
Appendix E: Program for designing the filter consid ered
in transparencies 236 - 239 in the lecture notes

% Matlab m-file (firex1.m)
% This program shows how to design a filter that
% is a cascade of a fixed term H_fix(z) and
% and adjustable term H_adj(z) to meet in the
% minimiax sense the given criteria.
% As an example, we consider the case treated
% in the lecture notes of Section 7 in the FIR filt er
% design chapter.
%--
% Tapio Saramäki 1.2.96
% Can be found in SUN's: ~ts/matlab/dsp/firex1.m
%--
% Fixed filter part
%---
for k=1:6
 ome=.4*pi+(k-1)*pi*.05;
 zer(2*k-1)=exp(j*ome);
 zer(2*k)=exp(-j*ome);
end
hfix=poly(zer);
hfix=real(hfix);
%---
% Desired and weightingting function for the Remez
% algorithm
%---
f=[0 .15 .1501 .3 .4 .6 .601 1];
m=[1 1 1 1 0 0 0 0];
w=[5 1 100 10];
h=remez1(hfix,55,f,m,w);
%--
% The basic difference compared to the conventional
% case is that now we use hfix as a first argument
%--
% Plot the responses
%--
hove=conv(h,hfix);
[H,w]=zeroam(hove,.0,1.,8000);
figure(1)
impz(hove);title('Impulse response for the ovarall filter');
ylabel('Impulse response');xlabel('n in samples');
figure(2)
plot(w/pi,20*log10(H));
title('Amplitude response for the overall filter');

axis([0 1 -120 10]); grid;
ylabel('Amplitude in dB');
xlabel('Angular frequency omega/pi')
figure(3)
plot(w/pi,(H));
title('Passband details for the overall filter');
axis([0 .3 .99 1.01]); grid;
ylabel('Amplitude');
xlabel('Angular frequency omega/pi')

BASIC MODIFICATIONS REQUIRED BY remez.m; now remez1 .m
***f
unction [h,ha] = remez1(hfix,nfilt, ff, aa, wtx, ft ype)
%%
%%%%%%%%%%%%%%%%%%
% Diffrence number one: the first parameter is the impulse
% response of the fixed filter part
%%
%%%%%%%%%%%%%%%%%%%
%REMEZ Parks-McClellan optimal equiripple FIR filte r design.
% B=REMEZ(N,F,M) returns a length N+1 linear phase (real, symmetric
% coefficients) FIR filter which has the best appro ximation to the
% desired frequency response described by F and M i n the minimax
% sense. F is a vector of frequency band edges in p airs, in ascending
% order between 0 and 1. 1 corresponds to the Nyqui st frequency or
half
% the sampling frequency. M is a real vector the sa me size as F
% which specifies the desired magnitude of the freq uency response of
the
% resultant filter B. The desired response is the l ine connecting the
% points (F(k),M(k)) and (F(k+1),M(k+1)) for odd k; REMEZ treats the
% bands between F(k+1) and F(k+2) for odd k as "tra nsition bands" or
% "don't care" regions. Thus the desired magnitude is piecewise linear
% with transition bands. The maximum error is minim ized.
%
% B=REMEZ(N,F,M,W) uses the weights in W to weight the error. W has
one
% entry per band (so it is half the length of F and M) which tells
% REMEZ how much emphasis to put on minimizing the error in each
band
% relative to the other bands.
%
% B=REMEZ(N,F,M,'Hilbert') and B=REMEZ(N,F,M,W,'Hil bert') design
filters
% that have odd symmetry, that is, B(k) = -B(N+2-k) for k = 1, ..., N+1.
% A special case is a Hilbert transformer which has an approx.

magnitude
% of 1 across the entire band, e.g. B=REMEZ(30,[.1 .9],[1 1],'Hilbert').
%
% B=REMEZ(N,F,M,'differentiator') and
B=REMEZ(N,F,M,W,'differentiator')
% also design filters with odd symmetry, but with a special weighting
% scheme for non-zero magnitude bands. The weight i s assumed to be
equal
% to the inverse of frequency times the weight W. T hus the filter has a
% much better fit at low frequency than at high fre quency. This designs
% FIR differentiators.
%
% See also FIRLS, FIR1, FIR2, BUTTER, CHEBY1, CHEBY 2, ELLIP,
FREQZ and
% FILTER.

