
7. Atomic spectra and atomic structure
Atomic structure means electronic structure, i.e., distributions of electrons in space and
energy.  Atomic spectra usually means measurable energies related to electronic transitions.

Spectrum of atomic hydrogen
If ignoring the electron spin, the state of the electron (state of the atom) is defined by three
quantum numbers  n, ℓ and mℓ, as discussed in chapter 3.13.  The corresponding state of the
electron is denoted as  ψnℓmℓ or |nℓmℓ〉  and it is called an orbital.  The energy eigenvalue
depends on the principal quantum number n,  Eq. (3.66)

and the angular momentum quantum number ℓ and magnetic quantum number  mℓ  specify
the energy degeneracy.
In spectroscopy the energy is usually written in form

where RH is the Rydberg constant for hydrogen.  It depends on the reduced mass 
µ = me mp / (me + mp), where me and mp are electron and proton masses.  If the nuclear recule
(recoil) is ignored (in case of heavy nuclei), then it is used as the Rydberg constant

R∞ = (me e4) / (8 ε02 h3 c) = 109737.31 cm–1.
Thus,     RH = R∞ / (1 + me/mp).
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(7.1)

(7.2)

7.1. Transition energies
Hydrogen spectrum results from transitions between the levels in Eq. (7.2). Thus, the
energies are

or in wave numbers

Spectral lines are grouped according to n1 = 1, 2, 3, ...  and
named after their discoverers as, Lyman-, Balmer-,
Paschen-, Brackett-, Pfund- and Humphrey series.  With
increasing n2  all series approach to their series limit 

        ν–∞  =  RH /n12 

Substitution n1 = 1 to the series limit gives the ground state
ionisation energy 

          I  =  h c Z2 RH

This gives  I  =  2.179 × 10–18
 J  = 1319 kJ mol–1 = 13.60 eV.

Note, however, that  h c R∞ = 13.606 eV = 1 Ry = 1/2 H.
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7.2. Selection rules
The interaction hamiltonian of the electric dipole transition is

        H(1)(t) = – µµµµ· E(t),
where µµµµ = – e r  is the dipole moment operator, when  r  is the position vector of the electron.
Thus, the transition rate (intensity) from state  |i〉 = | niℓi mℓi〉  to state  |f〉 = | nfℓf mℓf〉 is
according to the Fermi's golden rule, propotional to the square of the transition matrix
element  〈i|H(1)|f〉 = µµµµif· E(t), where

µµµµif  =  〈 niℓi mℓi | µµµµ | nfℓf mℓf〉
is the transition dipole moment.  From group theory we can infer, that because  µµµµ  (or r) is an
odd function, also one of the angular momenta ℓi or ℓf must be odd and the other one even,
to make the integrand even: (–1)ℓi (–1) (–1)ℓf = +1  This is sc. Laporte selection rule:

in the electric dipole transition the parity must change.
On the other hand, by using group theory  Γ(j1) × Γ(j2) = Γ(j1+j2) + Γ(j1+j2–1) +... + Γ(|j1–j2|)  for dipole
transition (r: j = 1) gives Γ(ℓi) × Γ(1) = Γ(ℓi+1) + Γ(ℓi) + Γ(ℓi–1), of which we already ruled out Γ(ℓi).
By combining these two, we get the selection rule for the electric dipole transition

   ∆ℓ = ±1.

Alternatively, we can search for the selection rule by considering absorption/emission of the
photon, whose spin  s = 1.  Conservation of angular momentum requires that the electron
angular momentum (and quantum number) must change by one, which is the same
conclusion as above.
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(7.5)

(7.6a)

The z-component of photon spin s, ms is called helicity σ, which may assume values σ = ±1,
while the photon travels in z direction.  This gives a further selection rule for ∆mℓ,

∆mℓ =  0, ±1.
This can be found also directly from the  z component  µz = e z = e r cosθ.  Suppose plane
polarized photons with the electric field in z direction.  Then  〈n2ℓ2mℓ2 | e z | n1ℓ1mℓ1〉 = 
e 〈n2ℓ2 | z | n1ℓ1〉 〈 mℓ2 | mℓ1〉, where the last factor is

which vanishes, except for mℓi = mℓf, or ∆mℓ = 0.   Similarly, we get the same result for the x
and y polarized light.  Thus, in addition, ∆mℓ = ±1.
Thus, the dipole transition selection rules are

∆n      no limitations
∆ℓ     =  ±1
∆mℓ    =  0, ±1  depending on the polarization.

The electric dipole transition is dominant in absorption and spontaneous emission, because
the higher order transitions: electric quadrupole (〈i|xy|f〉) and magnetic dipole (〈i|ℓz|f〉),
quadrupole, etc. are very weak.
Sc. multiple-quantum transition selection rules can be considered the same way as the
single-quantum transitions, above.
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(7.6b)



7.3. Orbital and spin magnetic moments
The electron is associated with the electron magnetic moment (charged particle).  This
magnetic moment couples to the orbital magnetic moment (like the magnetic moments do),
which results in the spectral fine structure.  In case of hydrogen atom the fine structure is
weak, but it is the origin of naming levels as: s(harp), p(rincipal), d(iffuse) and f(undamental).
The orbital magnetic moment is  m = (– e/2me) {ℓ(ℓ+1)}1/2

 ".  It can be found by considering a
particle with a mass me on circular orbit with radius r.  Then, in the resulting expression of the
magnetic moment the classical angular momentun is replaced by {ℓ(ℓ+1)}1/2".
It is customary to write the electron orbital magnetic moment as

             m = γe ℓℓℓℓ,  where  γe = – e / 2me

is the magnetogyric ratio (gyromagneettinen suhde).
Thus, the orbital magnetic moment has the properties of angular momentum and

     mz = mℓ γe " = – µB mℓ ,
where mℓ = ℓ, ℓ–1, ..., –ℓ  and

           µB = – γe " =  e"/2me 
(= 9.274×10–24 JT–1)  is sc. Bohr magneton.
Electron spin and the related magnetic moment canot be derived classically.  It is

     ms = ge γe s,  kun  ge = 2.002319314,
where  ge  is sc. g-factor of the electron.  Now,

      mz = – ge µB ms,   where  ms = ±1/2.
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(7.7)

(7.8)

(7.9)

(7.10)

7.4. Spin–orbit coupling
Let us consider hydrogenlike atom with a potential  φ(r) = Ze/(4πε0r)  and  V(r) = – e φ(r)  for an
electron giving it an angular momentum ℓℓℓℓ.  Then, the interaction energy of the magnetic
moments or the spin–orbit hamiltonian is (–m · B = –s · B ∝ s · (E×v) ∝ s·(dφ/dr r×v) ∝ s · ℓ), i.e.

HSO = ξ(r) s· ℓℓℓℓ ,
where

Radial average of the coefficient  ξ(r)  is sc. spin–orbit coupling constant

By using the potential  φ(r) = Ze/(4πε0r)  and choosing  ℓ > 0,

where

is sc. fine-structure constant.
For example, in case of hydrogen 2p-electron, ζ  =  α2 RH / 24  ≈  2.22 × 10–6 RH 
(hence, the name fine-structure).
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(7.14a)

(7.14b)

(7.15)

(7.16)

(7.19)

(7.11–13)



7.5. Fine-structure of spectra
Spin–orbit interaction energy depends on coupling  j = ℓ ± s.  According to perturbation theory
            ESO = 〈nℓs;jmj | HSO | nℓs;jmj〉 = 〈nℓs;jmj | ξ(r) ℓℓℓℓ · s | nℓs;jmj〉.
Because

j2 = |(ℓℓℓℓ+s)|2 = ℓ2 + s2 + 2 ℓℓℓℓ · s,
we have

    ℓℓℓℓ· s | nℓs;jmj〉  =  1/2 (j2 – ℓ2 – s2) | nℓs;jmj〉  =  1/2 "2 {j(j+1) – ℓ(ℓ+1) – s(s+1)} | nℓs;jmj〉 
and

ESO = 1/2 "2 {j(j+1) – ℓ(ℓ+1) – s(s+1)} 〈nℓs;jmj | ξ(r) | nℓs;jmj〉 
and with (7.20)

Because the level spacing is the same order of magnitude as  R∞, i.e., 105 cm–1, the
spin–orbit interaction is only of the order of 1 cm–1 (for hydrogen).  For heavy atoms,
however, it becomes significant, because  ESO ∝ Z4.

