
In a free-particle approximation we can write for the CM kinetic
energy

Eke  =  h2K2 / 2M. (6.70)

The relative motion is hydrogen atom like with quantum num-
bers  n = 1, 2, 3, ...  and  l = 0, 1, 2, ..., n–1.  The continuum
states describe free electron and hole under Coulomb attrac-
tion.

Fig. 6.20:
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6.3.1. Exciton Effect at M0 Critical Points

Let us assume spherical free-electron like conduction band for
electrons

Ee(ke)  =  Eg + h2ke
2 / 2me (6.71)

and
Eh(kh)  =  Eg + h2kh

2 / 2mh . (6.72)

The two-particle exciton wavefunction can be written in terms
of Bloch functions of electron and holes, ψke

(re)  and  ψkh
(rh),

as

        Ψ(re, rh)  =  Σke,kh C(ke, kh) ψke
(re) ψkh

(rh) (6.73)

but "better" with localized Wannier functions  aRe
(re)  and

aRh
(rh), as

        Ψ(re, rh)  =  Σke,kh Φ(Re, Rh) aRe
(re) aRh

(rh), (6.74)

where Φ(Re, Rh) is the exciton envelope wavefunction.  This
can be separated as

Φ(Re, Rh)  =  ψ(R) φ(r),

where ψ(R) is the CM part and φ(r) is the relative motion part,
where

R  =  (me Re + mh Rh) / M     and      r  =  Re – Rh . (6.76)

The corresponding Schrödinger equations are
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Total energy is a sum of the two above eigenenergies,

E  =  ER + Er .

The first one of these is the "free-particle" kinetic energy (6.70)

     ER(K)  =  h2K2 / 2M (6.78a)

of the "free-particle" wavefunction

 ψK(R)  =  N–1/2 exp(iK·R). (6.78b)

Following the model of hydrogen atom we can write for the
relative motion

  Er(n)  =  Er(∞) – R* / n2, (6.80)

where Er(∞) is minimum energy of the continuum states, the
"zero energy" for ER(K).  As this is the lowest electron excita-
tion energy from valence to conduction band without forming a
bound exciton, Er(∞) = Eg .   R* is the excitonic Rydberg
constant, defined as

(6.81)

where RH = 1/2 Ha = 1 Ry ≈ 13.6 eV is the hydrogen atom
Rydberg constant and m is the free electron mass.  Note, that
µ–1  =  me

–1 + mh
–1.

The relative motion wavefunctions are, of course, the hydro-
genic ones

φnlm(r)  =  Rnl(r) Ylm(θ,ϕ), (6.79)

where  r = (r,θ,ϕ),  Rnl(r) are the associate Laguerre polynomi-
als and Ylm(θ,ϕ) are the spherical harmonics.
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R*  =  – 1
2

 e2

4πεoε
2 
µ
h2

  =  
µ

mε2
 RH,

By combining all of the above we obtain

     ΦKnlm(R, r)  =  N–1/2 exp(iK·R) Rnl(r) Ylm(θ,ϕ) (6.82)
and

             EKn  =  Eg  +  h2K2 / 2M  –  R* / n2. (6.83)

In real semiconductors:
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6.4. Phonon contribution to εεεε
Consider next the phonon polarization contribution to the
complex dielectric function ε.  Let us model "optically active"
phonons  by oscillation of a collection of identical charged
simple harmonic oscillators (SHO).  Assume isotropically and
uniformly distributed SHOs of density N, with mass and charge
M and Q, respectively.

By denoting the displacement vector of SHO by u the equation
of free motion becomes

      M ü  =  – K u       or          ü + ω0
2 u  =  0,

where ω0
2 = K/M is the (square root of) resonance or natural

frequency.

Transverse Phonons, TO

Now, consider the phonon response to the (transverse)
electric field of plane wave form

E(r,t)  =  E0 exp[i(k·r – ωt)]. (6.97)

The equation of motion becomes then

   M ü  =  – K u  +  Q E. (6.98)

The steady-state solution to this is

u(r,t)  =  u0 exp[i(k·r – ωt)],

whose substitution to (6.98)  ü + ωT
2 u  =  Q/M E  leads to
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The macroscopic polarization

P  =  NQ u (6.101)

gives the electric displacement

 D  =  ε0 E + P  =  ε0ε E (6.102)

or in scalar form
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If we include the low frequency contribution of electrons,
ε∞ = εelectr(0), the Eq. (6.103) takes form

            ε(ω)  =  ε∞  +  NQ2 / [ε0M (ωT
2–ω2)], (6.105)

provided that ω << Eg/h.

Longitudinal Phonons, LO

To allow longitudinal polarization without corresponding exter-
nal field requires that  ε(ωL) = 0.  From (6.105) we obtain
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