
6. Optical Properties I

Concentration and mobility of charge carriers determine the
electrical properties of semiconductors.  Similarly, the energy
distribution of charge carriers and transition dynamics are
behind the optical properties.

The latter can be studied by optical spectroscopy of semicon-
ductors, which provides information about:

• band structure
• defects
• excited states (e.g. exciton) and transitions
• phonons

The specific optical prpeties of semiconductors can be used in
applications and technology, like:

• lasers
• LEDs
• photodetectors
• solar cells

The lowest order (and
strongest) light–matter
interactions are reflec-
tion and absorption.
Other macroscopic inter-
actions are scattering,
photoluminescence and
transmission.

Fig. 6.1. Light–matter
interactions.
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Absorption excites phonons (heat) or electrons, the latter pos-
sibly leading to photoluminescence.  Scattering is due to
inhomogeneities of the medium. like

• acoustic phonons (Brillouin scattering)
• optical phonons or plasmons (Raman scattering)

Scattering involves two processes, and therefore, it is a sec-
ond order process.

6.1. Macroscopic Electrodynamics
Static electric field E polarizes an isotropic medium by

P  =  χ ε0 E  =  (ε  – 1) ε0 E,

where χ is the electric susceptibility and ε the dielectric "con-
stant" of the material.

In a more general case

                 E(r,t)  =  E(q,ω) sin(q·r – ωt)

we write for the components of polarization P(r,t)

          Pi(r',t')  =  Σj = x,y,z ε0  ∫ χij(r,r',t,t') Ej(r,t) dr dt, (6.1)

where χij(r,r',t,t') are components of the second rank suscepti-
bility tensor χχχχ.

Averaging over the "microscopic" structure, the crystal unit
cell, i.e. neglecting the local field corrections, makes the
space homogeneous.  In the absence of time-dependent per-
turbations the time is homogeneous, too, and (6.1) simplifies
to

        Pi(r',t')  =  Σj = x,y,z ε0  ∫ χij(|r–r'|,|t–t'|) Ej(r,t) dr dt. (6.2)
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Note!  With sc. photonic crystals one aims at producing strong
local field effects, and in such case, (6.2) does not hold.

Using the convolution theorem or Fourier transform

         Fr,t  A(r,t)  =  A(q,ω),  where  A = P, χχχχ, E

we obtain

Pi(q,ω)  =  Σj ε0 χij(q,ω) Ej(q,ω) (6.3)

for the reciprocal space – frequency domain expression of po-
larizability.

Let us define the dielectric tensor εεεε(q,ω) = {εij(q,ω)} by

Di(q,ω)  =  Σj ε0 εij(q,ω) Ej(q,ω), (6.4)

where for the vector D, the electric dispalcement,

F –1 D(q,ω)  =  D(r,t)  =  ε0 E(r,t) + P(r,t).

Thus, it follows for the dielectric tensor components

   εij(q,ω)  =  1 + χij(q,ω), (6.5)

which is a complex function and can be decomposed to real
and imaginary parts as

εεεε(q,ω)  =  εεεεr(q,ω) + εεεεi(q,ω).

As εεεε(r,t) is real, it can be shown that

     εεεε(–q,ω)  =  εεεε*(q,ω) (6.6)
and

     εij(q,ω)  =  εji(–q,ω). (6.7)

These are Onsager relations.
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In most cases the wavelength of light is much larger than the
crystal lattice constant or other relevant atomic scale struc-
tures.  Therefore, we approximate (for the moment)

q  =  2π / λ  ≈  0

assume independence of q and denote

εεεε(q,ω)  =  εεεε(0,ω).

Then,

          Fr
–1 εεεε(0,ω)  =  εεεε(r,ω)  =  δ(r) εεεε(ω)

and the response to the field E(r) is local:

         Pi(r,t')  =  Σj ε0  ∫ χij(r, |t–t'|) Ej(r,t) dt.

In the general case it is nonlocal and variation of εεεε with q is
called spatial dispersion, which is usually small  ≈ 10–5 εεεε.

The complex dielectric tensor εεεε (or the electric susceptibility χχχχ
or the polarizability) gives all of the linear optical properties of
the medium.  (Higher order nonlinearities follow the same way
from the hyperpolarizabilities)

In an isotropic medium, like in cubic crystals

   εij(ω)  =  δij ε(ω),

where the scalar ε(ω) is what is usually called the complex die-
lectric function.  This is the case here, too, unless otherwise
stated.
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Wurzite structures (e.g. CdS and ZnO) are not cubic, and
therefore, they contain one optical axis are called uniaxial.
Along the c-axis of hexagonal symmetry lattice light propaga-
tion may be different from that of the perpendicular direction.

Lower symmetry crystals like orthorhombic GeS and GeSe
may contain two optical axes, and therefore, are called biaxial.

Velocity of light of both
polarizations is the same
in the direction of optical
axis.  In other directions
this may not be the case
resulting in birefringence
(kahtaistaittavuus).

The complex refractice
index ñ and complex die-
lectric function ε are re-
lated by

        ε(ω)  =  ( ñ(ω) )2. (6.11)

Its real part n(ω) = Re( ñ(ω) ) is called simply as refractive
index (taitekerroin) and the imaginary part κ(ω) = Im( ñ(ω) ) is
extinction coefficient.

The normal-incidence
reflection coefficient or
reflectance (heijastusker-
roin) is

R  =  | (ñ – 1) / (ñ + 1) |.   (6.8)
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Correspondigly, the absorption coefficient (absorptiovakio)

α  =  4πκ / λ0, (6.11)

where λ0 is the wavelength of light in vacuum.  Thus, 

I(r2)  =  I(r1) exp(–α |r2 – r1|). (6.9)

6.1.1. Quantities and units
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