
Appendix A: A general-purpose program for designing
classical IIR digital filters (some modifications h ave
been performed!)

% A general purpose matlab m-file (iirgen.m)
% for designing classical IIR filter for both
%cascade-form implementation and for
% a parallel connection of two all-pass
% filters.
% Subroutines required in addition to the
% standard matlab commands:
%
% abutter.m
% acheby1.m
% acheby2.m
% aellip.m
% convlow.m
% aminord.m
% anorm2.m
% astoprip.m
% apassrip.m
% aminoms.m
% bilin.m
% translow.m
% transsub.m
%
% The main purpose of this program is to transfer t he design
% of a lowpass, higpass, bandpass, and bandstop fil ters to
% that of a lowpass filter with passband edge angle at pi/2.
% The design of this filter is accomplished with th e aid
% of the corresponding analog filter. For this purp ose, the
% bilinear transformation is used. Finally, the pro totype
% filter is converted back to the desired IIR filte r design
% by using a proper transformantion.
% For details, see the lecture notes.
% Both conventional cascade-form realizations and lattice wave
% digital filters (parallel connections of two allp ass filters)
% can be designed.

% Tapio Saramäki 21.11.95
% This program can be found in SUN's:
% ~ts/matlab/dsp/iirgen.m

clear all;close all;
disp('I am a program for designing classical IIR fi lters')
disp('First, tell me the filter type:')
disp(' ')
disp('1 for lowpass')
disp('2 for highpass')
disp('3 for bandpass')
disp('4 for bandstop')
disp(' ')
type=input('Your selection: ');
inf=input('Give 1 for detailed information, 0 for n ot');
disp('Then, tell me the filter criteria:')
if inf==1
disp('The passband ripple is given in desibels such that');
disp('the maximum value of the amplitude response i s 0 dB');
disp('and the minimum value is -Ap dB (Ap is posiiv e!!)');
end
disp(' ')
Ap=input('Ap: ');
disp(' ')
If info==1
Dips (‘the stop ripple is given in decibels such th at')
Dips ('the minimum of the amplitude response is -As dB')
Dips (‘as is positive, also called the minimum atte nuation')
End
dips(')
As=input('As: ');
disp(' ')
if type==1
 if inf==1
 disp('For the lowpass design give the passband an d stopband')
 disp('edges a fraction of pi (half the sampling r ate)')
 disp('The passband edge must be less than the sto pband edge!')
 end
 disp(' ')
 omegap=input('Passband edge: ');
 disp(' ')
 omegas=input('Stopband edge: ');
 disp(' ')
end
if type==2
 if inf==1
 disp('For the highpass design give the passband a nd stopband')
 disp('edges a fraction of pi (half the sampling r ate)')
 disp('The passband edge must be larger than the s topband edge!')

 end
 disp(' ')
 omegap=input('Passband edge: ');
 disp(' ')
 omegas=input('Stopband edge: ');
 disp(' ')
end
if type==3
 if inf==1
 disp('For the bandpass design give two passband a nd stopband')
 disp('edges a fraction of pi (half the sampling r ate)')
 disp('The passband edges must be between the stop band edges!')
 end
 disp(' ')
 omegap(1)=input('Lower passband edge: ');
 disp(' ')
 omegap(2)=input('Upper passband edge: ');
 disp(' ')
 omegas(1)=input('Lower stopband edge: ');
 disp(' ')
 omegas(2)=input('Upper stopband edge: ');
 disp(' ')
end
if type==4
 if inf==1
 disp('For the bandstop design give two passband a nd stopband')
 disp('edges a fraction of pi (half the sampling r ate)')
 disp('The stopband edges must be between the pass band edges!')
 end
 disp(' ')
 omegap(1)=input('Lower passband edge: ');
 disp(' ')
 omegap(2)=input('Upper passband edge: ');
 disp(' ')
 omegas(1)=input('Lower stopband edge: ');
 disp(' ')
 omegas(2)=input('Upper stopband edge: ');
 disp(' ')
end
%--
% Realization form
%---
disp('Next I like to know the realization form:')
disp(' ')
disp('1 for the cascade-form realization')

disp(' ')
disp('2 for the parallel connection of two allpass filters')
disp(' ')
ireal=input('Your selection: ');
disp(' ')
%--
% First, I convert the filter design to the design of a lowpass
% filter with the passband cutoff frequency at omeg ap=pi/2.
% For this purpose, I use the well-known transforma tions; see
% the lecture notes. The stopband edge of the lowpa ss filter is
% determined such that after applying the transform ation we end
% up with a filter meeting the given criteria. For all filters,
% the passband edge or edges are the desired ones. The same is
% true for the stopband edge for lowpass and highpa ss filters.
% In the bandpass and stopband cases, only one stop band edge is
% the desired one. The remaning one is located at t he frequency
% point exceeding the criteria more or less. This i s because the
% transformation is not able to fix all the four ed ges
% simultaneously.
%
% It should be pointed out when the transformations are applied
% when converting the desired lowpass filter to the bandpass or
% bandstop filters, the filter order is doubled.
% In the lowpass and highpass cases, the order rema ins
% the same.
%
% The synthesis of the prototype filter is performe d with the
% aid of analog filters using the bilinear transfor mation
%---
%
%--
% Passband edge for the prototype lowpass filter as a fraction of pi
%--
normomp=.5;
%--
% Stopband edge for the prototype lowpass filter as a fraction of pi
%--
normoms=convlow(omegap,omegas,type);
%---
% Edges for the analog lowpass prototype filter
%---
Omegap=1;
Omegas=tan(pi*normoms/2);
%---
% Time to find the minimum orders for the four diff erent analog

