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In a free-particle approximation we can write for the CM kinetic
energy

E,. = h*K?/2M. (6.70)
The relative motion is hydrogen atom like with quantum num-
bers n=1,2,3,... and /=0,1,2,..,n-1. The continuum

states describe free electron and hole under Coulomb attrac-
tion.

Fig. 6.20:
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6.3.1. Exciton Effect at M, Critical Points

Let us assume spherical free-electron like conduction band for
electrons

E.(k,) = E, + 7%/ 2m, (6.71)

and

The two-particle exciton wavefunction can be written in terms
of Bloch functions of electron and holes, g, (r.) and y, (ry),
as

W(r,, ry) = 2k, C(Ke, Kp) ¥y (re) Yy, (1) (6.73)

but "better" with localized Wannier functions ag (r.) and
ag,(Iy), @s

lIl(re, I’h) = Zke,kh (I)(RG’ Rh) aRe(l'e) aRh(l'h), (674)

where ®(R., R,) is the exciton envelope wavefunction. This
can be separated as

DR, Ry) = p(R) ¢(r),

where (R) is the CM part and ¢(r) is the relative motion part,
where

R =mR+mR)/M and r = R.-R;. (6.76)
The corresponding Schrédinger equations are
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Total energy is a sum of the two above eigenenergies, By combining all of the above we obtain
E = Ex+E,. Pnm®R, 1) = N2 exp(iK-R) R,(1) Y ,,,(0.9) (6.82)
and
Ex, = B, + ”’K?/2M - R*/n’. (6.83)

The first one of these is the "free-patrticle" kinetic energy (6.70)

—_ 3212
Ex(K) = 7°K”/2M (6.78a) In real semiconductors:

of the "free-particle" wavefunction
Pr(R) = N2 exp(iK-R). (6.78b)

Following the model of hydrogen atom we can write for the
relative motion

E.(n) = E () —-R*/n? (6.80)

where E.(«) is minimum energy of the continuum states, the
"zero energy" for Ex(K). As this is the lowest electron excita-
tion energy from valence to conduction band without forming a
bound exciton, E(x) =E,. R* is the excitonic Rydberg
constant, defined as
2 2

R* = _é(4rfeos) :2 - r:szRH’ (6.81)
where R;=12Ha=1Ry=13.6 eV is the hydrogen atom
Rydberg constant and m is the free electron mass. Note, that

pfl = me’1 + mh’l.

The relative motion wavefunctions are, of course, the hydro-
genic ones

¢n€m(r) = Rné(r) Yém(e’(p)a (679)

where r = (r,0,9), R,/(r) are the associate Laguerre polynomi-
als and Y,,(6,9) are the spherical harmonics.
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6.4. Phonon contribution to ¢

Consider next the phonon polarization contribution to the
complex dielectric function €. Let us model "optically active"
phonons by oscillation of a collection of identical charged
simple harmonic oscillators (SHO). Assume isotropically and
uniformly distributed SHOs of density N, with mass and charge
M and Q, respectively.

By denoting the displacement vector of SHO by u the equation
of free motion becomes

Mii = -Ku or ii+m, u =0,

where w,” = K/M is the (square root of) resonance or natural
frequency.

Transverse Phonons, TO

Now, consider the phonon response to the (transverse)
electric field of plane wave form

Ert) = E, expli(k-r — wt)]. (6.97)
The equation of motion becomes then
Mii = -Ku + QE. (6.98)
The steady-state solution to this is
u(r,t) = u, explik-r — wt)],

whose substitution to (6.98) ii+ w;"u = Q/M E leads to

The macroscopic polarization
P =NQu
gives the electric displacement
D =¢E+P = ¢ E

or in scalar form
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(6.101)

(6.102)
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If we include the low frequency contribution of electrons,
€ = Eq0(0), the Eq. (6.103) takes form

g(w) = &, + NQ?/ [g,M (wy—w?)], (6.105)
provided that m << E,/7.

Longitudinal Phonons, LO

To allow longitudinal polarization without corresponding exter-
nal field requires that e(w;)=0. From (6.105) we obtain
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