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4. Kinematics and dynamics of electrons
and holes in energy bands

The valence electrons are responsible of the charge carrier generation, too, and in case of
intrinsic semiconductors, in particular.  Electrons are excited from the valence band to
conduction band leaving the holes behind.
The charge carrier properties, however, follow from the band structure, as discussed below.
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4.1. Group velocity
To consider electrons as spatially localized charge carriers moving in the crystal from one
location to another we define the concept wave packet (aaltopaketti).  The wave packet can
be created as a superposition

(4.1)
of the time-dependent Bloch functions

(4.2)
The Enk is the eigenenergy of the Bloch state.
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fnk0
(r, t) = ankψ nk (r, t) dk∫ ,

 ψ nk (r, t) = eik irunk (r) e− i(Enk / ) t .
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4.2. Inverse effective mass tensor
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4.3. Force equation
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4.4. Dynamics of electrons
Assume an external electric field E with a force

  F  = – e E (4.17)
on the electron.  Thus, the crystal momentum or wave vector is changing in time

dp/dt  =  m* dvg/dt  =  h  dk/dt  =  = – e E.
(4.18–4.19)
Deceleration due to scattering of the accelerating electrons leads to a dynamical balance of
charge carrier flow or electrical current.
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4.5. Dynamics of holes
For the holes in valence band we infer:
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4.6. Experimental determination of effective masses:
     cyclotron resonance in semiconductors
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4.7. Experimental determination of carrier
     charge and concentration: Hall effect

Consider DC current in a bar (in x-direction).  Due to
the Lorentz force

                  F  =  q (E + v×B), (4.55)
where B = Bz k̂, there is a force component
Fy  =  q(Ey – vx Bz)  on the charge carriers.  Therefore,

        Ey  =  vx Bz (4.57)
and VH = Ey w.  Suppose the charge carriers are
holes, in which case Jx = qp0vx and

      Ey  =  Jx/qp0 Bz  =  RH Jx Bz , where  RH  =  1/qp0 . (4.58–59)
RH is Hall coefficient (Hall-vakio).  Thus, measurement of Hall coefficient gives both the
charge carrier concentration and charge of the carriers (including sign) from

p0  =  1 / qRH  =   JxBz / qEy.
Measurement of the resistivity ρ  =  Rwt/L  =  1/σ, too, allows evaluation of the mobility

µp  =  σ / qp0

in case there is only one type of charge carriers.
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5. Electronic effects of impurities

By doping with impurities the electronic properties of semiconductors can be controlled or
tuned as desired.  Impurities are one type of defects, whose electronic states we consider
next.  In general, defects can be either useful or harmful.

5.1. Qualitative aspects of impurities
The most general defects are point defects (pistevika), line defects (viivavika) and complexes
(kertymä).
Classification of point defects:
- vacancy (vakanssi) VA
- interstitial (välikköatomi) IA
- substitutional (korvaus-) CA
- antisite   BA
- Frenkel defect pair VA–IA
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B           A           B           A           B           A           B           A           B

A           B           A           B                         B           A           B           A

                                   A
B           A           B           A           B           A           B           A           B
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B           A           B           A           B           A           B           A           B



Impurities like CA involving foreign atoms are extrinsic defects, whereas the others are native
or intrinsic.
Donors
acceptors
double donors
double acceptors
isovalent substitutional

5.2. Effective mass theory
Impurities whose electrons can be treated by s.c. "effective mass approximation" are called
shallow (matala) and the others are called deep (syvä).  The effective mass approximation or
theory is based on simplifying assumptions:
1. The impurity potential is weak, because the impurity is strongly screened by the high
dielectric constant of a typical semiconductor crystal.
2. The impurity potential is  slowly varying over the crystal lattice constant.
3. The impurity state is very spread out and only wave vectors near the band extremum (Γ-
point) are essential to consider.

SP I, sp 2012      85

Thus, consider a donor with a weakly bound electron, e.g. PSi@Si.  Describe the electronic
state with a hydrogen like orbital in the potential

Vi(r)  =  – Ze2 / (4πε0 ε r),   (5.6)
where the dielectric constant ε takes into
account the screening of the medium and Z is
the charge of the impurity.
Thus, for the donor state ψi(r) we solve the
Schrödinger equation

(H0 + Vi(r)) ψi(r)  =  Ei ψi(r),     (5.1)
where H0 is the one-electron hamiltonian of
the perfect crystal.
Let us expand the solution in terms of
Luttinger–Kohn functions (see the text book)
or localized Wannier functions

ψi(r)  =  N–1/2 Σni Fn(Ri) wn(r – Ri),     (5.3)
where the coefficients Fn(Ri) can be regarded
as amplitudes of  the contributing Wannier
functions, or the envelope wave function.
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By substituting (5.3) into (5.1) and assuming isotropic, nondegenerate and parabolic lowest
conduction band

Ec(k)  =  Ec(0) + h 2k2/2m*            (5.7)
we are left with an equation for the envelope function

