Appendix E: Program for designing the filter consid ered
in transparencies 236 - 239 in the lecture notes

*kkkkkkkkkkkkkhkkkkkhkkkkhkhhkkkhhhhkkkhhhkhkhkhkhhhkkhhhhkhkhhhkkhkhhkhkhhhhkhkhhhhkkhhhhhkhhhhkhkhhhhkkhhhkkhkhhhkhkikhix
% Matlab m-file (firex1.m)

% This program shows how to design a filter that

% is a cascade of a fixed term H_fix(z) and

% and adjustable term H_adj(z) to meet in the

% minimiax sense the given criteria.

% As an example, we consider the case treated

% in the lecture notes of Section 7 in the FIR filt er

% design chapter.

% Tapio Saramaki 1.2.96
% Can be found in SUN's: ~ts/matlab/dsp/firex1.m

for k=1:6
ome=.4*pi+(k-1)*pi*.05;
zer(2*k-1)=exp(j*ome);
zer(2*k)=exp(-j*ome);

end

hfix=poly(zer);

hfix=real(hfix);

% Desired and weightingting function for the Remez
% algorithm

f=[0 .15 .1501 .3 .4 .6 .601 1];
m=[11110000];

w=[5 1 100 10J;
h=remez1(hfix,55,f,m,w);

% The basic difference compared to the conventional
% case is that now we use hfix as a first argument

hove=conv(h,hfix);

[H,w]=zeroam(hove,.0,1.,8000);

figure(1)

impz(hove);title('Impulse response for the ovarall filter");
ylabel('Impulse response’);xlabel('n in samples’);

figure(2)

plot(w/pi,20*log10(H));

title(Amplitude response for the overall filter’);

axis([0 1 -120 10)); grid;

ylabel('Amplitude in dB");

xlabel('Angular frequency omega/pi’)
figure(3)

plot(w/pi,(H));

title('"Passband details for the overall filter);
axis([0 .3 .99 1.01)); grid;
ylabel('Amplitude");

xlabel('Angular frequency omega/pi’)

kkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkhkkhkkhhkkhkkkkkkkhkkkkkkkkhkkhkkkhkhkkkkhkkhkkhkkhkkkhkkkkkkkkkkkkkkkkkx

BASIC MODIFICATIONS REQUIRED BY remez.m; now remez1l .m
***f
unction [h,ha] = remez1(hfix,nfilt, ff, aa, wtx, ft ype)

%%%%%%%% %% % %% %% %% %% %% %% %% %% %% %% % %% %% %% %%
%%%%%%%% %% %% %% %% %%

% Diffrence number one: the first parameter is the impulse

% response of the fixed filter part

%%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %%
%%%%%%%% %% %% % %% %% %%

%REMEZ Parks-McClellan optimal equiripple FIR filte r design.

% B=REMEZ(N,F,M) returns a length N+1 linear phase (real, symmetric
% coefficients) FIR filter which has the best appro ximation to the

% desired frequency response described by Fand Mi n the minimax

% sense. F is a vector of frequency band edges inp airs, in ascending

% order between 0 and 1. 1 corresponds to the Nyqui st frequency or
half

% the sampling frequency. M is a real vector the sa me size as F

% which specifies the desired magnitude of the freq uency response of
the

% resultant filter B. The desired response isthe| ine connecting the

% points (F(k),M(k)) and (F(k+1),M(k+1)) for odd k; REMEZ treats the

% bands between F(k+1) and F(k+2) for odd k as "tra nsition bands" or

% "don't care" regions. Thus the desired magnitude is piecewise linear
% with transition bands. The maximum error is minim ized.
%

% B=REMEZ(N,F,M,W) uses the weights in W to weight the error. W has
one

% entry per band (so it is half the length of F and M) which tells

% REMEZ how much emphasis to put on minimizing the error in each
band

% relative to the other bands.

%

% B=REMEZ(N,F,M,'Hilbert') and B=EREMEZ(N,F,M,W,'Hil bert’) design
filters

% that have odd symmetry, that is, B(k) = -B(N+2-k) fork =1, ..., N+1.
% A special case is a Hilbert transformer which has an approx.

magnitude

% of 1 across the entire band, e.g. B=EREMEZ(30,[.1 .9],[1 1],'Hilbert’).

%

% B=REMEZ(N,F,M, differentiator’) and
B=REMEZ(N,F,M,W,'differentiator’)

% also design filters with odd symmetry, but with a special weighting
% scheme for non-zero magnitude bands. The weighti s assumed to be
equal

% to the inverse of frequency times the weight W. T hus the filter has a
% much better fit at low frequency than at high fre ~ quency. This designs
% FIR differentiators.

%

% See also FIRLS, FIR1, FIR2, BUTTER, CHEBY1, CHEBY 2, ELLIP,
FREQZ and

% FILTER.

% OlId help:

%

%REMEZ Parks-McClellan optimal equiripple FIR filte r design.

% B = REMEZ(N,F,M) designs an N'th order FIR digital filter,

% with the frequency response specified by vectors F and M,

% and returns the filter coefficients in length N+1 vector B.