7.6. Term symbols
The (electronic) configuration specifies the orbital occupation.  A configuration has one or
more terms, which indicate the symmetry of the wavefunction (angular momentum) and
"degeneracy" or multiplicity.  The terms (singlet, dublet, triplet, ...) are splitted by the
spin–orbit interaction to levels with different J.  For a specific J there are 2J+1 states, which
may be separated by external fields.
Hierarchy: configuration — term — level — state.
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(7.21)

(7.22)

(7.23)

(7.24)

The term symbol is 2S+1LJMJ,
where L = S, P, D, F, ... (orbital angular momentum: 0, 1, 2, 3, ...);

2S+1 = 1, 2, 3, 4, ... (multiplicity: singlet, doublet, ..., if L≥ S), 
J = L+S, L+S–1, ..., |L–S| (total angular momentum) 

and MJ = J, J–1, ..., –J (z component of total angular momentum J).
Selection rules for the electric dipole transition

∆J = 0, ±1 (Ji + Jf ≥ 1)
∆L = ±1, 0
∆ℓ  = ±1
∆S = 0.

7.7. Detailed spectrum of hydrogen atom
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Fig. 7.7.



Closed shells and coupling of holes
Total angular momenta of closed shells of atoms  ns2, np6, nd10, nf14, ... vanish, and therefore,
do not contribute to spectral terms.  Thus, to find 2S+1LJ  it is sufficient to consider the
occupations of open shells, only.  The ground state term of noble gas atoms is 1S0.  Also, for
this reason the total angular momentum can be found by coupling those of holes, i.e., the
missing electrons wrt. fully occupied shells.  Thus, the configurations  1s2 2p1  and  1s2 2p5 
both give the term  2P1/2,3/2 .
Alkali metal atoms Li, Na, K, ... have one electron outside the inner closed shells.  This
single sc. valence electron, which "orbits" in outer part of the atom, experiences the nuclear
Coulomb potential screened by the sc. core electrons.

Structure of helium
7.8. Helium atom

The helium atom is composed of a nucleus with the
charge  Z = +2e, and two electrons 1 and 2, whose
positions wrt. the nucleus are  r1  and  r2. Then, the
distances are  r1 = | r1 |  and  r2 = | r2 | .  Denoting the
distance between the electrons as  r12 = | r1 – r2 |, we
can write the hamiltonian

where  ∇i2  stands for derivatives wrt. ri.
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(7.26a)

There are no analytical solutions to the corresponding Schrödinger equation
            H ψ(r1, r2)  =  E ψ(r1, r2) 

in this case. Therefore, we use the
perturbation theory, as follows

where  Hi  is the hamiltonian of
hydrogen like atoms, whose eigenfunctions are
Because H1 depends only on r1 and H2 on r2, the reference state Schrödinger equation is 
H(0) ψ(r1, r2) = E0 ψ(r1, r2)  and can be separated by a trial

       ψ(r1, r2)  =  ψa(r1) ψb(r2)  =  | a〉 | b〉  =  | ab〉,
where  a ↔  na ℓa mℓa  and  b  ↔  nb ℓb mℓb ,  and the corresponding energies are

     E0 = – 4 hc R∞ ( 1/na2 + 1/nb2 ),
because  Z2 = 22 = 4.  This is the energy of the helium atom, if interactions between the
electrons are ignored.  The electron–electron interaction energy from the perturbation
operator  H(1)  is

     E(1) = 〈ab | H(1) | ab〉 = J(ab), 
which is sc. Coulomb integral
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(7.30)

(7.29)

(7.31a)

(7.31b)

(7.32)

(7.33)



The Coulomb integral is a classical Coulomb energy of two "orbital charges"  e |ψa(r1)|2  and 
e |ψb(r2)|2.  It is also called "direct" integral and denoted by J(a,b) = F0(a,b) = R0(a,b;a,b). [Slater]
Let us consider the ground state 1s2 (1S0), where both electrons occupy 1s-orbital, i.e.  
a = b = 1s  ja  E0 = 2 E1s .  Then,

  E(1s2) = 2 E(1s) + J(1s,1s),
where  J(1s,1s) = 〈1s 1s | e2/(4πε0r12) | 1s 1s〉.  This can be calculated from Eq. (7.33) as  

      J(1s,1s)  =  5/8 (e2
 / 4πε0) (Z/a0) = 5/4 (e2

 / 4πε0a0), 
when  Z = 2.  Numerical value is  J(1s,1s) ≈ 5.45 × 10–18 J = 34.0 eV, and with  E(1s) ≈ –54.4 eV,
we obtain  E(1s2) ≈ –74.8 eV = –7220 kJ/mol.  Experimentally this is observed to be  –79.0 eV
=  –7619 kJ/mol.
The agreement is pretty good, and in particular considering that the "perturbation"
E(1) ≈ 34.0 eV is relatively large compared with the reference state energy  E0 ≈ –108.8 eV.

7.9. Excited states of helium
Let us consider next an excited state  |ab〉 , where  a = 1s  ja  b ≠ 1s.  Because electrons are
identical and indistinguishable, in addition to the state  | ab〉 = ψa(r1) ψb(r2), we need to
consider also the state  | ba〉 = ψb(r1) ψa(r2).  This will be crucial in the description of this
state.
We consider this state to be degenerate: both wavefunctions  | ab〉  and  | ba〉, correspond to
the energy E = E(a) + E(b).  So, we can use the perturbation theory presented in section 6.1
or 6.4.
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For perturbation theory we write the matrix elements
H11 = 〈ab | {H1 + H2 + H(1)} | ab〉 = E(a) + E(b) + J(ab)
H22 = 〈ba | {H1 + H2 + H(1)} | ba〉 = E(b) + E(a) + J(ba) = H11

H12 = 〈ab | {H1 + H2 + H(1)} | ba〉 = 〈ab | H1 | ba〉 + 〈ab | H2 | ba〉 + 〈ab | H(1) | ba〉 
       = E(b) 〈ab | ba〉 + E(a) 〈ab | ba〉 + K(ab)  =  K(ab), because   〈ab | ba〉 =  〈a | b〉 〈b | a〉 = 0.