            (5.8)

which is similar to the Schrödinger equation of a particle with mass m* in a potential Vi(R),
whose reference (zero) energy is Ec(0).  This is the effective mass approximation for the do-
nor state (envelope wave function) or the charge carrier with effective mass m* in medium
described by the dielectric function ε.
The variable R in (5.8) assumes the discrete values of lattice vectors, only.  However, in the
range of tens or hundreds of Ångströms we can consider R continuous or quasi-continuous.
As the potential Vi(R) is essentially that of the point charge with effective ε, the solution F(R)
is the hydrogen atom wave function for a particle with effective mass m*.  There are both
discrete bound eigenstates and continuum states with a continuous energy spectrum
available for the charge carrier.
By denoting the states with principal quantum number N, angular momentum quantum
number L (and ML and MS) we obtain the bound Rydberg states or levels

EN  =  Ec(0) – R / N2, (5.11)
where N = 1, 2, 3, ...; and R is the donor Rydberg constant.
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1F(R) = E − Ec (0)( )F(R),

The donor Rydberg constant is

The donor Bohr radius is

 (5.9)

and the lowest energy wave function (1S)

 

Thus, a simplified description of the shallow donor wave
function is

      ψi(r)  =  u0(r) F(r).
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5.3. Donor impurities in Si and Ge

SP I, sp 2012      89

5.4. Donor impurities in III–V semiconductors

5.5. Acceptor impurities

SP I, sp 2012      90



5.6. Deep centers (syvät tilat)
The shallow impurity states extend over many primitive cells and need only a few Bloch 
functions to form the descriptive Wannier function.  The deep center levels are characterized
by much stronger localization and need of several Bloch functions (k) from several bands (n)
for the description.
The deep levels often relate to the lattice distortion (or relaxation), which takes energy ED.  A
shallow level conversion to a deep level of energy E0 is favorable and minimizes the total en-
ergy, if |E0| > ED.
SiGa in GaAs is a shallow hydrogenic donor, but in GaAlAs with more than 25% of Al it con-
verts to a deep center with E0 ≈ 0.4 eV.  Such deep donor is called a DX center.  
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5.7. Impurity bands
At high impurity concentrations, nI ≥ 1018 cm–3, the neighboring impurities are close enough
to interact and form impurity bands.  This may lead to high enough charge carrier
concentration to screen the donor Coulomb potential to the form

V(r)  =  – e2 / (4πε0  r) e–qsr,   (5.16)
where qs is the inverse screening length specified by  qs = 4 (3nI / π)1/3 / a*.  This binds the
electron only if qs < 1.19 / a* or

nI1/3 a*  <  0.36. (5.17)
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6. Semiconductor statistics

6.1. Intrinsic semiconductors
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6.2. Extrinsic semiconductors
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7. Lattice vibrations in semiconductors

The atoms in any crystal vibrate around their equlibrium positions, that leads to several
important phenomena.  Vibration breaks the ideal and exact lattice symmetry leading to
coupling with electrons and electrical resistivity.  Vibration is also the main mechanism
behind the thermal phenomena: heat capacity and thermal conductance.  Acoustics in solids
are described with one type of vibrations and one class of optical properties with another
type.
The quantized lattice vibrations are called phonons. 

7.1. Equations of motion
The most direct approach to vibration dynamics is based on the Born–Oppenheimer approxi-
mation for evaluation of the potential energy hypersurface (PES), where the adiabatic ion
core quantum dynamics is solved.  Such PES can be obtained from theoretical total enegy
calculations or by fitting observed phonon frequencies to suitably parameterized model of
functional form.  The simplest approximation is the collective or coupled harmonic oscillator
model or harmonic approximation (not capable of explaining the thermal expansion).
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It should be emphasized that the adiabatic Born–Oppenheimer dynamics does not include
the electron–phonon interaction or scattering, which is an essential feature in transport
phenomena.
With the position vector of an atom

u  =  R – R(0) (7.2)
The calssical equation of motion of the atom
k with mass Mk is

Mk u··k  =  – ∇Φ

or
                   Mk u··kα  =  – "Φ/"ukα , (7.5)

where Φ is the PES, defined above.
In the quantum mechanical approach we
consider the hamiltonian in a unit cell l .
Again, if ukl  is the displacement of the atom
from its equilibrium, in the harmonic approxi-
mation we write

     H'(ukl )  =  1/2 Mk u· kl 2 + 1/2 Σk'l ' ukl  · Φ(kl ,k'l ') · uk'l ' ,
where Φ is the harmonic force constants (matrix).
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7.2. Monatomic linear chain
By setting the force constant of the harmonic force field to be Φ  = 2 σ, the equation of motion
becomes now in form

                   Mk  u··k  = (7.22)
whose solution is
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7.3. Diatomic linear chain
Consider two different atoms in the unit cell, where the reduced mass of internal dynamics M
relates to the two atomic masses M1 and M2 as

