix
W whose columns are atoms, and variance o2 is a parameter
of the model. In order to obtain parameter values (Wy;, and
o), the log-likelihood of data
N
= Z log
n=1

N
L= logp(yn|W,o) P(Yn,sn|W,0)

n=1

>

s, €{0,1}H

13)
should be maximized. In order to maximize the log-likelihood,
the expectation-maximization approach can be applied i.e. the
free-energy function is maximized instead of the log-likelihood
directly [34]. The free-energy function is defined as

N
F=>>" (qn(sn;¥n, W,0)108p(¥n, 80, W, 0) + H[gn]) ,
n=1s,€B
(14)

where 7[-] refers to the Shannon entropy and B = {0,1}%.
If the function ¢,(-) is equal to posterior distribution

p(sn|yn, W, o) then the maxima of the free-energy function
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correspond to the maxima of the likelihood function. In
practical applications this is computationally unfeasible as the
calculation of probability distribution over each possible vector
s, € {0,1}# for n = 1,...,K is required and each of
these values needs to be divided by denominator that is also
exponentially hard to compute.

Approximations using the free-energy with some choice for
dn(s,) are a popular choice to train latent variable models
[34]. In this work we use truncated distributions ¢, (s,) by
applying expectation-truncation scheme (ET) [12]. In this
approach, the aim is to consider only the combinations over
the most likely values of vector s,,. Truncated approximations
are both efficient and precise if most posterior probability
mass is, indeed, carried by few values of activations s,, [14].
For this study, we can expect truncated approximations to be
well suited, as we can assume sources with binary values
that are sparsely active. We will use approximations with at
most 7y non-zero entries of s,,. Furthermore, we can further
reduce the number of evaluated states by considering only the
combinations of the most likely atoms. For many practical
applications, direct calculation of a likelihood that a given
atom is active may be computationally unfeasible as

>

Sne{sn:shn:l}

P(Shn = 1lyn) = p(snlyn) (15)

requires a summation over 271 binary vectors (one element
of s, is fixed). Instead of calculating marginals in Equation
(15), a selection function is used. The selection function can
be any function which has two arguments: observation y,,
and atom wy,. Additionally this function should be efficiently
computable and it should provide high values for atoms that
were actually used to generate observation y,,. First, H' atoms
(candidates) for which the selection function has the highest
values for a given observation y,, are selected (and their
indexes h are stored in set C,) and then Z'Y,ZO (1;1,/) terms
with respect to s,, in Equation (14) are evaluated. Thus, the
set of latent states that are taken into account is described as

H
Sn:{se{(Ll}H: (Zsh<'y>/\(Vh¢Cn:sh:0)}.
h=1

(16)
If it can be assumed that there are at most - latent variables
activated, then for s,, € S,, most of the probability mass of
the posterior distribution is contained.
In the case of the BNMEF, the selection function can be
calculated with formula

f(ynvwh) = _Hyn - max{whaYn}Hl ) (17

where wj, is the h’th column of W and max{-,-} is an
element-wise operation. It was shown in [12] that the selection
function in Equation (17) is a lower bound of likelihood
(p(Shn = 1|Yn))-

As set S, contains only vectors with no more than ~y
non-zero elements, approximation of the posterior distribution
p(sn|yn, W, o?) may be suitable for a subset of observations
which were actually generated with no greater than v number
atoms. If an observation is actually generated using more
than v atoms, then approximation of the posterior probability

function p(s,|y., W, o?) will be equal to zero for vectors s,,
with the correct number of active atoms. This may lead to
worse estimation of the dictionary. In order to prevent this,
only the observations that were actually generated using no
more than ~ atoms should be taken into account. In [12] it was
shown that if we assume that the parameters of the model are
already close to optimal parameters, > s p(sn,y|W,0?)
can serve as a function for finding observations that were
presumably generated with no more than - atoms. Thus, set M
can be defined, which contains indexes of V., observations for
which values of sum are largest. Instead of summation over all
N observations in Equation (14), only the observations from
M are taken into account.

In the M-step, the truncated posterior distribution is used
to obtain an update rule for the parameters. The free energy
function is maximized given a fixed truncated posterior (non-
zero values of this probability mass function are possible only
for s € §). The necessary condition is that partial derivatives
over all parameters are equal to zero. This condition is satisfied
for the dictionary matrix

W (z . <sn>gT) (z

-1
<snsZ>ET) . (18)
nem nem
The expectation (-)gr is over the truncated posterior distribu-
tion (¢(s)). In order to ensure non-negativity of the parameters,
matrix W is updated using a multiplicative update rule
WeWwo Y @ : (19)
nemM W<S"Sn >ET
where © is element-wise (Hadamard) multiplication (compare
[35], [12]).

