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4. Kinematics and dynamics of electrons
and holes in energy bands

Key ideas Electrons and holes in

A free electron in an energy band can be represented semiclassically energy bands

by a wave packet of Bloch states that is spatially localized. The velocity of 4.1 Group velocity
the center of the wave packet is the group velocity v,.

The curvature of an energy band is proportional to the inverse effective 4.2 Inverse effactive mass tensor
mass. The inverse effective mass tensor is defined by

SENCHGR R
m* “3_ 7 OkoOkg
An external force F acting on a band electron produces a change of its 4.3 Force equation

wave vector k with time,

dk
F=h—
dr’
which is analogous to the classical relation of force to time rate of
change of momentum p:

F=
dt
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One therefore defines the crystal momentum to be hk. 4.4 Dynamics of slectrons

An electric field £ produces an accelerated electron wave packet:

dv, 1
o —‘f(;) s

A hole is an empty state in an otherwise filled band. Both the electric 4.5 Dynamics of holes
charge of a hole and its effective mass are positive.
The effective mass of a charge carrier can be measured by cyclotron 4.6 Cyclotron resonance

resonance.
The concentration and charge sign of a charge carrier can be measured 4.7 Hall effect

by the Hall effect.

The valence electrons are responsible of the charge carrier generation, too, and in case of
intrinsic semiconductors, in particular. Electrons are excited from the valence band to

conduction band leaving the holes behind.
The charge carrier properties, however, follow from the band structure, as discussed below.
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4.1. Group velocity

To consider electrons as spatially localized charge carriers moving in the crystal from one
location to another we define the concept wave packet (aaltopaketti). The wave packet can
be created as a superposition

£, (0,0 = fa,p,,(r,t) dk, (4.1)
of the time-dependent Bloch functions
P (r,t)=e*"u_ (r) e """, (4.2)

The E,k is the eigenenergy of the Bloch state.
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4.2. Inverse effective mass tensor
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4.3. Force equation
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4.4. Dynamics of electrons

Assume an external electric field E with a force

F=—¢eE (4.17)
on the electron. Thus, the crystal momentum or wave vector is changing in time
dp/dt = m* dvg/dt = h dk/dt = =—¢E.

(4.18-4.19)

Deceleration due to scattering of the accelerating electrons leads to a dynamical balance of
charge carrier flow or electrical current.
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4.5. Dynamics of holes

For the holes in valence band we infer:
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4.6. Experimental determination of effective masses:
cyclotron resonance in semiconductors
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4.7. Experimental determination of carrier
charge and concentration: Hall effect

Consider DC current in a bar (in x-direction). Due to
the Lorentz force

F = q (E + vxB), (4.55)

where B =B, ﬁ, there is a force component
Fy = q(Ey - vxB;) on the charge carriers. Therefore,

Ey = vxB, (4.57)

and Vy = Eyw. Suppose the charge carriers are
holes, in which case Jx = qpovx and

Ey = Jx/qpoB, = RyJxB;, where Ry = 1/qpo . (4.58-59)

Ry is Hall coefficient (Hall-vakio). Thus, measurement of Hall coefficient gives both the
charge carrier concentration and charge of the carriers (including sign) from

Measurement of the resistivity p = Rwt/L = 1/o, too, allows evaluation of the mobility

Up = 0/ qpo
in case there is only one type of charge carriers.
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5. Electronic effects of impurities

Key ideas i

Donor impurities in n-type semiconductors provide free electrons to
the conduction band and positively charged donor ions. Acceptor
impurities in p-type semiconductors provide free holes to the valence
band and negatively charged acceptor ions.

Shallow impurities have ionization energies that are small compared to
the fundamental gap. Their energy levels and eigenfunctions are well
described by effective mass theory.

The anisotropic effective mass of the conduction band in Si and Ge causes
a splitting of energy levels associated with p-like hydrogenic states.

A set of donor levels is associated with each conduction band minimum:
six minima for Si and four for Ge.

The wave vector dependence of the dielectric constant leads to coupling
between impurity states associated with different extrema of an energy
band and a splitting of degeneracies.

In materials such as InSb, the small effective mass and large dielectric
constant lead to a large effective Bohr radius of donor levels.