% Old help:
%
%REMEZ Parks-McClellan optimal equiripple FIR filte r design.
% B = REMEZ(N,F,M) designs an N'th order FIR digital filter,
% with the frequency response specified by vectors F and M,
% and returns the filter coefficients in length N+1 vector B.
% Vectors F and M specify the frequency and magnitu de
% breakpoints for the filter such that PLOT(F,M) wo uld show a
% plot of the desired frequency response. The eleme nts of M must
% appear in equal-valued pairs. The frequencies in F must be
% between 0.0 < F < 1.0, with 1.0 corresponding to half the
% sample rate. They must be in increasing order, st art with 0.0,
% and end with 1.0.
% B = REMEZ(N,F,M,W) uses vector W to specify weighting in each
% of the pass or stop bands in vectors F and M.
% B = REMEZ(N,F,M,FTYPE) or B = REMEZ(N,F,M,W,FTYPE), where
FTYPE
% is the string 'Hilbert' or 'differentiator', desi gns Hilbert
% transformers or differentiators, respectively. F or the Hilbert
% case, the lowest frequency should not be 0.
%
% See also FIR1, FIR2, BUTTER, CHEBY1, CHEBY2, YULE WALK,
FREQZ
% and FILTER.

% Author(s): L. Shure, 3-27-87
% L. Shure, 6-8-88, revised
% T. Krauss, 3-17-93, fixed hilbert bug in m-fi le version
% Copyright (c) 1984-94 by The MathWorks, Inc.
% $Revision: 1.14 $ $Date: 1994/01/25 17:59:43 $

% References:
% [1] "Programs for Digital Signal Processing", I EEE Press
% John Wiley & Sons, 1979, pg. 5.1-1.
% [2] "Selected Papers in Digital Signal Processi ng, II",
% IEEE Press, 1976, pg. 97.

% Note: Frequency transitions much faster than 0.1 can cause large
% amounts of ripple in the response.

lgrid = 16; % Grid density (should be at least 16)
nfilt = nfilt + 1;
%%
%%%%%%%%%%%%%%%%%
%--
% Difference number two: instead of nargin, we use
% nargin1=nargin-1, since the number of input param eters
% has increased by one
%---
nargin1=nargin-1;
%---
%%
%%%%%%%%%%%%%%%%
if (nargin1 < 3 | nargin1 > 5)
 error('Incorrect number of input arguments.')
end
if nfilt < 4
 error('Filter order must be 3 or more.')
end
if nargin1 == 4
 if isstr(wtx)
 ftype = wtx;
 wtx = ones(fix((1+max(size(aa)))/2),1);
 else
 ftype = 'f';
 end
end
if nargin1 < 4
 ftype = 'f';
 wtx = ones(fix((1+max(size(aa)))/2),1);
end
if rem(length(ff),2)
 error('Frequencies must be specified in bands.');
end
if any((ff < 0) | (ff > 1))

 error('Frequencies must lie between 0 and 1.')
end
daa = diff(aa);
%if abs(any(daa(1:2:length(daa)))) > eps
% error('Bands must be specified with constant magn itudes.')
 %nomex=1; % can't call mex-file version
% nomex=0;
%else
% nomex=0;
%end

clear daa;

if length(ftype)==0, ftype = 'f'; end

if ftype(1)=='m'
 nomex=1; if length(ftype)==1, ftype = 'f'; else f type(1)=[]; end
else
 nomex=0;
end
if ftype(1) == 'h' | ftype(1) == 'H'
 jtype = 3; % Hilbert transformer
elseif ftype(1) == 'd' | ftype(1) == 'D'
 jtype = 2; % Differentiator
else
 jtype = 1; % Regular filter
end
if nargin > 3 & (max(size(wtx)) ~= fix((1+max(size(aa)))/2))
 error('There should be one weight per band.')
end
ha = 1;

ff = ff(:)';
aa = aa(:)';
wtx = wtx(:)';
[mf,nf] = size(ff);
[ma,na] = size(aa);
if na ~= nf
 error('Frequency and amplitude vectors must be the same length.')
end

nbands = nf/2;
jb = 2*nbands;
if jb ~= nf
 error('The number of frequency points must be even .')
end

% The following constraint is not necessary:
% if jtype ~= 3 & (abs(ff(1)) > eps | abs(ff(jb) - 1) > eps)
% error('The first frequency must be 0 and the last 1.')
% end

% Not necessary: allow filter designer to shoot him /herself in the foot
% if jtype == 3 & ff(1) == 0
% error('The first frequency for a Hilbert transfor mer must not be 0.')
% end

% interpolate breakpoints onto large grid
edge = ff;
fx = aa(2:2:jb);

df = diff(ff);
if (any(df < 0))
 error('Frequencies must be non-decreasing.')
end

% Prevent discontinuities in desired function
for k=2:2:jb-2
 if edge(k) == edge(k+1)
 error('Adjacent bands not allowed.')
 end
end

edge = edge/2;
cmptr = computer;
%%
%%%%%%%%%%%%%%%%%
%--
% Difference number three: we use use remezfff, ins tead
% of remezf. This forces the routine ti use matlab code,
% instead of the Mex-file.
%---
%%
%%%%%%%%%%%%%%%%
% if (exist('remezf') == 3) & (nfilt < 128) & ~nome x
if (exist('remezfff') == 3) & ~nomex
 % Use MEX-file
 % disp('MEX-file version')
 %h = eval('remezf(nfilt,edge,fx,wtx,jtype)');
 h = eval('remezfff(nfilt,edge,aa,wtx,jtype)'); % for new remezf - TPK
 h = [h; sign(.5-(jtype ~= 1))*h(max(size(h))-rem(n filt,2):-1:1)].';
 h = h(max(size(h)):-1:1);