IV. BINARY NON-NEGATIVE MATRIX DECONVOLUTION
A. Formulation of the model

In this work we propose a new method called binary non-
negative matrix deconvolution (BNMD). It is an extension of
the binary NMF (see Section III) to a convolutive model. In
comparison to the NMD presented in Section II, the proposed
model allows only binary activations. Additionally, instead of
normal distribution around the approximation (see Equation
(12)), the Poisson distribution is used, which is a reasonable
choice for audio applications [36], [37]. The objective of the
suggested model is to approximate Y by

—1-

T
Y=Swe's (20)
t=1

The probability density function of the observed spectrogram
given activations S is defined as

p(Y1S) = [T TT PYan: DD {Wan(®)Shn—t41}) -

d=1n=1 h=1t=1
2D

The prior distribution of the activations in the proposed
model is
H N

p(s|m) = [T [1 =% (@ —m)'=sm .

h=1n=1

(22)
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The free energy function is defined as

F=> q(S)logp(Y,S|W)+ H[q],
SeK

(23)

where KC is determined similarly to its counterpart in the
BNMF (see Equation (16)):

H N
IC:{SES:ZZSMSW/\

h=1n=1

@ w:shn:o)} |

(24
where D is a set of I’ pairs (h,n) for which a given selection
function gives the lowest values and & = {0, 1}7*¥,

B. Segment-wise processing

The number of latent variables can be large for speech
processing applications. For example when the number of
atoms is 50 and we want to decompose one second of speech
spectrogram with frame rate 100 frames per second, then we
have I = H x N = 50100 = 5000. Without candidate
selection (selection of the atoms that are likely to be active)
we would have Y77 (*2)) > 103 latent states (subset of
possible matrices S with at most v = 15 active elements).
Even with candidate selection the number of computations
would be large. For this reason, a deconvolution is performed
in segments. From the spectrogram we extract segments of
length L frames sliding with step size S frames. The k’th
L-length segment Yy (5 _1)54; is modeled as

T I
Yd,(k—l)S—H = Z Z Wdh(t)sh7(k_1)g+l_t, fori=1,...,L
t=1 i=1
(25)
We can write it in a matrix form as
T t—1-
Yim) W(t) Sk, (26)
t=1

where Y, € RQOXL is the k’th segment of the observation
matrix and Sy, € {0, 1} E+T=1 i the k’th segment of the ac-
tivation matrix. Note that activation matrix from Equation (20)
has the same number of columns as observation matrix Y.
The activation matrix for segment Y contains all elements
of matrix S that have influence on elements in segment Y.
For indexes k£ < T" for non-positive indexes of matrix S zero
values are used.
For the segmented version, the free energy function is

F=>Y" a(Sk)logp(Yk,ScW)+H[qi] ,
KEO SiEKK

27)

where K, is obtained in the same way as K but for a given
segment k, and O contains indexes of K¢, segments for which
values of Y g <, P(Sk, Yi|W,0?) are largest.

In general, because of the approximations in the E-step,
the convergence of the BNMD is not guaranteed. However,
experiments have shown that in practice the likelihood does
not decrease significantly during the optimization. The detailed
description of the experiments can be found in Section VI E.

C. Selection functions

In order to reduce the number of combinations, a selection
function is used to select a small subset of the most likely
candidates of elements in matrices Sj. Preliminary experi-
ments have shown that the selection function presented in
the previous section is not performing sufficiently well. This
is probably because some atoms attract all candidates with
various shifts. We suggest using cosine similarity as a selection
function which is defined as

trace(XTWh)
FOE W) = T Wl e
where
Win(1) Win(T)
W, = : : (29
Wpn(1) Wpn(T)

and Y is a T-frame length excerpt of spectrogram Y. In con-
trast to segments (which can have length different than 7°), a
selection function has to be calculated for all possible excerpts
(with 1-frame step). Thus, values of the selection function are
calculated for all corresponding elements of matrix S (for all
pairs of indexes h = 1,...,H and n = 1,...,N). || - ||r
denotes the Frobenius norm. This selection function was also
tested for dictionary and segment transformed to the log-scale

flog = f(lOgX7 log(wh)) )

where logarithms are taken entry-wise.

We have also tested the selection function based on a left
inverse of the dictionary matrix (W) which has the property
that

(30)

trace (W} Wp,) = dgp 31)

where 64, is the Kronecker delta. If Y contains a pattern
similar to the A’th atom, a value of trace (WZ,X) should be
close to one if h = A/, and close to zero when h # h'.
Matrices W7, ..., W}, were obtained from regularized left
inverse matrix

Wt = (WIW 4+ <) 'wT (32)
where
w(1)
W = : ; (33)
W(T)

and ¢ is a regularization parameter. In order to obtain W?L'
from W, elements of the h’th row of W™ are reshaped into
T x D matrix row-wise and transposed. The selection function
based on W is calculated using the formula

_ trace(Y' W)

fro ul(X,W+) = .
¢ "X R IWE

(34)

Selection function fyegui(-, -) (Equation (34)) was also tested
with data (Y), and dictionary (W or W) represented in the
logarithmic scale:

flog,regul = fregul(log(l)7 (log(wh))+) . (35
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D. Parameter estimation