Degeneracy and warping of the valence bands lead to complicated
structure of acceptor levels.

Deep level centers have energy levels near the mudpoint of the
fundamental gap. The ground state ionmization energy depends
significantly on the nature of the impurity or defect. Central cell
corrections are required in the impurity potential.

At sufficiently high impurity concentrations, the wave functions of
neighboring impurities overlap sufficiently to produce an impurity
band.

Impurities in
semiconductors

5.1 Qualitative aspects of impurities

5.2 Effective masstheory

5.3 Donorimpurities in 5i and Ge

5.4 Donorimpuritiesin lll=V
semiconductors

5.5 Acceptorimpurities
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5.4 Central cell corrections and deep levels

5.7 Impurity bands

By doping with impurities the electronic properties of semiconductors can be controlled or
tuned as desired. Impurities are one type of defects, whose electronic states we consider

next. In general, defects can be either useful or harmful.

5.1. Qualitative aspects of impurities

The most general defects are point defects (pistevika), line defects (viivavika) and complexes

(kertyma). B A B A B
Classification of point defects:

- vacancy (vakanssi) Va Ao B A B

- interstitial (valikkbatomi) Ia A

- substitutional (korvaus-) Ca B A B A B
- antisite Ba

- Frenkel defect pair Va—Ia A B B B ¢

A B A B
B A B A
A B A B
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Impurities like C, involving foreign atoms are extrinsic defects, whereas the others are native
or intrinsic.

Donors
acceptors

double donors
double acceptors

isovalent substitutional

5.2. Effective mass theory

Impurities whose electrons can be treated by s.c. "effective mass approximation" are called
shallow (matala) and the others are called deep (syva). The effective mass approximation or
theory is based on simplifying assumptions:

1. The impurity potential is weak, because the impurity is strongly screened by the high
dielectric constant of a typical semiconductor crystal.

2. The impurity potential is slowly varying over the crystal lattice constant.

3. The impurity state is very spread out and only wave vectors near the band extremum (I'-
point) are essential to consider.
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Thus, consider a donor with a weakly bound electron, e.g. Ps;@Si. Describe the electronic
state with a hydrogen like orbital in the potential

Vi(r) = —Ze?/ (4mgge 1), (5.6)

where the dielectric constant ¢ takes into
account the screening of the medium and Z is
the charge of the impurity.

Thus, for the donor state y;(r) we solve the
Schrédinger equation

(Ho + Vi(r)) ¢i(r) = E;gi(r), (5.1)

where Hy is the one-electron hamiltonian of
the perfect crystal.

Let us expand the solution in terms of
Luttinger—Kohn functions (see the text book)
or localized Wannier functions

'lpi(l‘) = N-123 Fn(Rl) Wn(l' — Ri), (53)

where the coefficients F,(R;) can be regarded
as amplitudes of the contributing Wannier
functions, or the envelope wave function.
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By substituting (5.3) into (5.1) and assuming isotropic, nondegenerate and parabolic lowest
conduction band

E.(k) = E.(0) + h 2k2/2m* (5.7)

we are left with an equation for the envelope function

F(R)=(E-E_ (0))F(R), (5.8)

[ Svvm)

m *

which is similar to the Schrédinger equation of a particle with mass m* in a potential V;(R),
whose reference (zero) energy is E.(0). This is the effective mass approximation for the do-
nor state (envelope wave function) or the charge carrier with effective mass m* in medium
described by the dielectric function e.

The variable R in (5.8) assumes the discrete values of lattice vectors, only. However, in the
range of tens or hundreds of Angstréms we can consider R continuous or quasi-continuous.
As the potential Vi(R) is essentially that of the point charge with effective ¢, the solution F(R)
is the hydrogen atom wave function for a particle with effective mass m*. There are both
discrete bound eigenstates and continuum states with a continuous energy spectrum
available for the charge carrier.