% filter types (Butterworh, Chebyshev, inverse Cheb yshev, and
% elliptic)
%---
NN(1)=ceil(aminord(Ap,As,Omegas,1));
if ireal==2 & rem(NN(1),2)==0
 NN(1)=NN(1)+1; % odd order for the parallel conne ction
end
NN(2)=ceil(aminord(Ap,As,Omegas,2));
if ireal==2 & rem(NN(2),2)==0
 NN(2)=NN(2)+1; % odd order is required
end
NN(3)=ceil(aminord(Ap,As,Omegas,3));
if ireal==2 & rem(NN(3),2)==0
 NN(3)=NN(3)+1; % odd order is required
end
NN(4)=ceil(aminord(Ap,As,Omegas,4));
if ireal==2 & rem(NN(4),2)==0
 NN(4)=NN(4)+1; % odd order is required
end
%---
% For bandpass and bandstop cases, the order is dou bled
%---
NNN=NN;
if type==3 | type==4
 NNN=2*NN;
end
disp('The minimum orders are the following: ');
fprintf('Butterworth filter: order = %g\',NNN (1));
disp(' ');
fprintf('Chebyshev Type I filter: order = %g\',NNN (2));
disp(' ');
fprintf('Chebyshev Type II filter: order = %g\',NNN (3));
disp(' ');
fprintf('Elliptic (Cauer) filter: order = %g\',NNN (4));
disp(' ');
disp('First, tell me the filter type:')
disp(' ')
disp('1 for Butterworth')
disp('2 for Chebyshev Type I')
disp('3 for Chebyshev Type II')
disp('4 for Elliptic (Cauer)')
disp(' ')
iirtyp=input('Your selection: ');
disp(' ')
%---

% Some properties of the filter under consideration
%---
N=NN(iirtyp);
NOVE=NNN(iirtyp);
%---
% A^2 corresponding to epsilon^2=1
%---
A2 = anorma2(N,Omegas,iirtyp);
%---
% Stopband ripple corresponding to the specified va lue
% of Ap
%---
Ass=astoprip(Ap,A2);
%---
% Passband ripple corresponding to the specified va lue
% of As
%---
App=apassrip(As,A2);
%---
disp(' ')
disp('Before actual filter design, it is worth tell ing')
disp('the facts:')
fprintf('For the given order = %g\',NOVE);
disp(' ')
disp(' ');
disp('the following is valid: ')
fprintf('For the given passband ripple Ap = %g\',Ap);
disp(' ');
fprintf('the stopband attenuation is As = %g\',Ass) ;
disp(' ');
fprintf('For the given stopband attenuation As = %g \',As);
disp(' ');
fprintf('the passband ripple is Ap = %g\',App);
disp(' ');
disp('You are able to select Ap and As between the above')
disp('limits. You are also allowed to increase the filter')
disp('order, if desired')
disp(' ')
if inf==1
disp('If it seems that there is not enough toleranc e for')
disp('the coefficient quantization, you can increas e')
disp('the filter order:')
disp('For the cascaded form realization, the order for')
disp('the bandpass and bandstop filters must be eve n,')
disp('whereas for the parallel connection of two al lpass')

disp('filters, the order must two times an odd inte ger.')
disp('Also, for the parallel connection of two allp ass')
disp('filters, the order must be odd in the lowpass and')
disp('highpass cases.')
end
disp(' ')
disp('1 for changing the order')
disp('2 for not changing')
disp(' ')
ineword=input('Your selection: ');
disp(' ')
if ineword==1
 fprintf('Previous order = %g\',NOVE);
 disp(' ');
 NOVE=input('New order :');
 N=NOVE;
 if type==3 | type==4
 N=NOVE/2;
 end
%---
% A^2 corresponding to epsilon^2=1
%---
 A2 = anorma2(N,Omegas,iirtyp);
%---
% Stopband ripple corresponding to the specified va lue
% of Ap
%---
 Ass=astoprip(Ap,A2);
%---
% Passband ripple corresponding to the specified va lue
% of As
%---
 App=apassrip(As,A2);
%---
end
%---
% Find out the minimum transition band to just meet the
% the given passband and stopband criteria
%---
Omegass=aminoms(N,Ap,As,iirtyp);
omnewlows=2*atan(Omegass);
zz=transsub(omegap,exp(j*omnewlows),type);
omms=sort(abs(angle(zz)))/pi;
disp(' ')
disp('There are the following alternatives to desig n');

disp('the filter:');
disp(' ');
disp('1: the passband and stopband criteria are jus t met');
disp('and transition bandwidth(s) is (are) minimize d');
if type < 3
 fprintf('The stopband edge is at %g\',omms);disp(' ');
end
if type > 2
 fprintf('The stopband edges are at %g\',omms(1));
 fprintf(' and %g\',omms(2));disp(' ')
end
disp(' ');
disp('2: the passband criterion is just met and the ');
disp('stopband attenuation is maximized');
fprintf('In this case: Ap=%g\',Ap);
fprintf(' and As=%g\',Ass);disp(' ')
disp(' ');
disp('3: the stopband criterion is just met and the ');
disp('passband variation is minimized');
fprintf('In this case: Ap=%g\',App);
fprintf(' and As=%g\',As);disp(' ')
disp(' ');
disp('4: both the passband and stopband criteria ar e')
disp('are exceeded in the desired manner');
disp(' ');
disp(' ');
ioptyp=input('Your selection: ');
disp(' ')
if ioptyp==1
 App=Ap;Ass=As;
end
if ioptyp==2
 Omegass=Omegas;App=Ap;
end
if ioptyp==3
 Omegass=Omegas;Ass=As;
end
if ioptyp==4
 Omegass=Omegas;
 ll=0;
 while ll==0
 disp(' ')
 disp('The given criteria are met by selecting A p')
 fprintf('to vary between %g\',App);
 fprintf(' and As=%g\',Ap);disp(' ');

 disp(' ')
 disp('or by selecting As to vary');
 fprintf('between %g\',As);
 fprintf(' and As=%g\',Ass);disp(' ')
 disp(' ')
 ia=input('1 for selecting Ap and 2 for selectin g As: ');
 if ia==1
 disp(' ')
 Appp=input('Value for Ap: ');
 disp(' ')
 Asss=astoprip(Appp,A2);
 end
 if ia==2
 disp(' ')
 Asss=input('Value for As: ');
 disp(' ')
 Appp=apassrip(Asss,A2);
 end
 disp(' ')
 fprintf('In this case: Ap=%g\',Appp);
 fprintf(' and As=%g\',Asss);disp(' ')
 disp(' ')
 ll=input('1 for being satisfied, 0 for not: ') ;
 disp(' ')
 end
 App=Appp;Ass=Asss;
end
%--
% Butterworth
%---
if iirtyp==1
 [azer,apol,ascale]=abutter(N,App);
end
%--
% Chebyshev or Chebyshev Type I
%---
if iirtyp==2
 [azer,apol,ascale]=acheby1(N,App);
end
%--
% inverse Chebyshev or Chebyshev Type II
%---
if iirtyp==3
 [azer,apol,ascale]=acheby2(N,App,Omegass);
end