The posterior distribution of Sj can be obtained using the
formula

PY S, W(t) S 1)p(Sk)

S P(Yi: X, W) S4 )n(S))
(36)

The scheme of the method is shown in Figure 1. The
analyzed segment spans L = 15 frames of the spectrogram.
The activation matrix contains L+7—1 = 15+15—1 = 29 of
possible time instants of atoms that can influence the observed
excerpt. During the E-step, the expected value of matrix (S)gr
is computed as

P(Sk|Yr, W(t)) =

(Skyer = > @ (Sk)Sk, (37
SreX)
where
qx(Sk) P(Yi|S1)p(S:) (38)

 Ysre, P(YRIS))P(SE)
k

Matrix (Sg)gT is used to update the dictionary matrix as

(%) [(sen]

1[sufen)] T

W)« Wt oY (39)

E. Summary of the proposed algorithm
The whole procedure for dictionary learning using binary
non-negative matrix deconvolution is as follows:
1: Initialize dictionary {W(¢)};=1, .. o with random positive
values or using VQ atoms (see Section V).

2: repeat
3: for each segment k € {1... K} do
4: Compute the selection function for the whole utter-

ance using one of the selection functions (Equation (28),
(30), (34), or (35)).

5: Compute I’ candidates (matrices from set Ky, for
which selection function gives lowest values).
6: Calculate truncated posteriors for each state in KCg,
using Equation (38).
7: Compute the expected activation matrix using
Equation (37).
8: Compute the reconstruction
. t—1—
Y= W(t)(Sk) (40)
t
9: Store the numerator and denominator from Equa-
tion (39) for current k.
10: end for

11: For each segment compute > g i, P(Sk, Yi|W, o?)
and assign to O a set of K, indexes of segments that give
highest values.

12: Update the dictionary using Equation (39).

13: until convergence

F. Analysis of activations and dictionaries

The dictionary obtained after 20 iterations from the training
data for a randomly chosen speaker is shown in Figure 3.
In this dictionary most of the atoms represent phoneme-like
spectro-temporal patterns as opposed to NMD atoms. For
comparison a dictionary learned using the NMD algorithm is
shown in Figure 4. This dictionary was estimated by executing
the NMD algorithm for 200 iterations. It is visible that there
are many atoms with one significant maximum. There are
many patterns that are composed of nearly one bin.

One of the visible differences between the dictionaries pre-
sented in Figures 3 and 4 is that atoms in the BNMD dictionary
are more smooth. When the activation matrix is very sparse the
dictionary has to be smooth in order to obtain reconstruction of
observation with typical smoothness of speech signals. In the
case of not sufficiently sparse activation matrix, it is possible
to reconstruct a smooth spectrogram using various temporal
shifts of non-smooth atoms. However, setting A to a large value
not necessarily leads to better solution in terms of properties
needed in speaker recognition/speech separation. In Figure 4
the presented dictionary was obtained for A\ which gave the
best speaker identification results. For this A activation matrix
is less sparse than for BNMD, and the atoms are less smooth.

In order to quantify properties of the dictionaries the fol-
lowing concentration measures for each atom were computed:

« Shannon entropy

D T
Hh = 7ZZWdh(t) IOngh(t) 3

41
d=1t=1
e 12/11 norm
D T
VEE S W)
e ——— , (42)
D i1 2ot=1 Wan(t)
¢ Gini index
DT 1
C; DT — ]ﬂ + 2)
, =12 , (43)
o Z |cz-||1< DT

where ¢; < ¢o < ... < ¢pr are sorted elements of Wy, (t)
ford=1,...,Dandt=1,...,T.

The above statistics were averaged over atoms for the
BNMD-based dictionary with 50 atoms and NMD dictionary
with 50 atoms. They were compared to a dictionary that
contains 1000 randomly chosen exemplars from the training
dataset. The statistics are plotted in panels of Figure 2. A
difference between the BNMD atoms and exemplars is much
smaller than the NMD and the exemplars. Thus, concentration
characteristics of atoms obtained using the BNMD is close to
the characteristics of exemplars which contains realizations of
phonemes.

The NMD in comparison to the BNMD can be interpreted
as maximum a-posteriori approximation. Moreover, sparsity of
the activation matrix is obtained by using an /1 regularization
term. Therefore, in NMD, the activation matrix can be opti-
mized using effective multiplicative update formula which is
related to gradient-based optimization method. In the BNMD,
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Fig. 1. Approximation of an example spectrogram segment. (1) spectrogram excerpt for the current segment Y, (2) selected candidates (elements of set D)
are marked with white color, (3) expected activation matrix calculated using Equation (37), (4) reconstruction Y,
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Fig. 2. Comparison of Shannon entropy, 12/11 and Gini index for BNMD and exemplar-based, and NMD dictionaries. The concentration measures for NMD

were obtained for different values of sparsity parameter A.
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Fig. 3. Dictionary obtained using BNMD method

instead of maximum a-posteriori approximation, expectation-
truncation is used, which provides a better approximation
of posterior distribution of the activation matrix than point
estimate. However, it requires the computation of posterior
probabilities for a substantial number of possible activation
matrices. ET also a allows for directly the sparsity in terms of
the number of active elements.
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Fig. 4. Dictionary obtained using the NMD method