% put in this code since the mex-file sometimes ret urns nans - in which
% case we want to use the m-code which produces cor rect answers
 if ~any(isnan(h))
 return
 else
 h = [];
 end
end
% disp('M-file version')
neg = 1 - (jtype == 1); % neg == 1 ==> antisymmet ric imp resp,
 % neg == 0 ==> symmetric imp resp
nodd = rem(nfilt,2); % nodd == 1 ==> filter le ngth is odd
 % nodd == 0 ==> filter le ngth is even
nfcns = fix(nfilt/2);
if nodd == 1 & neg == 0
 nfcns = nfcns + 1;
end
grid(1) = edge(1);
delf = .5/(lgrid*nfcns);
if neg ~= 0 & edge(1) < delf
 grid(1) = delf;
end
j = 1;
l = 1;
while (l+1)/2 <= nbands
 fup = edge(l+1);
 grid = [grid (grid(j)+delf):delf:(fup+delf)];
 jend = max(size(grid));
 grid(jend-1) = fup;
 sel = j:jend-1;
% if (jtype==2), % "differentiator"
% des(sel) = fx(lband)*((grid(sel)-1)*(jtype == 2) + 1);
% else
% slope=(aa(l+1)-aa(l))/(edge(l+1)-edge(l)) ;
% des(sel) = polyval([slope aa(l)-slope*edge(l)],g rid(sel));
% end
 % desired magnitude is line connecting aa(l) to aa (l+1)
 if edge(l+1)~=edge(l) %
 slope=(aa(l+1)-aa(l))/(edge(l+1)-edge(l));
 des(sel) = polyval([slope aa(l)-slope*edge(l)],grid(sel));
 else % zero bandwidth band
 des(sel) = (aa(l)+aa(l+1))/2;
 end
 wt(sel) = wtx((l+1)/2)./ ...
 (1 +((jtype == 2) & aa(l+1) >= .0001)*(grid (sel) - 1));
 j = jend;

 l = l + 2;
 if (l+1)/2 <= nbands
 grid(j) = edge(l);
 end
end
ngrid = j - 1;
if neg == nodd & grid(ngrid) > .5-delf
 ngrid = ngrid - 1;
end

%clf reset, plot(grid(1:ngrid),des(1:ngrid),'o',gri d(1:ngrid),wt(1:ngrid),'r*');

if neg <= 0
 if nodd ~= 1
 des = des(1:ngrid)./cos(pi*grid(1:ngrid));
 wt = wt(1:ngrid).*cos(pi*grid(1:ngrid));
 end
elseif nodd ~= 1
 des = des(1:ngrid)./sin(pi*grid(1:ngrid));
 wt = wt(1:ngrid).*sin(pi*grid(1:ngrid));
else
 des = des(1:ngrid)./sin(2*pi*grid(1:ngrid));
 wt = wt(1:ngrid).*sin(2*pi*grid(1:ngrid));
end
%%
%%%%%%%%%%%%%%%%%%%%%%%
%---
% Difference number four: change the desired and we ighting
% functions using zeroamfi to be desribed separatel y
%---
[hfixres,w]=zeroamfi(hfix,2*pi*grid(1:ngrid));
wt=wt.*hfixres;
des=des./hfixres;
%--
***f
unction [A,w]=zeroamfi(h,w)
%evaluates the amplitude response
%of a linear phase FIR filter at points
%given by vector w
%-----------------------------------
%Tapio Saramäki 17.11.1997
%---------------------------------
N=length(h);
NN=floor((N-1)/2);
iodd=0;
if 2*round(N/2)==N iodd=1; end

isy=1;
sum1=sum(h(1:NN));sum2=sum(h(N+1-NN:N));
if abs(sum2-sum1)/abs(sum1) < .5 isy=0; end
if iodd==0 & isy==0 itype=1;end
if iodd==1 & isy==0 itype=2;end
if iodd==0 & isy==1 itype=3;end
if iodd==1 & isy==1 itype=4;end
L=floor((N+2)/2);
A=zeros(size(w));
if itype==1 A=A+h(L);end
for k=1:L-1
 if itype==1
 A=A+2*h(L-k)*cos(k*w);end
 if itype==2
 A=A+2*h(L-k)*cos((k-.5)*w);end
 if itype==3
 A=A+2*h(L-k)*sin(k*w);end
 if itype==4
 A=A+2*h(L-k)*sin((k-.5)*w);end
end
A=abs(A);
%--------------------------------------
% all values of A must be greater than
% 10^(-20)
%--------------------------------------
for k=1:length(A)
 if A(k)< 10^(-20); A(k)=10^(-20); end
end
%--