Now,  H12  is sc. exchange integral (vaihtointegraali)

The exchange integral is also denoted as  K(a,b) = G0(a,b) = R0(a,b;b,a). [Slater]
Because  H21 = K(ba) = K*(ab) = H12 , the secular equation for  E = E(ab)  takes the form

H11 – E S11 H12 – E S12
           =  0 ,

H21 – E S21 H22 – E S22

and further, because  Sab = 〈a | b〉 = δab ,
E(a) + E(b) + J – E   K

                                                             =
K E(a) + E(b) + J – E

   =  {E(a) + E(b) + J – E}2 – K2  =  0.
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(7.35)

(7.36a)

(7.36b)



Solutions to the secular equation are
E  =  E±(ab)  = E(a) + E(b) + J(ab) ± K(ab)

and the corresponding wavefunctions
    ψ±(r1, r2) = | ±〉 = (1/2)1/2 { | ab〉 ± | ba〉 }  = (1/2)1/2 { ψa(r1) ψb(r2) ± ψb(r1) ψa(r2) },

because
        1/2 { 〈ab | ± 〈ba | } (H1 + H2 + H(1)){ | ab〉 ± | ba〉 } = ... = E±(ab).
Thus, we have found the proper wavefunction and
energies of the helium excited state configuration 
"ab"  by using hydrogen like orbitals with Z = 2  as a
basis ψn(r) = | n〉.
The function  | +〉 = | ab〉 + | ba〉  is symmetric with
respect to electron exchange,

       ψ+(r2, r1)  = (1/2)1/2 { | ba〉 + | ab〉 }  
= (1/2)1/2 { | ab〉 + | ba〉 }  =  ψ+(r1, r2),

whereas  | –〉 = | ab〉 – | ba〉  is antisymmetric.  This
means that exchange of electrons results in change
of the wavefunction sign

       ψ–(r2, r1)  =  (1/2)1/2 { | ba〉 – | ab〉 }  =  –(1/2)1/2 { | ab〉 – | ba〉 }  =  –ψ–(r1, r2).
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(7.37)

(7.38)

The joint probability density of the two electrons, given by the
antisymmetric wavefunction  P–(r1, r2) = |ψ–(r1, r2)|2  vanishes,
whenever r1 = r2, because  ψ–  vanishes.  The resulting minimum
(zero) of  P–  is called Fermi or exchange hole (Fermi- tai
vaihtokolo).  Its emergence is a pure quantum phenomenon, a
consequence of the indistinguishability of particles.  In case of
symmetric wavefunction, correspondingly a Fermi heap emerges
(Fermi-kukkula).
Partly for these reasons, the  energy of the
antisymmetric state is lower than the energy
of symmetric state.  The difference we found
in this case from the lowest order
perturbation theory, Eq. (7.37), is 2K.

7.10. Spectrum of helium
The (experimental) spectrum of helium shows,
that not all states assigned with the above terms
appear.  
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Fig. 7.11

Fig. 7.10



For example the configuration  1s1 2p1
  should present terms  1P1 , 3P2 , 3P1  ja  3P0  with both

the symmetric and antisymmetric wavefunction, i.e., total of 8 wavefunctions.  Interpretation
of the experimental spectra finds the terms only once, and furthermore, | +〉 and | –〉 assigned
to singlet and triplet, respectively.

7.11. The Pauli principle
Pauli explained this observation by writing the total wavefunction as a product of the orbital
and spin-function and postulating:

The Pauli principle (Paulin periaate):
The total wavefunction of electrons must be antisymmetric
(with respect to exchange of any pair of two electrons).

The particles obeying this principle are called fermions, and those obeying the "opposite"
requirement, the total wavefunction must be symmetric, are called bosons.
The four spin functions of an electron pair, given in section 4.12 are, one antisymmetric
(singlet) and three symmetric (triplet).  By using these we can write four antisymmetric total
wavefunctions

         (1/2)1/2 ψ+  ( αβ – βα )
    ψ–    αα
         (1/2)1/2

 ψ–  ( αβ + βα )
    ψ–    ββ .

with notations  α1β2 = α(1)β(2) = αβ  and  β1α2 = β(1)α(2) = βα, see sec. 4.12, pp. 58–59.
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The triplet spin state of two electrons with parallel spins is symmetric and appears with the
antisymmetric space wavefunction, where the electrons avoid each other (Fermi hole).  This
is called as spin correlation, which implies lower Coulomb repulsion and lower energy than
that of the singlet state.
The Pauli principle also implies

Pauli exclusion principle:
The quantum numbers of two electrons in a system can not be the same.

In case all the quantum numbers were the same, exchange of the two electrons would not
change the wavefunction, and therefore, for an antisymmetric wavefunction  ψ  =  –ψ   =  0,
i.e., the wavefunction would vanish.
The ground state 1s2 (1S0) antisymmetric wavefunction of helium atom can be written now as
                     ψ(r1, r2) = ψ1s(r1) ψ1s(r2) { (1/2)1/2 ( α1β2 – β1α2 ) }

= (1/2)1/2 { ψ1s(r1) α1 ψ1s(r2) β2  –  ψ1s(r1) β1 ψ1s(r2) α2 }
       ψ1s(r1) α1        ψ1s(r1) β1

= (1/2)1/2               .
       ψ1s(r2) α2        ψ1s(r2) β2

This representation of an antisymmetric wavefunction is called Slater determinant  and its
elements, which can also be denoted as  ψ1s(r1) α1  =  ψ1sα (r1)  =   | 1s α 〉   =  1s α,  are called
spin–orbitals.
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Many-electron atoms
7.12. Central-field and orbital approximations
The orbitals in the spherical Coulombic central-field are hydrogenic orbitals with the same
hydrogenic quantum numbers.  This is the orbital approximation of atoms, because in many-
electron atoms the Coulombic field is not exactly spherical or "central-field", but

  V(rj)  =  1/4πε0{ –Ze2 / rj  +  Σi' e2 / rij }.
However, in average the potential of electrons is spherical and hydrogenic.  Therefore, the
hydrogenic quantum numbers remain practical also for "orbitals" in many-electron atoms.
The outer electrons feel the nuclear charge screened by the inner electrons.  Thus, it is
proper to use sc. screened nuclear charge

        Zeff  =  Z – σ,
for the outer electrons, where σ is sc. nuclear screening constant.  This is also called as
shielding.  However, the outer electron orbital may penetrate through the inner core orbitals
close to the nucleus making the shape of the orbitals and distance from the nucleus
essential factors in
shielding.

From E. Clementi
and D.L. Raimondi
(IBM. 1963).
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Table 7.3

(7.39)

(7.40)

7.13. Periodic table of elements
Definition of configuration can be started from the pricipal quantum number or shell  K, L, M,
N, ...  (n = 1, 2, 3, 4, ...) and then with the (sub)shell or orbital  s, p, d, f, ...  (ℓ = 0, 1, 2, 3, ...).
The two more quantum numbers are the magnetic mℓ = ℓ, ℓ–1, ..., –ℓ  and  ms = ±1/2.  Note,
that for all electrons always  s = 1/2.  Thus, for atomic orbitals there are four quantum
numbers.
In a neutral atom the number of electrons is Z, neutralizing
the nuclear charge, according to the aufbau principle the
orbitals are filled from the lowest energy to higher obeying
the Pauli exclusion principle.
Occupation of the outermost orbital determines the chemical
properties of an atom.  Therefore, the properties appear
periodically and the elements can be ordered accordingly.
Ionization energy is the minimum energy needed to remove one electron from an atom.  For
a neutral this is called as the first ionization energy, for removing the next electron from the
positive (+1) ion it is the second ionization energy, etc.
The ionization energies vary periodically following the
periodic table of elements.
The energy released in adding an electron to a neutral atom
is electron affinity.
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7.14. Slater atomic orbitals
The atomic orbitals can be approximated by simplifying the hydrogenic orbital

ψnℓmℓ(r,θ,φ) = N Rnℓ(r) Yℓmℓ(θ, φ).
The shielding can be taken into account by using the effective nuclear charge Zeff  (≤ Z) and
effective principal quantum number neff  (≤ n).  Thus, we can write the sc. Slater type atomic
obitals, whose radial part Rnℓ(r) is a simplified Laguerre associated polynomials, p. 40.