An analysis was performed to study the typical number
of active atoms in a segment when the BNMD was used to
represent speech data. We analyzed ET-expected activation
matrices ((Si)gr) from the final training iteration for a
randomly chosen speaker in the test data described in Section
VI-A. For each segment & the number of elements in (S;)gT
greater than © was counted. In Figure 5, histograms for
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O = kmax((Sg)rT), with m = 0.3,0.4,0.5 are presented
with blue, green and red bars respectively. max(:) in this
case denotes the biggest value in matrix in its argument. It
is noticeable that in all cases the number of segments with
two significant active elements dominate. It means that for
most of the segments, the most probable activation matrices
have more than one active elements.

mEm threshold = 0.5'max((A)er)

) 5 Yer
15000
1000
L
L
oL . : 3 . 3

Number of segments

Number of elements in expected activation matrix (truncated expectation) for which value is bigger than threshold

Fig. 5. Number of ET-expected activations above certain threshold.

V. APPLICATION OF BNMD TO SPEAKER RECOGNITION
AND SEPARATION

We demonstrate the effectiveness of the proposed binary
non-negative matrix deconvolution in a speaker recognition
task. In order to apply BNMD dictionaries in speaker recogni-
tion, dictionary W is learned for each speaker s € 1,..., M,
where M is the number of the speakers. All these dictionaries
are adapted starting from a dictionary of a randomly selected
speaker. The dictionary for this selected speaker is learned by
starting from a VQ dictionary. The VQ dictionary is obtained
by applying of k-means algorithm (the version based on
Euclidean distance [38] or the version based on KL-divergence
- see Section V.B in [39]) to the training dataset. All training
vectors for the k-means are obtained using a window spanning
T frames sliding with one-frame step from spectrograms Y
that are used also in factorization. After VQ initialization,
BNMD iterations (see the procedure in Section IV-E) are
done. In this way, described above we obtain dictionaries
Wi (t),..., Wy (t). During the test, a dictionary that contains
atoms of all speakers and noise is built by concatenating
speaker-specific dictionaries as

W(t) = [Wi(t) ... Wy (t) Wyoise(t)] , (44)

where Wio1sg is the dictionary that comprises spectrogram
patches that contain noise sampled from the recording before
and after the utterance. In order to be able to do the recognition
fast, NMD algorithm described in Section II is used during the
test time stage. This solves the following optimization problem

in KLY TW STy 1 AS
min (||Z (t) )+ [|AS]|1

t=1

45)
st. S>>0,

where
AspeechNT ... 0 0
A= . . . . ,
0 S )\speeChNZM 0
0 . 0 AnoiseNNOISE

46)
Aspeech> Anoise denote sparsity parameters for speech and
noise activations respectively, while Ny, ..., N/, Nxoisg are
diagonal matrices where h’th diagonal element contains I;
norm of the A’th atom.

After obtaining the activation matrix using NMD the el-
ements of the activation matrix corresponding to different
speakers are summed up. The recognized speaker is the
speaker with the highest activation. This method is referred
to as maximal activation. The activation mapping procedures
proposed in [40] which were demonstrated to enhance speaker
recognition accuracy, were also tested. These techniques map
activation matrices to matrices that are built using speaker
label information, which are called target matrices. For each
utterance, a target matrix has M rows (the number of the
speakers) and N columns (the number of spectrogram frames).
Only the row corresponding to speaker in a given utterance
has non-zero values. This row contains RMS-values of signal
in utterance’s frames. During the training, NMD is used to
learn a mapping from activation matrices to target matrices.
At the recognition stage, the learned mapping is applied to the
activations of a given utterance. A matrix that is a result of the
mapping is used to make a decision about the identity of the
speaker in the utterance. In [40], the values in the rows were
summed up to obtain scores for the considered speakers. In
order to obtain a more robust system, square root compression
in this matrix can be used prior to summation. We will refer
to the former scheme as “mapping (sum.)” and to the latter as
“mapping (compr.)”.

The BNMD can also be applied to speech separation
problem. The dictionary learned using the BNMD was ap-
plied in NMD-based speaker-dependent separation task. After
optimization of the activation matrix, the spectrogram was
reconstructed using the “Wiener-like” filter that is designed
using the speech and the noise atoms as in [41]. This filter
is a ratio of the spectrogram of the noisy utterance, modeled
using activated speech atoms only, to the spectrogram modeled
using all atoms.