By denoting the states with principal quantum number N, angular momentum quantum
number L (and M. and Ms) we obtain the bound Rydberg states or levels

Ex = Ec(0) - R/ N2, (5.11)
where N = 1,2, 3, ...; and R is the donor Rydberg constant.
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The donor Rydberg constant is

m* 1 m* 1 e'm,

m, m, (4mey) B
mF 2= S o (59)

and the lowest energy wave function (1S)

R
Cis(R) = w/# eXp(a*)-

Thus, a simplified description of the shallow donor wave
function is

WYi(r) = uo(r) F(r).
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5.3. Donor impurities in Si and Ge
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5.4. Donor impurities in lll-V semiconductors

5.5. Acceptor impurities
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5.6. Deep centers (syvat tilat)

The shallow impurity states extend over many primitive cells and need only a few Bloch
functions to form the descriptive Wannier function. The deep center levels are characterized
by much stronger localization and need of several Bloch functions (k) from several bands (n)
for the description.

The deep levels often relate to the lattice distortion (or relaxation), which takes energy Ep. A
shallow level conversion to a deep level of energy E, is favorable and minimizes the total en-
ergy, if IEgl > Ep.

Sica in GaAs is a shallow hydrogenic donor, but in GaAlAs with more than 25% of Al it con-
verts to a deep center with Eyo = 0.4 eV. Such deep donor is called a DX center.
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5.7. Impurity bands

At high impurity concentrations, ny = 10'8 cm=3, the neighboring impurities are close enough
to interact and form impurity bands. This may lead to high enough charge carrier
concentration to screen the donor Coulomb potential to the form

V() = —e?/ (4mep 1) €79, (5.16)

where g, is the inverse screening length specified by qs =4 (3n;/x)!3 / a*. This binds the
electron only if g < 1.19/ a* or

ni'3 a* < 0.36. (5.17)



6. Semiconductor statistics
Key ideas —~

In an intrinsic semiconductor free charge carriers arise from the excitation
of electrons from the valence band to the conduction band creating
equal concentrations of free electrons in the conduction band and free
holes in the valence band.

At thermal equilibrium the Fermi—Dirac distribution function specifies the
occupation number of a state.

The density-of-states in an energy band is the number of states per unit
volume per unit energy interval.

The intrinsic carrier concentration enters the law of mass action that relates
the concentration of electrons and holes.

In extrinsic semiconductors the charge carriers arise primarily from
impurities.

Donor impurities produce an n-type semiconductor. In the freeze-out
range the free carrier concentration increases exponentially
with temperature, but in the saturation range it is nearly constant.

Acceptor impurities produce a p-type semiconductor.

In a compensated semiconductor both donor and acceptor impurities are
present.

In an n-type semiconductor electrons are the majority carriers and holes
are the munority carriers. In a p-type semiconductor the roles of
electrons and holes are reversed.

6.1. Intrinsic semiconductors
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Statistics

6.1 Intrinsic semiconductors

6.2 Extrinsic semiconductors
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6.2. Extrinsic semiconductors
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7. Lattice vibrations in semiconductors

Key ideas

In the harmonic approximation the equations of motion are linear in the
displacement components of the atoms.

The normal mode frequencies of a monatomic linear chain are confined to
a band between zero and a maximum frequency.

The normal mode frequencies of a diatomic linear chain lie in the acoustic
branch or the optical branch with a gap between the branches.

Elastic continuum theory provides a simple treatment of long-wavelength
modes of vibration.

Phonon dispersion curves are determined by inelastic neutron scattering.
Short range interactions are insufficient to account for the experimental
data. The deformability of the electron charge distribution is taken into
account by the shell model and the bond charge model. The partial ionic
character of the electron-pair bonds and the effective charge of the
atom is taken into account by the deformation dipole model. The linear
response method provides full phonon dispersion curves without fitting
parameters to experimental curves.

In a normal mode of vibration all atoms vibrate with the same frequency.

The vibrational specific heat obeys the Debye T -law at low temperatures
and the Dulong—Petit law at higher temperatures.

Anharmonic effects are responsible for thermal expansion and diffusive
thermal conductivity.

Impurities and other defects can give rise to lecalized modes.

Piezoelectricity can increase the elastic moduli and the speed of sound.

Applied stress can cause shifts and splittings of electronic and vibrational
energy levels.