(1) ψnℓmℓ(r,θ,φ) = N rneff–1 e–Zeff ρ/neff Yℓmℓ(θ,φ), where {n, ℓ, mℓ} are quantum numbers,
N is the normalization constant, ρ = r/a0 and Yℓmℓ is spherical harmonic.  Further,

(2) the effective principal quantum number neff
relates to the principal quantum number as
and the

(3) effective nuclear charge Zeff relates to Z as  Zeff = Z – σ, where σ is the shielding
constant.  It is obtained by grouping the orbitals as
        1s;     2s, 2p;    3s, 3p, 3d;     4s, 4p;  4d;    4f;    5s,5p;    5d;
and by calculating the shieldings groupwise accordingly as
                  σ = ∑a σa + ∑b σb + ∑c σc , where
(a) electrons in inner groups: σa = 1.00, except for σa = 0.85 for the next inner group, if the
considered electron is s or p electron,
(b) electrons in the same group: σb = 0.35, except for 1s:  σb1s = 0.30 and
(c) electrons in an outer group: σc = 0.
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n 1 2 3 4 5 6
neff 1 2 3 3.7 4.0 4.2

(7.41)

Slater type orbitals (STO) are used as basis functions.  Such approximate orbitals can also
be used for approximation of matrix elements, like expectation values and transition
probabilities.
Example  Write the Slater type orbitals for nitrogen  7N  1s, 2s, 2px and 2pz electrons.
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7.15. Slater determinants
By using the notation ψ(1, 2) = ψ(r1, r2), the ground state wavefunction of helium is written as

ψ1s α(1) ψ1s β(1) 1s α 1s β
ψ(1,2) =   (1/2)1/2       =  (1/2)1/2 

ψ1s α(2) ψ1s β(2) 1s α 1s β
=   (1/2)1/2   det | 1sα 1sβ | = (1/2)1/2  || 1sα 1sβ || .

Similarly, the antisymmetric wavefunction of N electrons can be written with spin–orbitals  ϕ 
as N×N  Slater determinant

ϕa(1) ϕb(1) ... ϕN(1)
ϕa(2) ϕb(2) ... ϕN(2)

ψ(1,2,...,N) = (1 / N!)1/2   :   :   :  = (1 / N!)1/2 det | ϕa(1) ϕb(2) ...    ϕN(N) | ,
  :   :   :
ϕa(N) ϕb(N) ... ϕN(N)

where the latter form lists the diagonal elements, only.
The determinant form includes the Pauli principles:  Exchange of two electrons correponds
to exchange of two rows, which will change the sign.  Occupation of the same quantum state
by two electrons means two identical columns in the determinat leading vanishing
wavefunction.
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(7.42)

7.16. Self-consistent fields
For quantitative and precise description the Slater atomic orbitals are not sufficient but the
wavefunctions need to obtained from the Schrödinger equation.  Because analytical
solutions do not exist, numerical methods are needed, and even then approximations are
necessary.  The conventional method for atoms is the Hartree–Fock self–consistent–field
(HF–SCF) approach, which is based on the one–electron model
(one–electron model  ⇐  central–field model).
Each of the electrons is moving in the central-field of nucleus and all other electrons
(central–field model).  As a starting point some trial potential is chosen, e.g. one from the
Slater orbitals.  Then, all orbitals are calculated from the Scrödinger equation and used to
create a new better potetential.  Then again, all orbitals are recalculated from the Scrödinger
equation and used to create again a new better potetential, etc.  This iteration will be
continued until the potential and solutions converge and become stable.  This situation is
called as self-consistent (SCF).
For the numerical solution the atomic hamiltonian can be written as

where hi is the hydrogenic one-electron hamiltonian Eq. (7.30), and the double sum is the
Coulomb repulsion of all electrons i and j.  The factor 1/2 is to avoid "double counting" of
interactions.
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(7.46)



For simplicity, considering an atom with closed shells, writing the whole wavefunction in form
of Slater determinant, and then, the expectation value of the hamiltonian (7.46), i.e., the total
energy.  Now, conditions for minimization of the total energy wrt. each orbital ψs leads to sc.
Hartree–Fock equations

                 ,

one for each ψs.  These are explicit differential equations for all ψs , 
sc. one-electron equations, where the Coulomb operator Jr is defined as

and exchange operator or Fock operator Kr as

The Coulomb operator Jr is the average electrostatic potential, sc. Hartree potential, of the
orbital r.  Similarly, the Fock–operator includes spin correlation.
Due to the central-field approximation, solutions to Hartree–Fock equations ψs contain the
spherical harmonics as the angular part with quantum numbers ℓ and mℓ.  The radial part
must fit to the boundary conditions, which leads to certain discrete values of εs , only.  This is
taken care of by the basis fuctions or the numerical (finite-difference) algorithm.
The H–F equations are eigenvalue equations, which determine both the eigenfunctions and
eigenenergies of orbitals s.
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(7.47a)

(7.47b)

(7.47c)

The orbital energies can also be written as expectation values of H–F equations (7.47a) as
εs = Es + ∑r (2Jsr – Ksr),

where  Es = 〈s | h1 | s〉  is sc. one-electron integral, (Note, h1 =  hs)
Jsr = 〈s | Jr | s〉 = 〈sr | 1/4πε0 e2/r12 | sr〉

is the Coulomb energy between orbitals s and r, cf. the equation (7.33)) and
Ksr = 〈s | Kr | s〉 = 〈sr | 1/4πε0 e2/r12 | rs〉

is the corresponding exchange energy, cf. equation (7.35)).  Note, that Jrr = Krr.
Thus, the orbital energy εs comprises the one-electron integral  〈s | h1 | s〉  and interaction
energies of all other electrons r and s.  Now, because all orbitals are occupied by 2 electrons,
the sum of all orbital energies is  2 ∑s εs.  However, this sum includes all interactions twice,
which is called double counting.  Therefore, the total energy is

       E = 2 ∑s εs – ∑s ∑r (2Jsr – Ksr)
for an atom with closed shells occupied by two electrons.
For a helium atom, e.g.,

ε1s = E1s + (2J1s,1s – K1s,1s) = E1s + J1s,1s

and the total energy becomes correctly as
      E = 2 ε1s – (2J1s,1s – K1s,1s) = 2 (E1s + J1s,1s) – J1s,1s = 2 E1s + J1s,1s.

It is the orbital energy, which is needed to remove the electron from an atom assuming that
the energies of other electrons do not change.  However, the other electrons, of course,
"relax" as a response the removal.  Their orbital energies shift slightly downwards.
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(7.49)

(7.48a)

(7.48b)

(7.48c)



The shift of energies of other electrons contribute to lowering the ionization potential of the
removed one.  For removal of the outermost electrons these relaxation effects may be
negligible, and then,

      Ir   ≈  εr

This assumption is called Koopmans' theorem:  The ionization energy of the outermost
electron is roughly its orbital energy (with opposite sign). 

7.17. Restricted and unrestricted Hartree–Fock approach
Above, while considering atomic orbitals we assumed closed shells, each occupied with 2
electrons with opposite spins.  Implicitly, we also assumed the same spatial orbital form for
each of these electron pairs.  Of course, in case of odd number of electrons, at least one
open shell with single occupation occurs, but there is only one spatial form for each shell.
This is called restricted Hartree–Fock (RHF) method.
Now, in many cases and, in particular, in the presence of open shells and/or presence of
imbalance of spins the two electrons with different spins have different interaction potential.
Therefore, the spatial parts of orbitals for different spins will find different spatial form in self-
consistency, if not restricted but allowed. This is called unrestricted Hartree–Fock (UHF)
method.
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(7.50)

7.18. Density functionals
An alternative approach to the electronic structure calculations is to consider the electron
density, instead of the wavefunction, as a starting point.  Later in chapter 9, we will learn,
that all the properties of any system of electrons in the ground state can be derived from its
density function ρ(r), alone.  Let us consider the homogeneous electron gas (HEG) in infinite
space as an example.
With the Thomas–Fermi theory it can be shown that for the HEG the kinetic energy per
electron is a functional of ρ as

     T[ρ]  =  C ∫  ρ5/3(r)  dr,
where  C = 35/3π4/3/10 ≈ 2.871.  For the electron–nucleus interaction we can write

          VeN[ρ]  =  – Z/4πε0  ∫  ρ(r)/r  dr
and for the electron–electron interaction, the Hartree energy, as

       Vee[ρ]  =  1/2 Z/4πε0  ∫  ρ(r1)ρ(r2) / |r1–r2|  dr1 dr2.
Thus, the Thomas–Fermi total energy functional becomes as

         ETF[ρ]  =  T[ρ] + VeN[ρ] + Vee[ρ].