%--
% Elliptic or Cauer
%---
if iirtyp==4
 [azer,apol,ascale]=aellip(N,App,Omegass);
end
%--
% Bilinear transformation
%---
zerr=azer;
poll=apol;
[zer,pol,scalel]=bilin(zerr,poll,iirtyp,App);
%---
% Transform the prototype filter into the desired f orm
%--
[pole,zero,scale]=translow(omegap,pol,zer,type,scal el);
%--
%
%**
% CASCADE-FORM REALIZATION
%**
%
%%
%%%%%%%%%%%%%%%%
%%%%% Sections for the cascaded realization %%%%%%% %%%%%
%%% See this to know how the file cascade is formed %%%%
%%
%%%%%%%%%%%%%%%%
% For odd-order lowpass and highpass cases, there i s one
% first order section, N1=1. Otherwise, there exist no
% first order sections, N1=0. The number of second- order
% sections is N2=floor(N/2) for lowpass and highpas s
% cases and N2=N for bandpass and bandstop cases.
% For further use, we generate a file called cascad e
% containing first N1, N2, and the scaling constant
% scale. Then first order blocks are given in the f rom
% [1+A1(k)z^(-1)+A2(k)z^(-2)]/[1+B1(k)z^(-1)+B2(k)z ^(-2)]
% for k=1,2,...,N2. cascade contains first the vect ors
% A1 and A2, then B1 and finally B2. If there is a
% first-order section of the form
% [1+az^(-1)]/[1+bz^(-1)], a is first, then b.
% The sections are formed in such a way that, after
% filter scaling, the output noise variance due to the
% multiplication roundoff errors is rather low.
% Note that for the bandstop filter, there are two

% real poles when the order is two times an odd int eger.
%%
%%%%%%%%%%%%%%%%
N1=0;
NODD=rem(N,2);
if type > 2
 N2=N;
 for kk=1:1:N2;
 B1(kk)=-2*real(pole(kk));
 B2(kk)=abs(pole(kk))*abs(pole(kk));
 A2(kk)=1;
 A1(kk)=-2*real(zero(kk));
 if rem(N2,2)==1 & kk==N2 & type==4
 B1(kk)=-(pole(kk)+pole(kk+1));
 B2(kk)=pole(kk)*pole(kk+1);
 end
 if NODD==1 & kk==N2
 A2(kk)=-1;
 A1(kk)=0;
 end
 end
end
if type < 3
 N2=floor(N/2);
 N1=rem(N,2);
 for kk=1:1:N2;
 B1(kk)=-2*real(pole(kk));
 B2(kk)=abs(pole(kk))*abs(pole(kk));
 A2(kk)=1;
 A1(kk)=-2*real(zero(kk));
 end
 if N1==1
 b=-pole(N2+1);
 a=-zero(N2+1);
 end
end
%
if ireal==1
%--
% Form the vector 'cascade'
%--
 cascade=[N1 N2 real(scale) A1 A2 B1 B2];
 if N1==1
 cascade=[cascade a b];
 end

 disp('I print the data in the file cascade for th e')
 disp('cascade-form realization')
 disp('For details, see inside the file iirgen.m')
 save cascade cascade -ascii -double
end
if ireal==2
%%
%%%%%%%%%%%%%%%%
%%%%% Sections for the parallel connection of %%%%% %%%%%
%%%%%%%%%%%% two allpass sections
%%%%%%%%%%%%%%%%%%%%%%
%%% See this to know how the file allpass is formed %%%%
%%
%%%%%%%%%%%%%%%%
% When forming the parallel connection of two allpa ss
% sections, only the poles are needed. We separate the
% the poles between the allpass sections C(z) and D (z).
% In the lowpass and highpass cases, there is one r eal
% pole, NC1=1, indicating that this pole is given t o
% C(z). C(z) contains the second innermost, the fou rth
% innermost pole pair and so on. D(z) contains the
% innermost pole pair, the third innermost pole pai r
% and so on. The number of pole pairs included in C (z)
% and D(z) are indicated by NC2 and ND2.
% For bandpass and bandstop cases, the above second
% order blocks are formed in such a way that C1(z)
% contains the above second-order sections with
% denominator 1+B1(k)z^{-1}+B2(k)z^{-2} for k=N,
% N-3,N-4, N-6,N-7 ...N is half the filter order.
% D(z) contains the remaining sections. For bandsto p
% case 1+B1(N)z^{-1}+B2(N)z^{-2} is factorizable in to
% two second order sections 1+Cb(k)z^{-1} k=1,2 so that
% NC1=2.
% The vector parallel contains first NC1,NC2, and N C2.
% After that, the first order denominator sections are
% included. Then, the second order sections of C(z) and
% finally the second-order sections of D(z)
%---
NC1=0;
if type < 3
 NC1=1;
 Cb(1)=b(1);
 ll=0;
 for k=2:2:N2
 ll=ll+1;

 CB1(ll)=B1(N2+1-k);
 CB2(ll)=B2(N2+1-k);
 end
 ll=0
 for k=1:2:N2
 ll=ll+1;
 DB1(ll)=B1(N2+1-k);
 DB2(ll)=B2(N2+1-k);
 end
 NC2=length(CB1);
 ND2=length(DB1);
end
if type > 2
 BB1=rot90(rot90(B1));
 BB2=rot90(rot90(B2));
 CB1(1)=BB1(1);
 CB2(1)=BB2(1);
 ll=1;
 for k=1+4:4:N2
 ll=ll+1;
 CB1(ll)=BB1(k-1);
 CB2(ll)=BB2(k-1);
 ll=ll+1;
 CB1(ll)=BB1(k);
 CB2(ll)=BB2(k);
 end
 ll=0;
 for k=1+2:4:N2
 ll=ll+1;
 DB1(ll)=BB1(k-1);
 DB2(ll)=BB2(k-1);
 ll=ll+1;
 DB1(ll)=BB1(k);
 DB2(ll)=BB2(k);
 end
 NC2=length(CB1);
 ND2=length(DB1);
end
if type==4
 CCB1=CB1;
 CCB2=CB2;
 CB1=CCB1(2:length(CCB1));
 CB2=CCB2(2:length(CCB2));
 NC2=NC2-1;
 NC1=2;