VI. EXPERIMENTS
A. Speech database

Experiments have been performed using recordings from the
corpus from the 2nd CHiME speech separation and recognition
challenge [42]. We used track 1 data from this corpus which
contains utterances from 34 speakers. For each speaker, 500
training utterances with the same grammar are available. The
training data contains both clean and noisy speech, with
SNRs from 9 dB to -6 dB with 3 dB step. The test dataset
contains 600 utterances from the same speakers with the same
SNRs as in the training dataset. Utterance lengths range from
approximately 1.2 to 2.7 s with a mean length of about 1.9 s.
The sampling rate used in the corpus is 16000 Hz.
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B. Feature extraction

All of the tested algorithms model mel-spectrograms. First,
the preemphasis filter with transfer function H(z) = 1 —
0.97z1 was applied. Next, the signal was divided into 25 ms
frames and the Hamming window was applied. The frame step
was 10 ms. After FFT computation a mel-frequency filterbank
was used by multiplication of absolute values of the FFT the
triangular filters’ characteristics. The 40 filters spanned the
frequency range 64-8000 Hz. In the case of the I-vectors
and the GMM ML reference methods, cepstral coefficients are
extracted by performing two additional steps — calculation of
logarithms and type II discrete cosine transform.

C. Baseline systems

The results that we obtained were compared with the
speaker recognition accuracies reported in [40], where I-
vector, GMM, and template-based (TMPL) were evaluated.
The first two mentioned systems are classical speaker recog-
nition methods. In the remaining systems, based on the dictio-
naries , NMD was used during the test. The dictionaries were
obtained using various techniques: EUC VQ (k-means), which
is Euclidean error based VQ, KL VQ (KL k-means), Kullback-
Leibler distance based VQ, NMD, NMD ES (NMD with early
stopping), and the BNMD. The TMPL can be considered as
a dictionary learning method. One of the baseline systems
was I-vector system used for NIST 2012 [43]. The authors
of [43] trained UBM (universal background model) using
NIST corpora published before 2012 (NIST SRE 2006, SRE
2008, and SRE 2012). The speech from the CHiME corpus
was not applied to train the UBM. PLDA (probabilistic linear
discriminant analysis) was also used. Another reference system
was a GMM trained for each speaker with maximum likeli-
hood criterion [44]. In the reported experiments, 20 cepstral
coefficients were used. The number of the GMM components
was 64.

In the template-based systems, the CHiME annotations were
used to generate 250 speech atoms per speaker. This dictionary
was built using a method described in [45]. In the original
work, this kind of dictionary is referred to as exemplar-based.
Exemplars are typically obtained by sampling training data,
thus in the article this dictionary is called template-based.

In order to obtain the template-based dictionary, transcrip-
tions of speech are needed. They are used to obtain CHiME
HTK models, and forced alignment information. Each word in
the CHiME corpus is modeled by left-to-right HMM (hidden
Markov model). There are two HMM states per phoneme
which results in 250 states.

To build template-based dictionary all mel-scale spectrograms
from the training dataset were used. For each speaker, for each
occurrence of a given state, an excerpt (with size B xT') of the
spectrogram was stored. The excerpt has to be temporally cen-
tered in a time range spanned by the state label. An element-
wise median of all excerpts for a given state form an atom
in the template-based dictionary. The BNMD was compared
to the system from [45] where the dictionary comprised 250
atoms per speaker and 250 noise atoms, which resulted in 8750

atoms. Additionally, in contrast to the BNMD dictionary, 7" in
template-based dictionary was 25 instead of 15.

During the test time, for each test utterance, an activation
matrix is obtained using NMD algorithm. Sparsity parameter
Aspeech Was set to 0.1, while Apgise = 0.85Aspeech- The next
step is to compute a score for each speaker. This was done as
described in Section V.

Besides the reference systems from [40], speaker recogni-
tion with dictionaries learned by NMD and VQ were per-
formed. The NMD dictionary was obtained using the standard
update formulas [20]. At the beginning of each iteration, the
columns of W (t) were normalized to unity [?-norm. The
speaker recognition system was also tested with dictionary
obtained using NMD stopped after twenty iterations (system
labeled as NMD ES). Two types of VQ algorithms were
used as reference dictionary learning: k-means [38] which
uses the Euclidean distance error (labeled as EUC VQ). The
second type of VQ was KL k-means (see Section V.B in
[39]) which uses the Kullback-Leibler divergence as an error
measure (labeled as KL VQ). A sliding window with length
T was applied to all training utterances. After vectorization
this resulted with a set of vectors, which were clustered by
means of the mentioned VQ algorithms. The NMD dictionary
or dictionaries obtained using VQ (each centroid was an atom)
were used for speaker recognition as described in Section V.