This total energy lacks the excahange interaction between electrons.  P.A.M. Dirac showed
that the exchange interaction per electron in HEG is proportinal to ρ4/3.  Therefore, the
exchange functional becomes as

     K[ρ]  =  Cex ∫  ρ4/3(r)  dr,
where  Cex = 3/2/4πε0 (3/π)1/3 ≈ 1.477.  This is called the Thomas–Fermi–Dirac method.
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7.19. Term symbols of many-electron atoms
See the chapter 7.6.on pages 115–116.

7.20. Hund's rules
Hund's rules are empirical "laws" for the order of energy levels and states of terms.  As an
example consider configuration np2, which gives terms 1D2, 3P2,1,0 and 1S0.  These remain
from terms of np n'p configuration 3D3,2,1, 3P2,1,0, 3S1, 1D2, 1P1 and 1S0 after applying Pauli
exclusion principle for n = n'.
Rule 1:
The term with maximum multiplicity lies lowest in energy.  This is a consequence of spin
correlation.  For the np2 configuration this implies  E(3P) < E(1D), E(1S).
Rule 2:
For a given multiplicity, the term with the highest  L lies lowest in energy.  With larger L
the electrons orbit further away from each other (and to same direction) leading to lower
Coulombin repulsion.  Thus, for np2 configuration it implies that E(1D) < E(1S).
Rule 3:
For a given multiplicity and L, the level with lowest J lies lowest in energy for less
than half-filled shell, and vice versa.  This can be understood as a consequence of
spin–orbit interaction.  Thus, for configuration np2

E(3P0) < E(3P1) < E(3P2) < E(1D) < E(1S).
Correspondingly, for the configuration np4

E(3P2) < E(3P1) < E(3P0) < E(1D) < E(1S).
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7.21. LS- and jj-coupling
The coupling scheme presented earlier is useful, in case the
 Coulomb interactions dominate.  There, the orbital angular
momenta of electrons  ℓℓℓℓi  are coupled to give L, and the
spins si to give S, and then coupling of L and S is considered.
This scheme is called LS- or Russell–Saunders-coupling,
which is good for, light atoms. The spectral terms presented
earlier naturally describe this scheme.
In case of heavy atoms, the spin–orbit interaction may
dominate, and therefore it is naural to first couple s and ℓℓℓℓ of
each electron to yield j, and then, these can be further
coupled to form J.  This is called jj-coupling.

Atoms in external fields
7.22. Normal Zeeman effect

Through coupling to the magnetic moments the external
magnetic field B effects on the energy states of electrons,
which can be seen in atomic spectra.  This is called the
Zeeman effect.
Consider the 1P1 level, where S = 0 and L = J =1, and thus, only L contributes to m.
Then, M = γe L, where γe is the magnetogyric ratio, and the interaction hamiltonian is

   H(1) = – M · B = – γe L · B = – γe Lz B.
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Fig. 7.22

(7.71)



Now, the term 1P1 comprises states ML = MJ = 0, ±1, which implies 
that  L · B = Lz B = " ML B  and the corresponding energy is

     E(1)  =  〈1PML | H(1) | 1PML〉  =  – γe " ML B =  µB ML B,
where ML = –1, 0, 1; and µB is Bohr magneton.  Now, consider
transition  1P → 1S,  where the final state is not effected by the
magnetic field, because  S = L = 0, with the presence of magnetic
field instead of one line, three lines appear, with separation µB B,
see Fig. 7.23.
This splitting of a singlet level (and spectral line) to three is called as
normal Zeeman effect. The central line is
called π-line (linearly polarized) and the
other two σ-lines (circularly polarized).

7.23. Anomalous Zeeman effect
A more general case than "splitting of a
singlet level", where levels of higher
multiplicity contribute is called 
anomalous Zeeman effect, see Fig. 7.26.
Note, the selection rules in transitions. 
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(7.72)

Fig. 7.23

Fig. 7.26

7.24. Stark effect
Effects from the electric field on the energy states of electrons and
spectra is called Stark effect.  The strongest, though even then relatively
weak, the sc. linear Stark effect, which is observed from the hydrogenlike
atoms.  This is due to the polarization.
The hamiltonian is

        H(1) = – µ · EEEE = – µz E = e z E,
where  µ = e r  is the dipole moment of the electron.
The hydrogenlike orbitals are not eigenfunctions of this
operator.  The selection rules of dipole transition allow non-zero
matrix elements between such states as  2s-  and  2pz.  The
perturbation operator  H(1) = e z E  is said to mix the states, and
according to perturbation theory, sec. 6.1,

〈2pz | H(1) | 2s〉  =  3 e a0 E
The mixed state wave functions are  (s + p) / √2  and  (s – p) / √2,
which are illustrated in Fig 7.28.  The energy separation of
these states depends linearly on the electric field, as seen in
Eqs. above.
Very strong field can rip the electron off from the atom.  This
means tunneling as illustrated in Fig. 7.29.  This is one example
of a state with finite lifetime, which is seen as broadening in the
corresponding spectral line.
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8. Molecular structure
Molecular structure comprises the conformation by its atoms (spatial configuration) and
electronic structure, i.e., distributions in space and energy.  Molecular structure lays basis for
chemical properties and reactions, and can be experimentally measured by spectroscopies.
Traditionally, the electronic structure has been considered with molecular orbital theory or
valence bond theory, which both are using the atomic orbitals as starting point.

Born–Oppenheimer approximation
The complete Schrödinger equation of a molecule includes the kinetic and interaction
energies of all particles: electrons and nuclei.  The simplest molecule H2+ consists of three
particles, electron and two protons, only, but there are no exact analytical solutions to its
Schrödinger equation.
In practice, the nuclear dynamics is conventionally
separated from that of the electrons:  The electronic
structure is calculated by keeping the nuclei in fixed
positions, giving their Coulomb potential for electrons,
only.  This is called Born–Oppenheimer approximation.
The total energies of such nuclear conformations of a
molecule define the sc. potential energy (hyper)surface
(PES) for nuclear dynamics.  For a diatomic molecule
the PES reduces to a potential energy curve.
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Fig. 8.1

8.1. Formulation of Born–Oppenheimer approximation
The Born–Oppenheimer (BO) approximation is motivated by the large difference of masses
of electrons and nuclei.  Therefore, the electrons are considered to adapt to the nuclear
motions without delay and without exchange of energy, i.e., adiabatically.  Thus, the
momentary nuclear conformation only creates a "time-independent" external potential to the
Schrödinger equation of electrons.  The total energy of electrons and potential energy of
nuclei together define the PES, where the nuclear dynamics can be considered classically or
quantum mechanically, if relevant.  The minimum energy point of PES is called equilibrium
conformation.
In practice, the above means approximate separation of the wavefunction as

               Ψ(=R,=r ) = ψNrovib(=r;=R)  ψ(=R;=r ).
From now on, we will consider the latter part, the electronic wavefunction, only.