 Cb(1)=-pole(N2);
 Cb(2)=-pole(N2+1);
end
%--
% Form the vector 'parallel'
%--
parallel=[NC1 NC2 ND2];
if NC1>0
 parallel=[parallel Cb];
end
parallel=[parallel CB1 CB2 DB1 DB2];
disp('I print the data in the file parallel for the ')
disp('parallel-form realization')
disp('For details, see inside the file iirgen.m')
 save parallel parallel -ascii -double
end
%----------------------------
% Time to plot the responses
%----------------------------
AAA=rot90(zero);
BBB=rot90(pole);
HH=rot90(ones(size(1:1:2^13)));
GDD=rot90(zeros(size(1:1:2^13)));
for k=1:N2
 A=[1 A1(k) A2(k)];
 B=[1 B1(k) B2(k)];
 [H,ww]=freqz(A,B,2^13);
 HH=HH.*H;
 [GD,w]=grpdelay(A,B,2^13);
 GDD=GDD+GD;
end
if N1 > 0
 for k=1:1
 A=[1 a];
 B=[1 b];
 [H,ww]=freqz(A,B,2^13);
 HH=HH.*H;
 [GD,w]=grpdelay(A,B,2^13);
 GDD=GDD+GD;
 end
end
HH=scale*HH;
phase=unwrap(angle(HH));
for i=1:length(HH)
 phad(i)=-phase(i)/ww(i);

end
if type==1
 omp1=0;omp2=omegap(1);
end
if type==2
 omp1=omegap(1);omp2=1;
end
if type==3
 omp1=omegap(1);omp2=omegap(2);
end
if type==4
 omp1=0;omp2=1;
end
figure(1)
subplot(2,2,3)
%-----------------------------------
% Amplitude response in the passband
%-----------------------------------
plot(w/pi,20*log10(abs(HH)));grid;axis([omp1 omp2 - Ap 0]);
ylabel('Amplitude in dB');
xlabel('Angular frequency omega/pi');
subplot(2,2,1)
%-----------------------------------
% Amplitude response in dB
%-----------------------------------
plot(w/pi,20*log10(abs(HH)));grid;
axis([0 1 -2*As 10]);
ylabel('Amplitude in dB');
xlabel('Angular frequency omega/pi');
subplot(2,2,2)
%-----------------------------------
% Phase response
%-----------------------------------
plot(w/pi,phase/pi);grid;
ylabel('Phase as a fraction of pi');
xlabel('Angular frequency omega/pi')
subplot(2,2,4)
%-----------------------------------
% Phase delay
%-----------------------------------
plot(w/pi,phad);grid;
ylabel('Phase delay in samples');
xlabel('Angular frequency omega/pi');
figure(2)
subplot(2,2,1)

%-----------------------------------
% Pole-zero plot
%-----------------------------------
zplane(AAA,BBB);title('Pole-zero plot');
subplot(2,2,2)
%-----------------------------------
% Group delay
%-----------------------------------
plot(w/pi,GDD);grid;
ylabel('Group delay in samples');
xlabel('Angular frequency omega/pi');
subplot(2,1,2)
%-----------------------------------
% Impulse response
%-----------------------------------
B=real(scale*poly(zero));
A=real(poly(pole));
impz(B,A);grid;
ylabel('Impulse response');
xlabel('n in samples')
%---
% More responses for the parallel connection
%---
% Allpass sections
%---
BC=1;
if NC1 > 0
 for k=1:NC1
 BC=conv(BC,[1 Cb(k)]);
 end
end
if NC2 > 0
 for k=1:NC2
 BC=conv(BC, [1 CB1(k) CB2(k)]);
 end
end
BD=1;
if ND2 > 0
 for k=1:ND2
 BD=conv(BD, [1 DB1(k) DB2(k)]);
 end
end
AC=rot90(rot90(BC));
AD=rot90(rot90(BD));
[HC,ww]=freqz(AC,BC,2^13);

[HD,ww]=freqz(AD,BD,2^13);
phaseC=unwrap(angle(HC));
phaseD=unwrap(angle(HD));
figure(3)
subplot(2,2,1)
plot(w/pi,20*log10(abs(HC)));grid;
title('First allpass filter')
ylabel('Amplitude in dB');
xlabel('Angular frequency omega/pi');
subplot(2,2,3)
zplane(AC,BC);title('Pole-zero plot');
subplot(2,2,2)
plot(w/pi,phaseC/pi);grid;
ylabel('Phase as a fraction of pi');
xlabel('Angular frequency omega/pi')
subplot(2,2,4)
impz(AC,BC);grid;
ylabel('Impulse response');
xlabel('n in samples')
figure(4)
subplot(2,2,1)
plot(w/pi,20*log10(abs(HD)));grid;
title('Second allpass filter')
ylabel('Amplitude in dB');
xlabel('Angular frequency omega/pi');
subplot(2,2,3)
zplane(AD,BD);title('Pole-zero plot');
subplot(2,2,2)
plot(w/pi,phaseD/pi);grid;
ylabel('Phase as a fraction of pi');
xlabel('Angular frequency omega/pi')
subplot(2,2,4)
impz(AD,BD);grid;
ylabel('Impulse response');
xlabel('n in samples')
if NC1+2*NC2 > 2*ND2
 PHA1=phaseC;
 PHA2=phaseD;
else
 PHA1=phaseD;
 PHA2=phaseC;
end
figure(5)
subplot(211)
plot(w/pi,PHA1/pi,w/pi,PHA2/pi);grid;

ylabel('Phase as a fraction of pi');
xlabel('Angular frequency omega/pi')
title('Phases of the allpass sections')
subplot(212)
plot(w/pi,1+PHA1/pi,w/pi,PHA2/pi);grid;
ylabel('Phase as a fraction of pi');
xlabel('Angular frequency omega/pi')
title('Phases of the allpass sections: pi is added to one of the phases')
figure(6)
subplot(211)
plot(w/pi,(PHA1-PHA2)/pi);grid;
ylabel('Phase as a fraction of pi');
xlabel('Angular frequency omega/pi')
title('Phase difference')
subplot(212)
plot(w/pi,1+(PHA1-PHA2)/pi);grid;
ylabel('Phase as a fraction of pi');
xlabel('Angular frequency omega/pi')
title('Phase difference: pi is added to one of the phases')
figure(7)
subplot(211)
plot(w/pi,20*log10(abs(cos((PHA1-PHA2)/2))));grid;
ylabel('Amplitude in dB');
xlabel('Angular frequency omega/pi')
title('Amplitude response when adding the allpass s ections')
subplot(212)
plot(w/pi,20*log10(abs(cos((PHA1+pi-PHA2)/2))));gri d;
ylabel('Amplitude in dB');
xlabel('Angular frequency omega/pi')
title('Amplitude response when subtracting the allp ass sections')