% Vectors F and M specify the frequency and magnitu de

% breakpoints for the filter such that PLOT(F,M) wo uld show a

% plot of the desired frequency response. The eleme nts of M must
% appear in equal-valued pairs. The frequencies in F must be

% between 0.0 < F < 1.0, with 1.0 corresponding to half the

% sample rate. They must be in increasing order, st art with 0.0,

% and end with 1.0.

% B = REMEZ(N,F,M,W) uses vector W to specify weighting in each
% of the pass or stop bands in vectors F and M.

% B = REMEZ(N,F,M,FTYPE) or B = REMEZ(N,F,M,W,FTYPE), where
FTYPE

% is the string 'Hilbert' or 'differentiator’, desi gns Hilbert

% transformers or differentiators, respectively. F or the Hilbert

% case, the lowest frequency should not be 0.

%

% See also FIR1, FIR2, BUTTER, CHEBY1, CHEBY2, YULE WALK,
FREQZ

% and FILTER.

% Author(s): L. Shure, 3-27-87

% L. Shure, 6-8-88, revised

% T. Krauss, 3-17-93, fixed hilbert bug in m-fi le version
% Copyright (c) 1984-94 by The MathWorks, Inc.

% $Revision: 1.14 $ $Date: 1994/01/25 17:59:43 $

% References:

% [1] "Programs for Digital Signal Processing", | EEE Press
% John Wiley & Sons, 1979, pg. 5.1-1.

% [2] "Selected Papers in Digital Signal Processi ng, 1",

% IEEE Press, 1976, pg. 97.

% Note: Frequency transitions much faster than 0.1 can cause large
% amounts of ripple in the response.

Igrid = 16; % Grid density (should be at least 16)

nfilt = nfilt + 1;

%%%%%%%% %% %% % %% %% %% %% %% %% %% %% % %% %% %% %% %%
%%%%%%%% %% % %% %% %%

% Difference number two: instead of nargin, we use
% narginl=nargin-1, since the number of input param eters
% has increased by one

%%%% %% %% %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %%
%%%%%%%% %% %% %% %%
if (narginl < 3 | narginl > 5)

error(‘Incorrect number of input arguments.")

end
if nfilt < 4
error('Filter order must be 3 or more.")
end
if narginl ==
if isstr(wtx)
ftype = wtx;
wtx = ones(fix((1+max(size(aa)))/2),1);
else
ftype = 'f;
end
end
if narginl < 4
ftype = 'f;
wtx = ones(fix((1+max(size(aa)))/2),1);
end

if rem(length(ff),2)

error(‘Frequencies must be specified in bands.");
end
if any((ff < 0) | (ff > 1))

error('Frequencies must lie between 0 and 1.")

end

daa = diff(aa);

%if abs(any(daa(1:2:length(daa)))) > eps

% error('Bands must be specified with constant magn itudes.")
%nomex=1; % can't call mex-file version

% nomex=0;

%else

% nomex=0;

%end

clear daa;

if length(ftype)==0, ftype ='f'; end

if ftype(1)=="m’

nomex=1; if length(ftype)==1, ftype ='f'; else f type(1)=[]; end
else

nomex=0;
end

if ftype(1) =="'h"| ftype(1) =="H’
jtype =3; % Hilbert transformer
elseif ftype(1) =="d' | ftype(1) =='D’
jtype = 2; % Differentiator
else
jtype =1; % Regular filter
end
if nargin > 3 & (max(size(wtx)) ~= fix((L+max(size(aa)))/2))
error('There should be one weight per band.")
end
ha = 1;

ff = ff(2)";
aa =aa();
wix = wix(:)"
[mf,nf] = size(ff);
[ma,na] = size(aa);
if na ~= nf
error('Frequency and amplitude vectors must be the same length.")
end

nbands = nf/2;
jb = 2*nbands;
if jo ~= nf
error('The number of frequency points must be even)
end

% The following constraint is not necessary:

% if jtype ~= 3 & (abs(ff(1)) > eps | abs(ff(jb) - 1) > eps)

% error(‘The first frequency must be 0 and the last 1.9
% end

% Not necessary: allow filter designer to shoot him /herself in the foot

% if jtype == 3 & ff(1) ==

% error(‘The first frequency for a Hilbert transfor mer must not be 0.")
% end

% interpolate breakpoints onto large grid
edge =ff;
fx = aa(2:2:jb);

df = diff(ff);
if (any(df < 0))

error('Frequencies must be non-decreasing.")
end

% Prevent discontinuities in desired function
for k=2:2:jb-2
if edge(k) == edge(k+1)
error('‘Adjacent bands not allowed.")
end
end

edge = edge/2;

cmptr = computer;

%%%%% %% %% %% % %% %% %% %% %% % %% % %% % %% % %% %% % %% %
%%% %% %% %% %% % %% % %%

% Difference number three: we use use remezfff, ins tead
% of remezf. This forces the routine ti use matlab code,
% instead of the Mex-file.