8.2. Hydrogen molecule ion
Within the B–O approximation, only the simplest molecule, H2+,
can be treated exactly (in ellipsoidal coordinates).  The
hamiltonian is

Let us consider the energy eigenstates of the electron as a function of the distance of
protons R.  The exact solutions are illustrated in the Figs. 8.5 and 8.6.
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(8.9)

(8.3)

Fig. 8.3



The bond of the molecule is formed by minimization of the
energy, which happens only with the lowest (and negative)
eigenenergy and certain distance of the protons, see Fig.
8.5.  Therefore, the corresponding eigenfunction 1σ  is
called as the "bonding" molecular orbital, for which it is
typical to bring the electronic charge in between the nuclei.
The minimum energy distance of the nuclei is called as
(equilibrium) bond length.  For
H2+ it is  Re = 1.06 Å,
corresponding to the binding
energy 2.648 eV.
The next orbital is  2σ* , which
is "antibonding", whose
occupation is seen to minimize
its positive energy towards zero
(the reference energy) by
 increasing the bond length

towards infinity.  The charge distribution explains why, but also
the higher kinetic energy contributes.
Once again, the simple "two degenerate level perturbation
theory" can also be used to analyze these two orbitals.  Then,
we assume that these molecular orbitals are formed from those
of two hydrogen 1s orbitals at the two nuclei.  The reference
system is the two 1s orbital at infinite distance and pertubation
is their interaction at the binding distance, i.e., the bond length.
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Fig. 8.6Fig. 8.5

Molecular orbital theory
8.3. Linear combination of atomic orbitals (LCAO)
As shown in the above perturbational treatment, the molecular orbitals can be thought of
forming from 1s orbitals of hydrogen atom  φa and φb or | a 〉 and | b 〉.  As seen, then

1σ  ≈  φa + φb     and       2σ  ≈  φa – φb.  
Similarly, in general molecular orbitals can be described with a linear combination of atomic
orbitals (LCAO).  This is also called as molecular orbital (MO) method, or LCAO–MO
method.  Several kind of atomic orbitals (AO) can be chosen, e.g., HF–SCF–AO or STO.
Hamiltonian of  H2+ ion is

The LCAO trial wavefunction is now
ψ  =  Σr cr φr  =  Σr cr | r 〉,

where  φr  =  | r 〉  are the basis functions and we should determine the coefficients cr.  From
the variation method we get the secular equations

 Σr cr (Hrs – E Srs) = 0.
Now, consider the basis set { | a 〉, | b 〉 }, i.e., r, s = a, b.  Then, evaluation of the matrix
elements yields

QTMN,  2018     142

(8.11)
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Haa = Hbb = 〈a | H | a〉 = α  is sc. Coulomb integral,
Hab = Hba = 〈a | H | b〉 = β  is sc. resonance integral or "hopping" integral,
Sab = Sba = 〈a | b〉 = S  is overlap integral and  Saa = Sbb = 〈a | a〉 = 1.

Thus, the secular equations (8.14) take the form
ca (α – E) + cb (β – E S)  =  0
ca (β – E S) + cb (α – E)  =  0

and nontrivial solutions exist, if the secular determinant vanishes
  α – E β – E S

     =  0.
β – E S   α – E

This gives the second order equation  (α – E)2 – (β – E S)2 = 0.  The solutions for E are
         E± = (α ± β) / (1 ± S)

From the secular equations we get
E+ :    ca = cb and ca = 1 / {2(1+S)}1/2

E– :    ca = – cb and ca = 1 / {2(1–S)}1/2

which determine the wavefunctions
ψ± = ca ( | a 〉 ± | b 〉 ) ,

where | a 〉 and | b 〉 are the 1s orbitals of hydrogen atom.
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(8.15)

(8.16)

(8.17)

(8.24)

Let us find expressions for α, β and S.  The Coulomb integral is

where

As            , we get                                        (Example 8.1 in book)

Resonance integral

where

Also k' is obtained analytically, see the appendix

The overlap integral is (see the example 8.1 in the text book)
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(8.22)



Now we write the energy eigenvalues E±  =  (α ±  β) / (1 ±  S)
explicitly as:

and

illustrated in Fig. 8.11.  Both  j' and  k' are positive, and thus, 
E+ is the energy of bonding orbital and E– that of antibonding.
Note, E– is more upwards from E1s energy than E+ is downwards.
As given above, already, the wavefunctions are

ψ± = {2(1–S)}–1/2 ( | a 〉 ± | b 〉 ) .

By using the above analytical expressions the minimum energy of H2
+ molecule and the

corresponding bond length Re can be found.  We find  Re = 1.30 Å  and for the dissociation
energy  E1s – E+ = 1.76 eV (170 kJmol–1).  The experimental values are 1.06 Å and 2.60 eV
(255 kJmol–1).  The deviation is large and the main reason for that is the insufficient basis set:
the hydrogen 1s orbitals, only.
Diatomic molecules have cylindrical symmetry.  The eigenstates of full symmetry are called
as σ-orbitals, cf. the atomic s-orbitals.  An antibonding orbital can be denoted with a star (*).
In case of homonuclear diatomic the inversion symmetry can be denoted by a subscript:
even with g (gerade) and odd with u (ungerade).  Thus, the two lowest energy orbitals are
denoted as σg and σu*.  If it is relevant to indicate the relationship to the corresponding
atomic orbitals, the origin, the notation can be extended correspondingly to 1sσg and 1sσu*.
Also, the principal quantum number can be indicated like 1σg and 1σu* (or 1σg and 2σu*).
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                      Fig. 8.11.

(8.23a)

(8.23b)

(8.24)

8.4. Hydrogen molecule
The electronic configuration of He atom was obtained by occupying the 1s orbital of He with
two electrons.  Similarly, we now occupy the 1σg orbital of H2+ by two electrons to obtain the
electronic configuration of H2 molecule.  Thus, we obtain the configuration 1σ2 (1Σg).  The
symmetric orbital part is now 1σg(1) 1σg(2), which needs an antisymmetric spin part, cf. sec.
7.11 for helium, which is

ψ(1,2) = 1σg(1) 1σg(2) (1/2)1/2 {αβ–βα}.
Because 1σg = {2(1+S)}–1/2 (a+b), where a = φa = | a〉,  we have
 ψ(1,2) = {2(1+S)}–1 {a(1)+b(1)} {a(2)+b(2)} (1/2)1/2 {α1β2–β1α2}.
The corresponding energy can now be calculated according to
the perturbation theory using the hamiltonian

It is a function of R.  Thus, the potential energy curve is

where the sc. two-electron integrals are
                      and

This gives the bond length 0.85 Å and binding energy  2 E1sH – E+H2 = 2.70 eV (260 kJmol–1).
Corresponding experimental values are  0.742 Å  and  4.48 eV (432 kJmol–1).  Thus, the
description is reasonable, but not very good.
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8.5. Configuration interaction
Valence bond method (VB)
MO-method does not properly describe bond breaking of the hydrogen molecule and its
dissociation to two hydrogen atoms, whose "natural" wavefunction would be  a(1) b(2) = | ab〉
= ab.  With valence bond method, instead, this natural wavefunction is good for describing an
electron pair, which is taken as the starting concept.
Together with  ab  the degenerate function  ba  is as good to start with and the degenerate
states perturbation theory (or variational approach) again leads to  ψ± = N± {ab ± ba}   and
ψ+ is identified as the ground state.
Normalization constant is found from 〈ψ± | ψ±〉 = N±2 {〈ab | ab〉 ± 〈ab | ba〉 ± 〈ba | ab〉 + 〈ba | ba〉} =
=  N±2 2(1±S2)  = 1,  which gives