                   M–1  =  M1
–1 + M2

–1. (7.32)
The simplest procedure to find the main features of  the phonon band is doubling the unit cell
of the previous monatomic chain leading to halfing the 1. Brillouin zone:
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7.4. Three-dimensional crystals
As an extension to the 1-dimensional case, now, the dynamics of atoms is coupled to
collective normal modes, which assume the form of Bloch waves

                   ukl (q,ω)  =  uk0 exp[i (q·Rl  – ωt)], (7.13)
where q is the wave vector, ω is the frequency and Rl  are lattice vectors.
As above, since Rl  are lattice vectors, two phonons whose wave vectors differ by a recipro-
cal lattice vector are equivalent.  In other words, the unit cell or interatomic distance sets lim-
its to the shortest wavelength.  Thus, the phonon dispersion ω(q) is the same in all Brillouin
zones.
As diamond and zinc-blende structures
have two atoms in the primitive cell, there
are six phonon bands:  3 acoustic and 3
optical.  In high symmetry directions
these can be classified to 4 transverse
and 2 longitudinal
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7.5. Lattice dynamical models for semiconductors
The quantized normal modes
are phonons. The phonon
dispersion curves can be
measured by inelastic neutron
scattering and inelastic x-ray
scattering experiments.
Phonon creation is called
Stokes process and annihilation
correspondingly anti-Stokes
process.  Thus, the energy and
momentum conservation laws
can be written
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7.6. Normal coordinate transformation

7.7. Vibrational specific heat

7.8. Anharmonic effects
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8. Charge carrier scattering and
transport properties
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Consider next free charge carriers, electrons and holes, under the influence of an external
field.  In a weak electric field the behavior can be described by Ohm's law, but in high fields
the behavior is different and the carriers are called hot electrons.

8.1. Simple phenomenological introduction
     to transport in semiconductors

We start with a simple phenomenological discussion for the externally driven drift current and
concentration gradient driven diffusion current.

8.1.1. Electric conduction current
In the absence of external field the "low-density-noninteracting" charge carrier distribution
could be viewed even with the classical statistics.  Then, the equipartition principle would
give for the mean thermal square speed sth2 a relation

        1/2 m* sth2  =  3/2 kB T

or
(8.1)

The average time between collisions of charge carriers (scattering or relaxation time τ) is in
the range 10–13 – 10–12 s leading to the mean free path

Λ  =  sth τ, (8.2)
which thus is usually about 100 – 1000 Å.
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For the drift current we assume that all electrons (holes) experience the same weak external
field  E  =  – ∇Φ(r)  of the slowly and linearly varying external potential Φ(r).
By modeling "friction" due to the scattering of electrons by impurities and phonons with the
above defined relaxation time τ, the classical equation of motion of electrons becomes as

m* r̈ + (m*/τ) r·   =  – e E, (8.3)
where the dot indicates time derivative.
From the steady-state condition r̈ = 0 (and denoting more generally q = – e) we derive the drift
velocity of carriers
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Define the carrier mobility µ by
vd  =  µ E (8.10)

in the isotropic case leading to
µ  =  qτ / m*. (8.11)

By adding the contributions of both electrons and holes we obtain for the conductivity
             σ  =  q (ne µe + nh µh). (8.14)

8.1.2. Conductivity effective mass
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8.1.3. Diffusion current

8.1.4. Displacement current
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8.2. Boltzmann equation and its solution
Next we consider a more general case, where the carriers are distributed according to a
temperature dependent distribution function and the scattering time is charge carrier energy
dependent.  This is also called the relaxation time approximation.
The distribution function  fk(T, r)  gives the probability for the occupation of the band state  Ek 
(at r) at temperature T.  In the absence of the external field and thermal equilibrium this is the
Fermi–Dirac distribution

(8.72)

for fermions, like electrons, where µF is the chemical potential and kB is the Boltzmann
constant.
In the presence of external perturbation the distribution function obeys the Boltzmann
equation

(8.45)

The three terms on the right hand side include the effects from the external field, diffusion of
charge carriers and scattering of carriers by phonons and impurities.
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fk
0  =  1

exp (Ek – µF)
kBT

 + 1

dfk
dt

  =  ∂fk
∂t field

 + ∂fk
∂t diff

 + ∂fk
∂t scatt

.



Let us assume that diffusion is negligible and the applied field is weak enough that we can
expand the distribution function 

       fk  =  fk0 + gk(E),
where gk(E) is the change induced by the external field E.  Thus,

(8.46)

For the third term we write within the relaxation time approximation

(8.55)

which assumes the relaxation time to be k-dependent.  Relaxation is due to scattering
processes, which we consider later.  
Note, that a transient perturbation gk decays away exponentially.
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∂fk
∂t scatt

  =  – gk
τk

 ,

Now, in the steady state (e.g. in external field), from the Boltzmann equation
SP I, sp 2012      112



SP I, sp 2012      113

9. Surface properties of semiconductors

Surface atomic structure

with the slab model:
Pictures from
Ville Arpiainen:
Electronic structure and
simulated STM images of
GaAs cleavage surface
(Master of Science
Thesis, TUT 2004).
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9.1. Surface effects on electronic states
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