Phonons

7.1 Equations of motion
7.2 Monatomic linear chain
7.3 Diatomic linear chain

7.4 Three-dimensional crystals

7.5 Lattice dynamical medels

7.6 Mormal coordinate transformation
7.7 Vibraotional specific heat
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7.8 Anharmonic effects

7.2 Impurity effects on lattice vibrations
710 Piezoelectric effects

7.11Effects of stress-induced atomic
displacements

The atoms in any crystal vibrate around their equlibrium positions, that leads to several
important phenomena. Vibration breaks the ideal and exact lattice symmetry leading to
coupling with electrons and electrical resistivity. Vibration is also the main mechanism
behind the thermal phenomena: heat capacity and thermal conductance. Acoustics in solids
are described with one type of vibrations and one class of optical properties with another

type.
The quantized lattice vibrations are called phonons.

7.1. Equations of motion

The most direct approach to vibration dynamics is based on the Born—Oppenheimer approxi-
mation for evaluation of the potential energy hypersurface (PES), where the adiabatic ion
core quantum dynamics is solved. Such PES can be obtained from theoretical total enegy
calculations or by fitting observed phonon frequencies to suitably parameterized model of
functional form. The simplest approximation is the collective or coupled harmonic oscillator
model or harmonic approximation (not capable of explaining the thermal expansion).
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It should be emphasized that the adiabatic Born—Oppenheimer dynamics does not include
the electron—-phonon interaction or scattering, which is an essential feature in transport

phenomena.
With the position vector of an atom
u = R-RO®
The calssical equation of motion of the atom
k with mass M is
My ug = — VO
or
My Uy, = — 0P/Ouy,, (7.5)
where @ is the PES, defined above.

In the quantum mechanical approach we
consider the hamiltonian in a unit cell |
Again, if uy, is the displacement of the atom
from its equilibrium, in the harmonic approxi-
mation we write

(7.2)

H'(uy ) = 1/2 Mg l.lk| 24172 Zg ' Uy (I)(kl ,k'l ) euy o,

where @ is the harmonic force constants (matrix).

7.2. Monatomic linear chain
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By setting the force constant of the harmonic force field to be ® =2 o, the equation of motion

becomes now in form
My uy =

whose solution is

(7.22)
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7.3. Diatomic linear chain

Consider two different atoms in the unit cell, where the reduced mass of internal dynamics M
relates to the two atomic masses M, and M, as

M = M+ ML (7.32)

The simplest procedure to find the main features of the phonon band is doubling the unit cell
of the previous monatomic chain leading to halfing the 1. Brillouin zone:
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7.4. Three-dimensional crystals

As an extension to the 1-dimensional case, now, the dynamics of atoms is coupled to
collective normal modes, which assume the form of Bloch waves

Ug| (q,UJ) = Uko exp[l (q.R| - (Dt)], (713)
where q is the wave vector, w is the frequency and R, are lattice vectors.

As above, since R, are lattice vectors, two phonons whose wave vectors differ by a recipro-
cal lattice vector are equivalent. In other words, the unit cell or interatomic distance sets lim-
its to the shortest wavelength. Thus, the phonon dispersion w(q) is the same in all Brillouin
zones.

As diamond and zinc-blende structures
have two atoms in the primitive cell, there
are six phonon bands: 3 acoustic and 3
optical. In high symmetry directions
these can be classified to 4 transverse
and 2 longitudinal
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7.5. Lattice dynamical models for semiconductors

The quantized normal modes
are phonons. The phonon
dispersion curves can be
measured by inelastic neutron
scattering and inelastic x-ray
scattering experiments.

Phonon creation is called
Stokes process and annihilation
correspondingly anti-Stokes
process. Thus, the energy and
momentum conservation laws
can be written

T
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Fig. 3.1. Phonon dispersion curves in Si along high-symmetry axes. The circles are data
points from [3.4]. The continuous curves are calculated with the adiabatic bond charge
modcl of Weber [3.5]
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Fig. 3.2. Phonon dispersion curves in GaAs along high-symmetry axes [3.6]. The experi-
mental data points were measured at 12 K. The continuous lines were calculated with an
Il-parameter rigid-ion model. The numbers next to the phonon branches label the corre-
sponding irreducible representations
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7.6. Normal coordinate transformation

7.7. Vibrational specific heat

7.8. Anharmonic effects
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8. Charge carrier scattering and

transport properties
Key ideas

Charge carriers in semiconductors are characterized by their mean free
path, relaxation time, and mobility.