function [zer,pol,scale] = abutter(N,Ap)
% [zer,pol,scale] = abutter(N,Ap) determines the po les and
% zeros as well as the scaling constant of a stable analog
% Butterworth filter of order N such that the value of the
% amplitude response in decibels is 0 at Omega=0 an d -Ap
% at Omega=Omegap=1 (passband cutoff point).
% It returns the real zeros and poles in vectors ze r and pol.
% pol is of length N containing the poles of the fi lter in
% such a way that they are put in order according t o the
% decreasing imaginary part.
% zer= [] since all the zeros are lying at the inf inity.
% The scaling constant is returned in scale.

% For details, see the lecture notes by Tapio Saram äki.

% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/abutter.m
%--
zer=[];
epsilon=sqrt(10^(Ap/10)-1);
k=1:1:N;
pol=exp(j*pi*(1/2+(2*k-1)/(2*N)))/(epsilon^(1/N));
scale=real(prod(-pol));

**

function [zer,pol,scale] = acheby1(N,Ap)
% [zer,pol,scale] = acheby1(N,Ap) determines the po les and
% zeros as well as the scaling constant of a stable analog
% Chebyshev (Chebyshev Type I) filter of order N su ch that
% the amplitude response in decibels is varies betw een 0
% and -Ap in the passband [0, Omegap] with Omegap=1 .
% It returns the real zeros and poles in vectors ze r and pol.
% pol is of length N containing the poles of the fi lter in
% such a way that they are put in order according t o the
% decreasing imaginary part.
% zer= [] since all the zeros are lying at the in finity.
% The scaling constant is returned in scale.

% For details, see the lecture notes by Tapio Saram äki.
% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/acheby1.m
%--
zer=[];
epsilon=sqrt(10^(Ap/10)-1);
gamma=(1+sqrt(1+epsilon^2))/epsilon;
gamma=gamma^(1/N);
gamma1=-(gamma-1/gamma)/2;
gamma2=(gamma+1/gamma)/2;
k=1:1:N;
a=(2*k-1)*pi/(2*N);
pol=gamma1*sin(a)+j*gamma2*cos(a);
scale=real(prod(-pol));
if rem(N,2)==0
scale=scale/sqrt(1+epsilon^2); % N is even
end

**

function [zer,pol,scale] = acheby2(N,Ap,Omegas)

% [zer,pol,scale] = acheby2(N,Ap,Omegas) determines the
% poles and zeros as well as the scaling constant o f a
% stable analog inverse Chebyshev (Chebyshev Type II)
% filter of order N such that the value of the ampl itude
% response in decibels is 0 at Omega=0 and -Ap at O mega=
% Omegap=1 (passband cutoff point) and the the stop band
% edge is located at Omega=Omegas.
% It returns the real zeros and poles in vectors ze r and pol.
% pol is of length N containing the poles of the fi lter in
% such a way that they are put in order according t o the
% decreasing imaginary part.
% zer is of length N for N even and of length N-1 f or N odd
% since one zero is lying in this case at the infin ity.
% zer contains the real zeros according to the decr easing
% imaginary part.
% The scaling constant is returned in scale.

% For details, see the lecture notes by Tapio Saram äki.
% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/acheby2.m
%--
% The poles and zeros
zer=[];
epsilon2=sqrt(10^(Ap/10)-1);
%---
% The poles and zeros of the inverse Chebyshev filt er are
% determined according to A (see the lecture notes) . There-
% fore, we first determine the value of A based on the fact
% that the stopband attenuation of the Chebyshev an d inverse
% Chebyshev filters are the same for the same value s of Ap
% and Omegas
%--
% The value of the squared-magnitude function at Om ega=
% Omegas is 1/(1+[epsilon2*cosh{N*acosh(Omega_s)}]^ 2):
%--
stop=N*acosh(Omegas);
stop=epsilon2*cosh(stop);
stop=1/(1+stop^2);
%--
% 1/A^2=stop ----->
%--
A=1/stop;
A=sqrt(A);
%---
% Now we are ready to find out the poles and zeros

%--
% First poles
%--
gamma=A+sqrt(A^2-1);
gamma=gamma^(1/N);
gamma1=-(gamma-1/gamma)/2;
gamma2=(gamma+1/gamma)/2;
k=1:1:N;
a=(2*k-1)*pi/(2*N);
alpha=gamma1*sin(a);
beta=gamma2*cos(a);
den=alpha.*alpha+beta.*beta;
pol=Omegas*alpha-j*Omegas*beta;
pol=pol./den;
%--
% Then zeros; first zeros on the upper half plane
%--
if rem(N,2)==0 M=N/2; end
if rem(N,2)==1 M=(N-1)/2;end
k=M:-1:1;
a=pi*(2*k-1)/(2*N);
a=cos(a);
zer=j*Omegas*ones(size(a))./a;
%--
% Then, all the zeros on the imaginary axis
%--
zer=[zer -fliplr(zer)];
%--
% The scaling constant
%--
scale=1;
if rem(N,2)==0 scale=sqrt(1/(1+epsilon2));end
scale=scale*real(prod(-pol))/real(prod(-zer));

**

function [zer,pol,scale] = aellip(N,Ap,Omegas)
% [zer,pol,scale] = aellip(N,Ap,Omegas) determines the
% poles and zeros as well as the scaling constant o f a
% stable analog elliptic (Cauer) filter of order N such
% that the amplitude response in decibels is varies
% between 0 and -Ap in the passband [0, Omegap] wit h
% Omegap=1 and the the stopband edge is located at Omega=
% Omegas.
% It returns the real zeros and poles in vectors ze r and pol.

% pol is of length N containing the poles of the fi lter in
% such a way that they are put in order according t o the
% decreasing imaginary part.
% zer is of length N for N even and of length N-1 f or N odd
% since one zero is lying in this case at the infin ity.
% zer contains the real zeros according to the decr easing
% imaginary part.
% The scaling constant is returned in scale.