        N± = 1 / {2(1±S2)}1/2.
Consider next the expectation value of hamiltonian for the function  ψ± = N± {| ab〉 ± | ba〉}.
We get

where J = j – 2j'   and   K = k – 2k'S.
Note, that the integral  k  corresponds to the helium atom exchange integral K.  Also, the
now found expressions  J  and  K  are called Coulomb and exchange integrals.  Both of these
are negative, and therefore  E+ <  E–.  Minimum of E+ wrt. R gives the equilibrium bond length
0.875 Å and the corresponding binding energy  2 E1sH – E+ = 3.14 eV (303 kJmol–1), which is
"better" than what was found with the molecular orbital theory.
[MO: 0.85 Å / 2.70 eV;   Exp.: 0.742 Å / 4.48 eV]
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Molecular orbital method (MO) and charge correlation
Let us compare the descriptions of H2 molecule given by the MO and VB methods.  Omitting
the normalization factors the above given wavefunction of the two can be written as 

ψVB =  a(1) b(2) + b(1) a(2)    =  ab + ba
ja

ψMO = a(1)b(2) + b(1)a(2) + a(1)a(2) + b(1)b(2)  =  ab + ba + aa + bb.
The valence bond wavefunction presents the covalent bond formed by the pair of electrons
coming from atoms  a and b.  The molecular orbital wavefunction includes the covalent bond,
but in addition, the two terms introducing the ionic bond of the form H+–H–, which describes
the occasion that both of the electrons occupy  a  or  b.  Consider dissociation, for example!
We can infer, that the ionic nature of MO-bond is too strong.  Due to the Coulomb repulsion
the two electrons tend to occupy the two different atoms more than the same.  This is called
charge correlation, or in general, correlation interaction.  Note the difference between this
and the above considered spin correlation or exchange interaction.  The latter is purely
quantum mechanical phenomenon, whereas the nature of charge correlation is a classical
kind many–body interaction.
On the other hand, the VB wavefunction underestimates the ionic nature, because to some
extent the two electrons appear also in the same atom.  Therefore the VB wavefunction can
be improved with a trial wave function

        ψVB = ab + ba + λ {aa + bb}
= ψcovVB + λ ψionVB,

where we now have a mixing parameterr   λ < 1  to be found.
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With the variational method to minimize the total energy we get  λ ≈ 1/6.  Thus, there is some
small ionic bonding present,  λ2 ≈ 1/36 ≈ 3%,  instead of 50% suggested by the MO method.
This explains why uncorrected VB method describes hydrogen molecule better than the MO
method with this simple basis set.  With the optimized wavefunction we now get the binding
energy 4.10 eV (396 kJmol–1), to be compared with the experimental 4.48 eV (432 kJmol–1).

Molecular orbital method (MO) and charge correlation
The MO wavefunction can also be improved to include correlations or the many-body effects.
This can be done by including the sc. configuration interactions (CI), as follows.  Consider
the occupations of molecular orbitals  σg ja σu* spanned by the two1s orbitals a and b, i.e. the
different electronic configurations σg2, σg σu ja σu2.  In more details we have the four
configurations  σg(1) σg(2), σg(1) σu*(2), σu*(1) σg(2) and σu*(1) σu*(2).  The second and the
third are degenerate and become mixed, and with spin functions can be written as:

1Σg: Ψ1  = σg σg   (α β – β α)
1Σu: Ψ2  = {σg σu* + σu* σg}  (α β – β α)
1Σg: Ψ3  = σu* σu*   (α β – β α)

          α α
3Σu: Ψ4  = {σg σu* – σu* σg}     (α β + β α)

          β β

Here, the total molecular symmetry is indicated with the spectral terms 1Σg or 3Σu, similarly
with the case of atoms.
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Now, consider the asymptotic behavior of energies of these
configurations as the molecule dissociates, i.e.  R → ∞.
We see, that configurations Ψ1 and Ψ3 approach to two the
1s1 atomic configurations as σg and σu* become
degenerate, and then their energies approach to E+.  Also,
as these two molecular configurations assume the same
symmetry, 1Σg, with the perturbation theory these
configurations may be allowed to mix, in order to minimize
the total energy.  Thus, we can write a trial wavefunction
(omitting normalization constant)

ψCIMO =  c1Ψ1 + c3 Ψ3

=  {c1 σg σg + c3 σu* σu*} (α β – β α)
= c1 {σg σg + λ' σu* σu*} (α β – β α),

where λ' = c3/c1.  Now, λ' < 1, because the lower energy
configuration σg2 can be expected to dominate: have more
weight than σu2.  Substitutions σg = a + b  and  σu = a – b,
(omitting normalization and spin functions) give

       ψMO = a b + b a + λ {a a + b b},
which is exactly the same as the improved  ψVB.
The MO method (plus CI) is more "straightforward", and therefore, more used than VB.  In
what follows, the concepts and formalism of MO will be used.
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8.6. Diatomic molecules
Now, we consider formation of the electronic configuration of diatomic molecules based on
the Bohr aufbau principle and Pauli exclusion principle.  First however, let us look at some
rules and conditions in formation of molecular orbitals and bonds.
The atomic orbitals forming the bond must have same symmetry
wrt. the rotation around the axis of the bond.  Such orbitals are
e.g. atomic s, pz and dzz, ... orbitals in one set, they have the full
rotation symmetry wrt. z-axis (the bond) and they form the
highest symmetry molecular orbitals, the sc. σ orbitals.
Atomic px and py orbitals have lower sc. π symmetry and they
form π bonds, together with dxz, dyz, fxzz, fyzz ..., orbitals.
Similarly, there are δ, φ, ... symmeries and bonds.
Same symmery requirement follows from the needed overlap of
participating atomic orbitals.  The measure of this is the overlap
integral S.  The overlap integral of different symmetry atomic
orbitals vanishes.
On the other hand, in case of the same symmetry orbitals,
sufficient spatial overlap is needed, i.e. the atomic orbitals
should not be too diffuse or localized in different parts in space.
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Fig. 8.16

The atomic orbitals forming the molecular orbital should be close
in energy.  With MO approach the energies are solutions to the
secular determinant equation, cf. (6.14) and (8.15)

 αA – E     β – E S
        =   0,

β – E S    αB – E
and in simplest form as, cf. (6.16), Fig. 6.3 and (8.16)

E+  ≈  αA  –   β2/(αB–αA)   and   E–  ≈  αB  +  β2/(αB–αA),
where  β = H12, and  αA and αB  are the atomic orbital energies.
We see that large difference  αB–αA  implies less changes in the
energies, small mixing of A and B , and thus, weak binding.
With these rules and principles we can analyze evolution of the
molecular electronic configurations of homonuclear diatomic
molecules of second row atoms, as shown in Fig. 8.18.  Note,
that also  2sσ* and 2pzσ molecular orbitals mix, and as a
consequence, change their bonding/antibonding nature.
All this carries a name hybridization, which results in hybrid
orbitals.  
Occupying the 14 electrons of nitrogen molecule  N2 we end up with the configuration

N2:     1sσg2 1sσu*2 2sσg2 2sσu*2 2pπu4 2pσg2    ( 1Σg ),
which we can interprete as a triple bond:  one σ bond and two π bonds.  The triple bond is
denoted as  N≡N .
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Fig. 8.17

(8.32)

(8.33)



The 16 electrons of oxygen O2 have the configuration
O2: 1sσg2 1sσu*2 2sσg2 2sσu*2 2pπu4 2pσg2 2pπg*2 ,

whose possible spectral terms are  3Σ, 1Σ and 1Δ.  Applying
the reasoning behind Hund's rules for atoms, we can infer,
that the ground state is 3Σ.  This makes oxygen gas
paramagnetic.  By counting the difference of bonding and
antibonding orbitals, we can conclude the case of a double
bond:  O=O.
The bond of fluorine dimer F2: ... 2pσg2 2pπg*4 (1Σg) is only
single  F–F  and weak: 1.60 eV  (cf. N2: 9.76 eV), and that of
Ne2: ... 2pσg2 2pπg*4  2pσu*2 (1Σg)  does not exist at all
according to the MO theory.  There is however, very weak
binding due to the many-body effects in form of the van der
Waals interaction.
The configuration of carbon dimer C2 can be predicted to be
according to the scheme ... 2sσu*2 2pπu4 (1Σg), but for the
ground state it turns out to be:  ... 2sσu*2 2pπu3 2pσg (3Πu).
This again, can be explained by Hund's rule reasoning that
the triplet state 3Πu is lower in energy than 1Σg due to the
spin correlation.
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Fig. 8.18

Heteronuclear diatomic molecules
The simplest approximation of molecular orbitals of
heteronuclear diatomics is

ψ  =  cA φA + cB φB

where contributions from the participating atomic orbitals
|cA|2 and |cB|2 are not equal as in the case of homonuclear
diatomic.  As an example consider carbon monoxide 

CO:   1σ2 2σ2 3σ2 4σ2 1π4 5σ2  ( 1Σ+ ).
By looking at the level scheme in Fig. 8.22, we can infer that it
is a triple bond, like in case of N2.