D. Parameters of the BNMD system

The BNMD was tested using atoms spanning 7' = 15
frames. This corresponds to duration about 150 ms, which is
substantially longer than in typical speaker recognition system
based on GMMs and MFCCs. Additionally this duration is
sufficient to span most of the phonemes. The segment length
was L = 15. As atom length is 7' = 15 for L = 15 in most
of the segments there will be at most two atoms activated.
This makes reasonable to set v = 2 (highest number of active
elements in a segment). Increasing of + substantially changes
the number of elements in K;, and computational cost. The
number of atoms that was tested was H = 50,100, and 250.
Thus it was possible to compare the BNMD with template-
based system but also testing more compact dictionaries. The
shift of the segment was S = 1. The BNMD algorithm was
initialized with the dictionary obtained using k-means. The
number K of the selected segments (whose indexes were in a
set assigned to @) was set to |0.8- K |. It was chosen according
to the results of preliminary experiments on the same data as
the experiments presented in further sections. For this value
it is likely that for selected frames the desired latent state is
in the K. The parameter I’ was 50 and it was set according
to the experiments described in Section VI-I. It can be read
from Table VI that for I’ = 50 the in 85% of segments all
truly activated atoms are in the set of candidates D.

E. Convergence

In order to practically test the convergence of the BNMD,
changes of the log-likelihood during optimization has been
analyzed. The tests have been performed for dictionaries with
50 atoms. For each speaker, 100 iterations have been tested.
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Fig. 6. ET approximated log-likelihood during BNMD iterations.

The log-likelihood did not decrease by more than 0.1% Thus,
it can be expected that there will not be a significant decrease.
Moreover, decrements occurred occasionally. Thus, we con-
clude that the BNMD is generally robust in practice, despite
the absence of any theoretical guarantees. A graph of truncated
log-likelihood during dictionary learning for randomly chosen
6 speakers are shown in Figure 6.

F. Speaker identification results

The results for the speaker identification task obtained using
reference methods and the BNMD with dictionary containing
50 atoms are shown in Table I. In the dictionary-based systems
the speaker identification is based on maximal activation (see
Section V).

I-vector and GMM system performed poorly for lower
SNRs. For GMM, the accuracy is 96.7% for 9 dB SNR,
and 60.8% for -6 dB, which gives about 37% of relative
accuracy decrease. For I-vectors, the relative decrease between
the highest and the lowest tested SNRs is 44.8%.

It should be emphasized that the i-vector-based system
was obtained using another database. This could lead to
a lower accuracy of speaker recognition. Additionally, low
accuracy of the i-vector system can be attributed to issues
connected with the length of the utterances. It was shown in
[46], [47] that for short utterances the variation of i-vectors’
elements is higher and the performance of i-vector speaker
verification systems degrade rapidly. In the mentioned work
several techniques were suggested to improve i-vectors when
only short utterances are available. There is also an issue
in i-vector based systems, connected the the mismatch in
length of utterances in development and test datasets. As the
process of finding activations during test, transforming to the
representation which is used to make decision, are independent
it is on favor of the BNMD.

It can be noticed that NMD-based dictionary brings the
lowest accuracy among the tested systems. However, when
the dictionary learning is stopped after 20 iterations (NMD
ES), then significant improvement can be obtained (average
accuracy changes from 37.8% to 75.4%).

The highest accuracies were obtained by the BNMD al-
gorithm. The improvement in comparison to VQ is in range

10
TABLE I
ACCURACY OF SPEAKER IDENTIFICATION (%) - DICTIONARY SIZE 50
ATOMS
9dB | 6dB | 3dB | 0dB | -3dB | -6dB | avg.
I-vect. 625 | 57.0 | 50.7 | 46.7 | 403 | 345 | 48.6
GMM 96.7 | 912 | 88.7 | 76.2 | 68.2 | 60.8 | 80.3
EUC VQ || 96.8 | 95.7 | 932 | 90.0 | 833 | 68.0 | 87.8
KL VQ 96.7 | 950 | 92.8 | 88.7 | 81.2 | 673 | 86.9
NMD 543 | 52.8 | 46.7 | 352 | 253 12.2 | 37.8
NMD ES || 91.8 | 88.7 | 87.3 | 785 | 63.7 | 425 | 754
BNMD 988 | 983 | 97.7 | 935 | 88.0 | 71.3 | 91.3
TABLE II
ACCURACY OF SPEAKER IDENTIFICATION (%) - HIGHER NUMBER OF
ATOMS
#atoms | method 9dB | 6dB | 3dB | 0dB | -3dB | -6dB avg
100 vQ 98.0 | 97.8 | 96.0 | 92.8 | 843 | 70.0 | 89.8
BNMD || 99.5 | 988 | 98.0 | 955 | 90.7 | 73.8 | 92.6
250 TMPL 99.0 | 982 | 975 | 932 | 885 | 69.0 | 90.9
vQ 99.1 | 98.8 | 98.1 | 950 | 873 | 68.7 | 91.2
BNMD || 995 | 99.0 | 98.5 | 95.7 | 89.8 | 72.7 | 925

from 2% for 9 dB to 4.7% for SNR -3 dB. The relative
accuracy decrease between the highest and the lowest tested
SNRs is about 30% while for the BNMD it is 28%. It should be
emphasized that the BNMD performs better than the template-
based system (91.3% in comparison to 90.9%), but it has
shorter atoms (7' = 15 instead of T' = 25), smaller dictionary
(H = 50 in comparison to H = 250), and annotations are not
needed to prepare the dictionary.