%%%% %% %% %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %%
%%%%%% %% %% %% %% %%
% if (exist('remezf') == 3) & (nfilt < 128) & ~nome x
if (exist('remezfff') == 3) & ~nomex
% Use MEX-file
% disp('MEX-file version')
%h = eval(‘remezf(nfilt,edge,fx,wtx,jtype)");
h = eval('remezfff(nfilt,edge,aa,wtx,jtype)’); % for new remezf - TPK
h = [h; sign(.5-(jtype ~= 1))*h(max(size(h))-rem(n filt,2):-1:1)].";
h = h(max(size(h)):-1:1);

% put in this code since the mex-file sometimes ret urns nans - in which
% case we want to use the m-code which produces cor rect answers
if ~any(isnan(h))

return
else
h=;
end
end
% disp('M-file version’)
neg =1 - (jtype == 1); % neg == 1 ==> antisymmet ric imp resp,

% neg == 0 ==> symmetric imp resp

nodd = rem(nfilt,2); % nodd == 1 ==>filter le ngth is odd
% nodd == 0 ==> filter le ngth is even

nfcns = fix(nfilt/2);

if nodd == 1 & neg ==

nfcns = nfcns + 1;

end

grid(1) = edge(1);

delf = .5/(Igrid*nfcns);

if neg ~= 0 & edge(1) < delf

grid(1) = delf;
end
=1
l=1;

while (I+1)/2 <= nbands
fup = edge(l+1);
grid = [grid (grid(j)+delf):delf:(fup+delf)];
jend = max(size(grid));
grid(jend-1) = fup;
sel =j;jend-1;
% if (jtype==2), % "differentiator"

% des(sel) = fx(Iband)*((grid(sel)-1)*(jtype ==2) + 1);

% else

% slope=(aa(l+1)-aa(l))/(edge(l+1)-edge(l)) ;

% des(sel) = polyval([slope aa(l)-slope*edge(D)],g rid(sel));
% end

% desired magnitude is line connecting aa(l) toaa (1+1)
if edge(l+1)~=edge(l) %
slope=(aa(l+1)-aa(l))/(edge(l+1)-edge(l));
des(sel) = polyval([slope aa(l)-slope*edge(l)],grid(sel));
else % zero bandwidth band
des(sel) = (aa()+aa(l+1))/2;
end
wt(sel) = wtx((1+1)/2)./ ...
(1 +((jtype == 2) & aa(l+1) >=.0001)*(grid (sel) - 1));
j=lJend;

[=1+2;
if (I+1)/2 <= nbands
grid(j) = edge(l);

end

end

ngrid =j - 1;

if neg == nodd & grid(ngrid) > .5-delf
ngrid = ngrid - 1;

end

%clf reset, plot(grid(1:ngrid),des(1:ngrid),'o’,gri d(1:ngrid),wt(1:ngrid),'r*");

if neg<=0
if nodd ~=1
des = des(1:ngrid)./cos(pi*grid(1:ngrid));
wt = wt(1:ngrid).*cos(pi*grid(1:ngrid));
end

elseif nodd ~= 1
des = des(1:ngrid)./sin(pi*grid(1:ngrid));
wt = wt(1:ngrid).*sin(pi*grid(1:ngrid));
else
des = des(1:ngrid)./sin(2*pi*grid(1:ngrid));
wt = wt(1:ngrid).*sin(2*pi*grid(1:ngrid));
end
%%%% %% %% %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %%
%%%%%%%% %% %% %% %% %% % %% %%

% Difference number four: change the desired and we ighting
% functions using zeroamfi to be desribed separatel y

[hfixres,w]=zeroamfi(hfix,2*pi*grid(1:ngrid));
wt=wt.*hfixres;
des=des./hfixres;

***f

unction [A,w]=zeroamfi(h,w)
%evaluates the amplitude response
%of a linear phase FIR filter at points
%given by vector w

N=length(h);

NN=floor((N-1)/2);

iodd=0;

if 2*round(N/2)==N iodd=1; end

isy=1;
suml=sum(h(1:NN));sum2=sum(h(N+1-NN:N));
if abs(sum2-sum1l)/abs(suml) < .5 isy=0; end
if iodd==0 & isy==0 itype=1;end
if iodd==1 & isy==0 itype=2;end
if iodd==0 & isy==1 itype=3;end
if iodd==1 & isy==1 itype=4;end
L=floor((N+2)/2);
A=zeros(size(w));
if itype==1 A=A+h(L);end
for k=1:L-1

if itype==1

A=A+2*h(L-k)*cos(k*w);end

if itype==2

A=A+2*h(L-k)*cos((k-.5)*w);end

if itype==

A=A+2*h(L-k)*sin(k*w);end

if itype==

A=A+2*h(L-k)*sin((k-.5)*w);end
end

% all values of A must be greater than
% 107(-20)

for k=1:length(A)
if A(k)< 107(-20); A(k)=107(-20); end
end

kkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkhkkkhkhkkkkkhkkhkkkhhkkhkkkkkkkkhkkkkkkkkhkkhkkkhkhkkkkkkkhkkhkkhkkkkkkkkkkkkkkkkkkkx