% This file has been constructed based on the artic le
% S. Darlington, "Simple alforithms for elliptic fi lters
% and generalizations thereof", IEEE Trans. Circuit s and
% Systems, CAS-25, pp. 975 - 980, Dec. 1978.
% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/aellip.m
%--
%------------
% A(i+1)==a_i
%------------
A(1)=sqrt(Omegas);
for i=1:4
 A(i+1)=A(i)^2+sqrt(A(i)^4-1);
end
%------------------
% J(i+1)==J_i
J(5)=2^(N-1)*A(5)^N;
for i=1:4
 J(5-i)=(J(5-i+1)+1/J(5-i+1))/2;
 J(5-i)=sqrt(J(5-i));
end
K=sqrt(10^(Ap/10)-1);
%---------------
% SS(I+1)==S_I0
%---------------
SS(2)=1/K+sqrt(1/(K*K)+1);
for i=3:4
 SS(i)=J(i-1)*SS(i-1);
 if SS(i) <= 10^150
 SS(i)=SS(i)+sqrt(SS(i)*SS(i)+1);
 else
 SS(i)=2*SS(i);
 end
end
%--
% To prevent overflows calculate S_40/J3,

% instead of S_40
%--
SS(5)=SS(4)+sqrt(SS(4)*SS(4)+1/(J(4)*J(4)));
%---------------------
% Calculate S50==s_50
%---------------------
S50=J(5)/(SS(5)*J(4));
if S50 <= 10^150
 S50=S50+sqrt(S50*S50+1);
else
 S50=2*S50;
end
S50=S50^(1/N);
%--
% Poles of the filter
%--
k=1:1:N;
pol=S50*exp(j*pi*(.5+(2*k-1)/(2*N)));
for i=1:5
 pol=(pol-ones(size(pol))./pol)/(2*A(6-i));
end
[Y,I]=sort(-imag(pol));
pol=pol(I);
im=imag(pol);
re=real(pol);
pol=A(1)*(-re+j*im);
%--
% Zeros of the filter
%--
NCZ=floor(N/2);
kk=1:1:NCZ;
zer=A(5)*ones(size(kk))./(cos(pi*(2*kk-1)/(2*N)));
for i=1:4
 zer=(zer+ones(size(zer))./zer)/(2*A(5-i));
end
zer=A(1)*zer;
zer=[j*zer -j*zer];
%--
% The scaling constant
%--
epsilon2=10^(Ap/10)-1;
scale=1;
if rem(N,2)==0 scale=sqrt(1/(1+epsilon2));end
scale=scale*real(prod(-pol))/real(prod(-zer));

**

function normoms = convlow(omegap,omegas,type)
% Given the digital filter type:
% type=1 for lowpass
% type=2 for highpass
% type=3 for bandpass
% type=4 for bandstop
% as well as the passband and stopband edges includ ed
% in omegap and omegas,
% normoms = convlow(omegap,omegas,type) converts th e
% design problem to that of a lowpass filter with
% passband edge at omega=pi/2. It should be pointed out
% when the transformations are applied when convert ing
% the desired lowpass filter to the bandpass or ban dstop
% filters, the filter order is doubled.
% In the lowpass and highpass cases, the order rema ins
% the same.

% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/anorma2
%---
tp=0.5*pi;
Op=pi*omegap;
Os=pi*omegas;
if type==1
 alpha=sin((tp-Op(1))/2)/sin((tp+Op(1))/2);
 real=-2*alpha+(1+alpha^2)*cos(Os(1));
 imag=(1-alpha^2)*sin(Os(1));
 normoms=atan2(imag,real)/pi;
end
if type==2
 alpha=-cos((tp+Op(1))/2)/cos((tp-Op(1))/2);
 real=2*alpha+(1+alpha^2)*cos(Os(1));
 imag=(1-alpha^2)*sin(Os(1));
 normoms=1-atan2(imag,real)/pi;
end
if type==3
 alpha=cos((Op(2)+Op(1))/2)/cos((Op(2)-Op(1))/2);
 k=cot((Op(2)-Op(1))/2)*tan(tp/2);
 a1=-2*alpha*k/(k+1);a2=(k-1)/(k+1);
 imag=-a1*sin(Os)-a2*sin(2*Os);
 real=1+a1*cos(Os)+a2*cos(2*Os);
 oms=2*Os+2*atan2(imag,real)-pi;
 normoms=min(abs(oms(1)),oms(2))/pi

end
if type==4
 alpha=cos((Op(2)+Op(1))/2)/cos((Op(2)-Op(1))/2);
 k=tan((Op(2)-Op(1))/2)*tan(tp/2);
 a1=-2*alpha/(k+1);a2=(1-k)/(k+1);
 imag=-a1*sin(Os)-a2*sin(2*Os);
 real=1+a1*cos(Os)+a2*cos(2*Os);
 oms=2*Os+2*atan2(imag,real);
 oms(1)/pi
 2-oms(2)/pi
 normoms=min(oms(1),2*pi-oms(2))/pi;
end

**

function N = aminord(Ap,As,Omegas,iirtyp)
% Given the analog filter type:
% iirtyp=1 for Butterworth
% iirtyp=2 for Chebyshev or Chebyshev Type I
% iirtyp=3 for inverse Chebyshev or Chebyshev Type II
% iirtyp=4 for elliptic or Cauer
% as well as the maximum passband variation Ap in d B,
% the minimum stopband attenuation As and the stopb and
% edge Omegas,
% N = aminord(Ap,As,Omegas,iirtyp) finds the minimu m
% order to meet the given criteria.
% N is given as a rational number.
% In practice, N=ceil(N)!!

% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/aminord.m
% For details, see the lecture notes as well as
% S. Darlington, "Simple alforithms for elliptic fi lters
% and generalizations thereof", IEEE Trans. Circuit s and
% Systems, CAS-25, pp. 975 - 980, Dec. 1978.
%--
epsilon2=10^(Ap/10)-1;
A2=10^(As/10);
if iirtyp==1
N=log10((A2-1)/epsilon2)/(2*log10(Omegas));
end
if iirtyp==2 | iirtyp==3
 N=acosh(sqrt((A2-1)/epsilon2))/acosh(Omegas);
end
if iirtyp==4

 A=sqrt(Omegas);
 for k=1:4
 A=A*A;
 A=A+sqrt(A*A-1);
 end
 JJ=sqrt(sqrt((10^(As/10)-1)/epsilon2));
 for k=1:4
 JJ=JJ*JJ;
 if JJ <= 10^150
 JJ=JJ+sqrt(JJ*JJ-1);
 else
 JJ=2*JJ;
 end
 end
 N=log10(2*JJ)/log10(2*A);
end

**

function A2 = anorma2(N,Omegas,iirtyp)
% Given the analog filter type:
% iirtyp=1 for Butterworth
% iirtyp=2 for Chebyshev or Chebyshev Type I
% iirtyp=3 for inverse Chebyshev or Chebyshev Type II
% iirtyp=4 for elliptic or Cauer
% as well as the filter order N and the stopband ed ge
% Omegas,
% A2 = anorma2(N,Omegas,iirtyp) finds the value of A^2
% in the case where epsilon^2=1 the passband edge i s
% Omegap=1.

% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/anorma2.m
% For details, see the lecture notes as well as
% S. Darlington, "Simple alforithms for elliptic fi lters
% and generalizations thereof", IEEE Trans. Circuit s and
% Systems, CAS-25, pp. 975 - 980, Dec. 1978.
%---
if iirtyp==1
 A2=1+Omegas^(2*N);
end
if iirtyp==2 | iirtyp==3
 A2=cosh(N*acosh(Omegas));
 A2=1+A2*A2;
end

if iirtyp==4
 A=sqrt(Omegas);
 for k=1:4
 A=A*A;
 A=A+sqrt(A*A-1);
 end
 JJ=2^(N-1)*A^N;
 for k=1:4
 JJ=sqrt((JJ+1/JJ)/2);
 end
 A2=1+JJ^4;
end

**

function Ap = apassrip(As,A2)
% After knowing the value of A^2 for epsilon^2=1,
% Ap = apassrip(As,A2) finds the minimum passband
% variation Ap expressed in desibels for the given
% stopband attenuation As.
% Note that both Ap and As are positive.

% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/apassrip.m
%---
FF=A2-1;
BB=10^(As/10)-1;
epsilon2=BB/FF;
Ap=10*log10(1+epsilon2);

**

function As = astoprip(Ap,A2)
% After knowing the value of A^2 for epsilon^2=1,
% As = astoprip(Ap,A2) finds the minimum stopband
% attenuation As for the given passband ripple Ap
% expressed decibels.
% Note that both Ap and As are positive.

% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/astoprip.m
%---
epsilon2=10^(Ap/10)-1;
FF=A2-1;
As=10*log10(1+epsilon2*FF);

**

function Omegas = aminoms(N,Ap,As,iirtyp)
% Given the analog filter type:
% iirtyp=1 for Butterworth
% iirtyp=2 for Chebyshev or Chebyshev Type I
% iirtyp=3 for inverse Chebyshev or Chebyshev Type II
% iirtyp=4 for elliptic or Cauer
% as well as the filter order N, the the maximum
% passband variation Ap and the minimum stopband
% attenuation As (both positive),
% Omegas = aminoms(N,Ap,As,iirtyp) finds the minimu m
% stopband edge Omegas when the passband edge is
% Omegap=1.

% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/aminoms.m
%---
epsilon2=10^(Ap/10)-1;
A2=10^(As/10);
if iirtyp==1
 Omegas=((A2-1)/epsilon2)^(1/(2*N));
end
if iirtyp==2 | iirtyp==3
 Omegas=sqrt((A2-1)/epsilon2);
 Omegas=acosh(Omegas)/N;
 Omegas=cosh(Omegas);
end
if iirtyp==4
 JJ=sqrt(sqrt((10^(As/10)-1)/epsilon2));
 for k=1:4
 JJ=JJ*JJ;
 if JJ <= 10^150
 JJ=JJ+sqrt(JJ*JJ-1);
 else
 JJ=2*JJ;
 end
 end
 A=JJ/(2^(N-1));
 A=A^(1/N);
 for k=1:4
 A=sqrt((A+1/A)/2);
 end
 Omegas=A^2;

end

**

function [zer,pol,scale]=bilin(zerr,poll,iirtyp,Ap)
% Given the analog filter type:
% iirtyp=1 for Butterworth
% iirtyp=2 for Chebyshev or Chebyshev Type I
% iirtyp=3 for inverse Chebyshev or Chebyshev Type II
% iirtyp=4 for elliptic or Cauer
% as well as the passband variation Ap, its zeros
% included in zerr and poles icluded in poll,
% [zer,pol,scale]=bilin(zerr,poll,iirtyp) finds out
% the zeros of the corresponding digital filter
% included in zer, the poles included in in pol, an d
% the scaling constant scale included in scale in t he
% case where the bilinear transformation maps Omega p=
% 1 to omegap=pi/2. The transformation is simply z=
% (1+s)/(1-s). If some of the zeros of the analog
% filter lie at infinity, they are mapped to z=-1.
% In this case the length of zerr is lower.
% The scaling constant is determined such that at
% omega=1, the desired value is achieved.

% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/translow.m
%---
% First poles
%--
poll1=poll+1;
poll2=-poll+1;
pol=poll1./poll2;
%---
% Then zeros
%--
if length(zerr) > 1
 zerr1=zerr+1;
 zerr2=-zerr+1;
 zer=zerr1./zerr2;
end
if length(zerr) < length(poll)
 zer=[zer -ones(size(length(zerr):1:length(poll)-1))];
end
%--
% Sort the poles according to the decreasing

% imaginary part
%--
[Y,I]=sort(-imag(pol));
pol=pol(I);
%--
% Sort the zeros according to the decreasing
% imaginary part
%--
[Y,I]=sort(-imag(zer));
zer=zer(I);
%--
% Desired value of the amplitude response at omega= 1;
% For Butterworth and inverse Chebyshev filters, th e
% desired value is equal to unity. The same is true for
% odd order Chebyshev filters and elliptic filters.
% For even order Chebyshev filters and elliptic fil ters,
% the desired value is sqrt(1/(1+epsilon^2)), where
% epsilon^2=10^(Ap/10)-1.
%--
scale=1;
N=length(pol);
if (iirtyp==2 & rem(N,2)==0) | (iirtyp==4 & rem(N,2)==0)
 epsilon2=10^(Ap/10)-1;
 scale=sqrt(1/(1+epsilon2));
end
scale=scale*(prod(-pol+1))/(prod(-zer+1));

**

function [pole,zero,scale]=...
translow(omegap,pollow,zerlow,type,scalow)
% Given the digital filter type:
% type=1 for lowpass
% type=2 for highpass
% type=3 for bandpass
% type=4 for bandstop
% as well as the passband edges included in omegap,
% [pole, zero] = translow(omegap,pollow,zerlow,type)
% converts the poles pollow and zeros zerlow
% of a lowpass filter with passband edge
% at omega=pi/2 to the poles and zeros of the
% corresponding desired filter.