Table II summarizes the results for dictionaries with 100
and 250 atoms. For 100 atoms, two methods were compared:
VQ and the BNMD. When the number of atoms was changed
from 50 to 100, the average accuracy of speaker identification
increased from 87.8 to 89.8, while for the BNMD an improve-
ment was achieved from 91.3 to 92.6. For 250-atom dictionary
results for VQ the average accuracy is highest than for both
smaller dictionaries and it is equal to 91.2. For the BNMD,
a slight improvement can be observed to 92.5. The biggest
difference between VQ and the BNMD is for SNR -6dB and
it is 4%. In the case of dictionary size equal to 250 atoms,
the results obtained using template-based dictionary are also
presented. The average accuracy is worse than either VQ and
the BNMD.

In Table III the results for different mapping types are
summarized. It can be noticed that the accuracy increases with
the dictionary size. Additionally the difference between the
BNMD and VQ is getting smaller, when the number of atoms
is increased. In the case of mapping of activation matrix (map-
ping (sum)) the difference ranges from 2.1% to 0.1%, while for
mapping (compr.) it is from 1.7 to 0.4%. The mapping gives
substantial improvement over maximal activation (the highest
was obtained for template-based system — from 90.9 to 98.6%).
The BNMD with mapping can outperform the template-based
accuracy, although, as mentioned earlier, the phonetic labels
were used in TMPL to build the dictionary and there is a
difference in the length of these dictionaries. For the template-
based technique atoms have length 25 frames while for the
BNMD it is 15.
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TABLE III
ACCURACY OF SPEAKER IDENTIFICATION (%) WITH DICTIONARY-BASED
METHODS ENHANCED BY ACTIVATIONS MAPPING

n atoms | mapping type VQ | BNMD | TMPL
50 maximal activation 87.8 91.3 -
100 maximal activation 89.8 92.6 -
250 maximal activation || 91.2 92.5 90.9
50 mapping (sum) 95.0 97.1 -
100 mapping (sum) 96.7 98.0 -
250 mapping (sum) 98.4 98.3 98.2
50 mapping (compr.) 95.9 97.6 -
100 mapping (compr.) 97.1 98.4 -
250 mapping (compr.) 98.3 98.7 98.6
TABLE IV

RESULTS FOR SPEECH SEPARATION TASK, SDR (DB)

#atoms 9dB | 6dB | 3dB | 0dB | -3dB | -6dB | avg.
50 VQ 122 | 10.7 9.1 7.4 5.7 4.5 8.3
BNMD || 12.7 | 11.0 9.3 7.6 5.7 4.3 8.5
100 vQ 12,5 | 109 9.2 7.4 5.6 4.2 8.3
BNMD || 129 | 11.1 9.4 7.5 5.5 4.0 8.4
250 vQ 128 | 11.5 9.2 73 53 3.7 8.2
BNMD || 13.0 | 11.2 9.3 7.3 5.1 3.4 8.2

G. Approximated inference

For each utterance, the BNMD algorithm was used to
compute approximated (ET) log-likelihood. This was done for
each hypothesized speaker. Thus, the number of tests for each
trial (test utterance) is equal to the number of speakers in
the corpus. In each test the approximated log-likelihood is
computed given a dictionary composed of 50 atoms of the
hypothesized speaker and 250 noise atoms. The procedure was
as follows. For each segment, H’' candidates were selected
from speech atoms and the second H’ from noise atoms. For
each segment Y its model is

t—1—

~ T t—1—
Y =) (WSPEAKER(t)SSPEAKER + WNOISE(t)SNOISE>
t=1

(47

Thus, in/ ET log-likelihood computatlion, all pairs of

Z:O (}f) of SSPEAKER and Z;/:O (I_{) of SNOISE were
taken into account.

The experiments were performed on a reduced dataset. Only

the utterances with SNR 0dB were used. There were 100 trials

(2-5 trials per speaker). Finally the accuracy obtained using

BNMD was 88.11% while for NMD it was 87.12%.

H. Results for speech separation task

The results for the separation task are presented in Table
IV. The performance of separation was measured by signal to
distortion ratio (SDR) implemented in BSS Eval toolbox [48].
It is visible that for high SNRs (above 6 dB), SDRs of the
separated speech increase with the dictionary size. However,
this is not the case for smaller SNRs. The average SDR over
all the tested SNRs also decreases with the dictionary size.
Table V presents SDRs for varying sparsity parameter Aspcech
are presented. It can be observed that for smaller values of
parameter Agpeecn, SDR increases with the dictionary size,
while for bigger values of Agpcech We can notice the opposite
tendency.