The Boltzmann equation governs the behavior of the carrier distribution
function.

The mobility of a carrier is proportional to the average relaxation time.

In general, the relaxation time of a carrier depends on its energy and on the
nature of the scatterers.

Scattering mechanisms such as those due to fonized impurities and phonons
contribute to the relaxation time.

The electrical conductivity is modified by an external magnetic field.
The Hall effect enables one to measure the carrier concentration.

The presence of a temperature gradient gives rise to the Seebeck effect.
An electric current can produce a heat flux through the Peltier effect.

Free carriers contribute to the thermal conductivity of a semiconductor.
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Transport properties

8.1 Elementarytransporttheory
8.2 Boltzmannequation

8.3 Electrical conductivity and mobility
8.4 Energydependence ofthe relaxation

time
8.5 Relaxationfimesfor specific

scattering mechanisms

8.6 Maognelotransport properties
8.7 Thermoelectricphenomena

8.8 Thermal conductivity

105

Using deep impurities, semi-insulating semiconductors can be produced. 89 Semi-insulatingsemiconductors

In high electric fields, free carriers have a higher effective temperature
and a lower mobility. Negative differential conductivity can arise that
produces Gumn oscillations. High-energy carriers can generate
additional carriers by impact ionization.

In disordered semiconductors at low temperature, the electrical
conductivity can have an exp(—BT ~1) dependence due to variable-
range hopping of carriers.

8.10 Hotcarrierphenomena

8.11 Variable-range hopping conductivity
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Consider next free charge carriers, electrons and holes, under the influence of an external
field. In a weak electric field the behavior can be described by Ohm's law, but in high fields
the behavior is different and the carriers are called hot electrons.

8.1. Simple phenomenological introduction
to transport in semiconductors

We start with a simple phenomenological discussion for the externally driven drift current and
concentration gradient driven diffusion current.

d1.1. Electri n tion current

In the absence of external field the "low-density-noninteracting" charge carrier distribution
could be viewed even with the classical statistics. Then, the equipartition principle would
give for the mean thermal square speed sy,” a relation
12m*sg? = 32kg T
or
(8.1)

The average time between collisions of charge carriers (scattering or relaxation time t) is in

the range 10713 - 107'2 s leading to the mean free path
A = Sth T, (82)

which thus is usually about 100 — 1000 A.
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For the drift current we assume that all electrons (holes) experience the same weak external
field E = — VO(r) of the slowly and linearly varying external potential ®(r).

By modeling "friction" due to the scattering of electrons by impurities and phonons with the
above defined relaxation time t, the classical equation of motion of electrons becomes as

m* i + (m*/t)r = —¢eE, (8.3)
where the dot indicates time derivative.

From the steady-state condition ¥ = 0 (and denoting more generally q = — ) we derive the drift
velocity of carriers
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Define the carrier mobility u by
vg = wWE (8.10)
in the isotropic case leading to
w = qt/m*. (8.11)
By adding the contributions of both electrons and holes we obtain for the conductivity

O = q (N Ue + Ny Up). (8.14)

d.2. nductivity effective m
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8.1.3. Diffusion current

8.1.4. Displacement current
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8.2. Boltzmann equation and its solution

Next we consider a more general case, where the carriers are distributed according to a
temperature dependent distribution function and the scattering time is charge carrier energy
dependent. This is also called the relaxation time approximation.

The distribution function fx(T,r) gives the probability for the occupation of the band state Ex
(atr) at temperature T. In the absence of the external field and thermal equilibrium this is the
Fermi—Dirac distribution

— 1

) exp{(E';(;FW} +1 (8.72)

f

for fermions, like electrons, where ur is the chemical potential and kg is the Boltzmann
constant.