% Tapio Saramäki 20.1.1998; this program can be fou nd in
% SUN's: ~ts/matlab/dsp/translow.m

%---
odd=rem(length(pollow),2);
ll=(length(pollow)-1)/2+1;
for k=1:length(pollow)
 if type < 3
 pol=transsub(omegap,pollow(k),type);
 r=abs(pol);
 ang=abs(angle(pol));
 ang1=angle(pollow(k));
 sign=ang1/abs(ang1);
 pole(k)=r*exp(j*sign*abs(ang));
 end
 if type > 2
 pol=transsub(omegap,pollow(k),type);
 [Y,I]=sort(abs(angle(pol)));
 pol=pol(I);
 r=abs(pol);
 ang=abs(angle(pol));
 ang1=angle(pollow(k));
 sign=ang1/abs(ang1);
 pole(2*k-1)=r(1)*exp(j*sign*abs(ang(1)));
 pole(2*k)=r(2)*exp(j*sign*abs(ang(2)));
 if type==3 & k==ll & odd==1
 pole(2*k)=r(1)*exp(-j*sign*abs(ang(1)));
 end
 end
end
for k=1:length(zerlow)
 if type < 3
 zer=transsub(omegap,zerlow(k),type);
 r=abs(zer);
 ang=abs(angle(zer));
 ang1=angle(zerlow(k));
 sign=ang1/abs(ang1);
 zero(k)=r*exp(j*sign*abs(ang));
 end
 if type > 2
 zer=transsub(omegap,zerlow(k),type);
 angg=angle(zerlow(k));
 [Y,I]=sort(abs(angle(zer)));
 zer=zer(I);
 r=abs(zer);
 ang=abs(angle(zer));
 ang1=angle(zerlow(k));
 sign=ang1/abs(ang1);

 zero(2*k-1)=r(1)*exp(j*sign*abs(ang(1)));
 zero(2*k)=r(2)*exp(j*sign*abs(ang(2)));
 if type==4 & abs(angg-pi)< 10^(-12)
 zero(2*k)=r(1)*exp(-j*sign*abs(ang(1)));
 end
 end
end
%---
% Scaling constant
%--
scale=scalow;
Op=pi*omegap;
tp=pi/2;
if type==1;
 a=-sin((tp-Op(1))/2)/sin((tp+Op(1))/2);
end
if type==2;
 a=cos((tp+Op(1))/2)/cos((tp-Op(1))/2);
end
if type==3;
 k=cot((Op(2)-Op(1))/2)*tan(tp/2);
 a=-(k-1)/(k+1);
end
if type==4;
 k=tan((Op(2)-Op(1))/2)*tan(tp/2);
 a=(1-k)/(k+1);
end
scale=scale*prod(ones(size(zerlow))-a*zerlow);
scale=scale/prod(ones(size(pollow))-a*pollow);

**

function pole = transsub(omegap,pollow,type)
% Given the digital filter type:
% type=1 for lowpass
% type=2 for highpass
% type=3 for bandpass
% type=4 for bandstop
% as well as the passband edges included in omegap,
% pole = transsub(omegap,pollow,type) converts the
% pole pollow of a lowpass filter with passband edg e
% at omega=pi/2 to the poles(s) of the correspondin g
% desired filter. In the lowpass and highpass case,
% for the pole in the lowpass case, there exists on e
% pole, whereas in the the bandpass and bandstop

% cases, there exist two poles.
% The zeros are treated in the same manner.

% Tapio Saramäki 20.11.1997; this program can be fo und in
% SUN's: ~ts/matlab/dsp/transsub.m
%---
tp=0.5*pi;
Op=pi*omegap;
%--
% LOWPASS CASE
% pole=(pollow+alpha)/(1+alpha*pollow)
% alpha is the constant in the lowpass-to-lowpass
% transformation
%---
if type==1
 alpha=sin((tp-Op(1))/2)/sin((tp+Op(1))/2);
 pole=(pollow+alpha)/(1+alpha*pollow);
end
%--
% HIGHPASS CASE
% pole=-(pollow+alpha)/(1+alpha*pollow)
% alpha is the constant in the lowpass-to-highpass
% transformation
%---
if type==2
 alpha=-cos((tp+Op(1))/2)/cos((tp-Op(1))/2);
 pole=-(pollow+alpha)/(1+alpha*pollow);
end
%--
% BANDPASS CASE
% The two poles are the roots of the equation
% (1+a0*pollow)z^2+a1*(1+pollow)z+(a0+pollow)=0,
% where a0=(k-1)/(k+1) and a1=-2*alpha*k/(k+1).
% alpha and k are the constants in the lowpass-to-
% bandpass transformation.
%---
if type==3
 alpha=cos((Op(2)+Op(1))/2)/cos((Op(2)-Op(1))/2);
 k=cot((Op(2)-Op(1))/2)*tan(tp/2);
 a1=-2*alpha*k/(k+1);a0=(k-1)/(k+1);
 c(1)=1+a0*pollow;
 c(2)=a1*(1+pollow);
 c(3)=a0+pollow;
 pole=roots(c);
end

%--
% BANDSTOP CASE
% The two poles are the roots of the equation
% (1-a0*pollow)z^2+a1*(1-pollow)z+(a0-pollow)=0,
% where a0=(1-k)/(k+1) and a1=-2*alpha/(k+1).
% alpha and k are the constants in the lowpass-to-
% bandstop transformation.
%---
if type==4
 alpha=cos((Op(2)+Op(1))/2)/cos((Op(2)-Op(1))/2);
 k=tan((Op(2)-Op(1))/2)*tan(tp/2);
 a1=-2*alpha/(k+1);a0=(1-k)/(k+1);
 c(1)=1-a0*pollow;
 c(2)=a1*(1-pollow);
 c(3)=a0-pollow;
 pole=roots(c);
end

**