TABLE V
AVERAGE SDR OF SEPARATED SPEECH AS THE FUNCTION OF SPARSITY A
AND DICTIONARY SIZE

50 100 | 250
0.001 831 | 8.13 | 7.68
0.025 || 8.38 | 8.24 | 7.89
0.05 8.43 | 8.32 | 8.04
0.1 8.46 | 840 | 8.20
0.2 8.35 | 8.37 | 8.28
0.4 7.89 | 8.02 | 8.07
0.8 6.93 | 7.19 | 7.37

1. Evaluation of selection functions

In order to test and compare various selection functions the
transcriptions of CHiME2 corpus were used. The baseline hid-
den Markov model from the CHiME evaluation has 250 states.
First, 55 state labels from this pool was selected manually, to
obtain a set of states that correspond spectrogram patches that
are aligned to centers of phone realizations rather than transi-
tions between them. Next, the spectrogram excerpts centered
on occurrences of states were gathered. This was followed by
generation of random activation matrices. Temporal overlap
(0.3 - T') of atoms is allowed. More specifically, the element
of the first column was selected randomly. The next column
was ¢ selected randomly from the range (T' — |0.3 - T'|; 7).
The active element for column ¢ was chosen randomly. The
process was repeated to fill the activation matrix with 150
columns (the number that is likely to be a number of columns
of a spectrogram from an utterance from the CHiME corpus).
The generated activation matrix was convolved with randomly
chosen realization of states gathered from data. After data
preparation, dictionary was computed. Each atom was obtained
by averaging all spectrogram excerpts that correspond to a

- given state label from transcriptions.

With activation matrices and the dictionary it was possible
to compare selection functions. Three selection functions
were used: cosine similarity, cosine similarity in logarithmic
scale, and cosine similarity in logarithmic scale with rows of
regularized pseudoinverse in Equation (34).

For each segment 50 elements of the corresponding activa-
tion matrix were selected, for whom values of the selection
function were highest. Next, it was checked if the elements
from the ground truth activation matrix (the activation matrix
that was used to synthesize the data) are selected. We checked
what was the fraction of segments in which all true activations
were selected.

The results are shown in Table VI. The best results were
obtained for fiog regul, Where the regularization ¢ coefficient
was set to 64. In general, in logarithmic scale selection func-
tion performs better. This gives a compression that prevents
time-frequency bins with the highest magnitude to domi-
nate a value of the selection function. Additionally, in the
pseudoinverse-based selection functions the information about
the whole dictionary is used during detection of a given atom.
Regularization of pseudoinverse turned out to be effective in
preventing of overfitting.
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TABLE VI
COMPARISON OF QUALITY OF SELECTION FUNCTIONS TESTED ON
ARTIFICIALLY SYNTHESIZED DATA

selection function result
cosine similarity (Eq. (28)) 55.5
cosine similarity log scale (Eq. (30)) 66.6
selection function fiog regul (Eq. (35)) £ = 32 84.1
selection function fiog regul (Eq. (35)) & = 64 85.0
selection function fiog regul (Eq. (35)) £ = 128 83.8

VII. CONCLUSIONS

This article describes the binary non-negative matrix de-
convolution (BNMD), a new method for dictionary learning.
The BNMD model corresponds to the sparse non-negative
matrix deconvolution, where entries in the activation matrix
are constrained to be binary. Additionally, the proposed model
uses probabilistic inference to find out which combinations of
temporally shifted atoms are likely to explain the analyzed
spectrogram.

It was shown that by using the expectation-truncation
scheme, it is possible to effectively learn dictionary for this
model. Dictionaries learned using the binary non-negative
matrix deconvolution were evaluated in NMD-based speaker
recognition and speech separation systems. The experiments
were performed using 2nd CHiME track 1 data.

The experimental results show that using dictionaries
learned with the BNMD give better speaker identification
accuracy than the GMM and I-vector systems. This is most
notable for lower SNRs, where for GMM accuracy was
68% while for deconvolution with 50-atom BNMD dictionary
88%. The improvement was also observed in other dictionary
learning methods namely NMD or vector quantization, which
was applied to the spectrograms using a sliding window
approach. It has turned out that dictionaries obtained using
the vector quantization are better than dictionaries learned
by the NMD (accuracies averaged over tested SNRs were
87.8% and 75.4%, respectively). The BNMD dictionary in
this test condition gave 91.3%. This improvement over other
methods is most significant for the smallest of tested dictionary
sizes. As the number of atoms is increased the improvement
is getting smaller. The BNMD dictionary also outperforms a
dictionary built from templates extracted using phonetic labels.
For 250-atom dictionary size BNMD yielded 92.5%, while the
template-based dictionary gave 90.9%.

In the case of the speech separation task, dictionaries
learned using BNMD give slightly better SDRs on average
in comparison to VQ dictionaries (8.5 in comparison to 8.3
dB for 50-atom dictionary). However, higher SDRs can be
observed only for higher tested SNRs (-3 — 9 dB). For example
the 50-atom BNMD dictionary gave a 0.5 dB higher SDR for
9dB SNR but 0.2 lower SDR for -3 dB SNR. Similarly to the
speaker recognition results, the difference between VQ and
BNMD dictionaries is getting smaller when the dictionary size
is increased.
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