In the presence of external perturbation the distribution function obeys the Boltzmann

equation
dfi _ (afk> +(afk) +(‘9fk)
dt Ot Jriela  \ Ot Jaier | Ot Jscart (8.45)

The three terms on the right hand side include the effects from the external field, diffusion of
charge carriers and scattering of carriers by phonons and impurities.
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Let us assume that diffusion is negligible and the applied field is weak enough that we can
expand the distribution function

fk = A0+ g(E),
where gk(E) is the change induced by the external field E. Thus,

(8.46)
For the third term we write within the relaxation time approximation
(:)fk _ gk
il % (8:59)

which assumes the relaxation time to be k-dependent. Relaxation is due to scattering
processes, which we consider later.

Note, that a transient perturbation gx decays away exponentially.
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Now, in the steady state (e.g. in external field), from the Boltzmann equation
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9. Surface properties of semiconductors
Key ideas ; Surface Properties

The wave function amplitude of electronic surface states decreases strongly 91 Surface effects on electronic states
from the surface to the interior of the crystal.
The wave function of a surface state in the nearly free electron
approximation is constructed from Bloch functions with complex wave
vectors. The energy eigenvalue lies in the gap between the energy bands
of the bulk crystal.
In the tight binding method the surface state wave function is a linear
combination of atomic orbitals with coefficients that decay exponentially
toward the interior of the crystal.
Surface elastic waves have displacement amplitudes that decay 9.2 Surface effects on lattice vibrations
exponentially from the surface to the interior. Their velocity is less than
that of bulk waves.
In diatomic semiconductors surface modes of vibration can occur with
frequencies in the gap between acoustic and optical branches.
The shell model, the bond charge model and ab initio methods can be used
to calculate the properties of surface modes in real semiconductors.
Surface vibrational modes can be studied experimentally
using Brillouin scattering, Raman scattering, electron scattering,
helium atom scattering, and infrared spectroscopy.
The recombination of electrons and holes can be enhanced at a surface or 93 Surface recombination
interface of a semiconductor.

SP 1, sp 2012
Surface atomic structure \%
XX, % ‘.
Kuva 4.5: Galliumarsenidin (110)-katkaisupinta. Kurva 511, (100101 ) o (1xThred "
W|th the Slab model. Kuva £.7: Galliumarsenidin (100)-katkaisupinta, Kuva .11: (100} pinnan arseeniterminoitu (1x1)-rekonstruktio.
Pictures from
Ville Arpiainen:
LY

Electronic structure and
simulated STM images of
GaAs cleavage surface
(Master of Science
Thesis, TUT 2004).

( i_\ . L\

Kuva 5.12: {(100}-pinnan galliumterminoitu (1x1}-rekonstruktio.

Kuwa 5.7: (110)-pinnan seitseman atomitasoa sisdltdva slab-malli.

| « -
ST
)P\"‘)‘ L. "H(HrH(HL Tr‘ﬁ t s 3‘1 {. f

Kuva 5.8: {110}-pinnan relaksaatio. . . . o . .
Kuwa 5.13: (100}-pinnan arseeniterminoitu (2x2)-rekonstruktio.



SP 1, sp 2012 115
9.1. Surface effects on electronic states
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5
) 1
<]
-5
OMoP |
VASE
-1
L T X UK r

Kuva 5.4 VASP-ja Dh-l.:-l-'-energja'.'g,'r.\l | Kol 3].

Kuva 5.14: (100}-pinnan vydkaaviot.(a} Arseeniterminoitu {1x1}-rek

tu (1x1}-rekons|

ruktio [c} Arseeniterminoidun (2x2)-rekonstruktion
Kuwa 5.15: (100}-pinnan orbit,

| R . .

lit. {a) Ylin miehitetty. (b) Alin miehitt L

SPI sp2012 116

(<) [H idi i) 6]
Kuva 6.3 pinnan michitetyt tilat joilla on merkittava kontribuutio STM-kuviin (a).(c) Dangling- Kuva 6.5: (110}-pinnan mishittdmattamat tilat joilla on kontribuutiota STM-kuviin (a) Alin miehitts-
bond -tila, energia —0,57 eV (b].{d) Pintaresonanssitila, energia -0,15 V. maton tila. (b) Dangling bond -tila, energia 0,6eV. {c} Resonanssitila, energia 1,05 eV. (d}.(e},if} Tilojen

aaltofunktiot