Polyatomic molecules
Generally, within the molecular orbital theory the electronic
wavefunctions ψ of polyatomic molecules are sperpositions of
atomic orbitals  φi  as

ψ  =  Σi ci φi.
Molecular orbitals can be delocalized in the whole molecule or
localized to some extent or even in one of the atoms of the
molecule, only.
By using group theory and symmetry analysis it is possible to
find out, which AOs mix to form molecular orbitals of certain symmetry.
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(8.35)

Fig. 8.22



8.7. Symmetry-adapted basis sets
Conformations of water molecule H2O and ammonia molecule NH3 can be understood by
binding and molecular orbitals, which origin from 2p orbitas.  The 1s orbitals of hydrogen
contribute to these molecular orbitals by binding to the roughly orthogonal  px, py and pz
orbitals.  Therefore, the angles between the bonds are close to 90° (water: 104.5° ja
ammonia: 107°).  
However, instead of using these as a basis set for LCAO-MO,
directly, let us consider the symmetry adapted basis functions.
In case of water we consider 2s, 2px, 2py and 2pz orbitals of oxygen
ans 1s orbitals 1sA and 1sB of hydrogen (oxygen 1s does not
contribute).  For H2O in C2v group, this can be done similarly as it
was done for NH3 in chapter 5.
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Fig. 8.23

Thus, the six atomic orbitals give six symmetry-adapted basis functions:   O2s, O2px, O2py,
O2pz, H1sA+H1sB and H1sA–H1sB.  With these and the hamiltonian the 6×6 matrices can be
written, secular equations and the determinat, which gives 6 eigenvalues as the solution.
Because each of the basis functions belong to some symmetry species, the 6×6 matrices
reduce to three matrices (3×3, 2×2 and 1×1), each corresponding to different symmetry
species.  This simplifies the problem as the different symmetry species can be worked out
separately.  All of the molecular orbitals take the form:

A1: a1  =  c1 (H1sA+H1sB) + c2 (O2pz) + c3 (O2s)
B1: b1  =  O2px

B2: b2  =  c1' (H1sA–H1sB) + c2' (O2py),
where the coefficients ci  and ci ' are obtained from the secular
equations.
By occupying the 10 lowest energy spin-orbitals we get the
configuration  O1s2 1a12 1b22 1b12 2a12 (1A1), see Fig. 8.24.
The total energy of the molecule can be evaluated and its
minimization gives the equilibrium conformation of the
molecule.  By using the HF–SCF method to properly include the
electronic interations a relatively good conformation is obtained.
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Fig. 8.24



Similarly, the electronic structure of  NH3 molecule in group C3v can be
considered, which was done in sec. 5.12 in example 5.9.
Thus, with the same notations

sN =  N2s (a1)
s1 =  H1sA + H1sB + H1sC (a1)
s2 =  2 H1sA – H1sB – H1sC (e)
s3 =  H1sB – H1sC (e)

In addition, considering the 2p orbitals px, py ja
pz  of nitrogen, one can infer that

A1:  a1 =  c1 s1 + c2 sN + c3 pz ,
E :  e =  c1' s2 + c2' px  ja

 e =  c1'' s3 + c2'' py .  
Now, this leads to 7×7 matrix, which reduces to
three: 3×3, 2×2 and 2×2, the two last ones being
essentially the same and giving degenerate
molecular orbitals. The 7 solutions are
illustrated in Fig. 8.26.  These can now be
occupied by the 10 electrons of NH3 molecule,
which leads to the configuration
N1s2 1a1

2 1e4 2a1
2 (1A1).
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Fig. 8.26Fig. 8.25

Hybrid orbitals
Appearance of covalent bonds and their orientation can also be described by kind of mixing,
sc. hybridization.  Now, in case of the molecules H2O and NH3 we can assume hybridization
of the "central" 2s orbital with 2p orbitals in bond formation.  Bonds can be thought of formed
by the electron pair: one occupying the hybrid and the other occupying hydrogen 1s, cf. VB
description.
The two bonds of H2O are in same plane.  Let us consider
the hybridization leading to this.  The hybrids of 2s, 2px
and 2py orbitals can be written now

h1 = a s + bx px + by py,
h2 = a s – bx px + by py .

These are mutually orthogonal, as well as the third one, a
perpendicular hybrid  h0, which is occupied by 2 electrons,
already, and therefore, it does not participate in bonding.
If only px and py orbitals are hybridized (a = 0, bx = by = 1),
the angle between the hybrids is 90°.  Then, h0 = s and
occupations 1s2 2pz2 h02 h1 h2 projected onto the atomic
orbitals give a "configuration" 1s2 2s2 2px 2py 2pz2, which
can be considered as the occupation of the oxygen in
water molecule.  This is called p2-hybridisation.
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In case only s and px orbitals are hybridized (a = bx = 1, by = 0), the angle between the hybrids
h1 and h2 is 180°.  Then, h0 = py and occupations 1s2 2pz2 h0

2 h1 h2 .  This is projected to the
"configuration" 1s2 2s 2px 2py2 2pz2, which is called sp-hybridisation.
Whereas if the three orbitals 2s, 2px and 2py get mixed with equal weights (a = bx = by = 1), it
is sp2-hybridisation, intermediate of the two above, which yields the bond angle 120°.
The angle between the two bonds in water molecule is observed to be 104.45°, where the
contribution of O2s orbital to the bonds ia bout 20%, because a2 = 0.20  (a = 0.45 and b = 0.89).
Nitrogen atom usually forms three bonds, one with each of its p orbitals.  Without
hybridization the bond angles would be 90°.  However, the bond angles of NH3 molecule are
107°, for which reason the 2s orbital can be assumed to be hybridized with p orbitals.  In fact,
hybridization of the 2s orbital can be evaluated to be 80%, which is close to the sc. sp3-
hybridisation.
Carbon usually forms four bonds, e.g. CH4, where the
bons are oriented as the tetrahedron.  Then, the bond
angles are 109.47° = arccos(–1/3).  The valence orbitals
of carbon, 2s , 2px , 2py  and 2pz form the hybrids

h1 = s + px + py + pz,
h2 = s – px + py – pz,
h3 = s + px – py – pz  and
h4 = s – px – py + pz.
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This is how the atomic occupation of orbitals 1s2 2s2 2p2 transforms to 1s2 2s 2p3, because
each of the hybrid orbitals assume 1/4 of s nature and 3/4 of p nature.  This is called as 
sp3-hybridisation.  The sp3-hybridization is also found in many crystal structures.

8.8. Conjugated ππππ-systems and Hückel MO method
The double bond of ethene molecule H2C=CH2 is composed of a
σ bond from sp2-hybridized s, py, pz –> h1, h2, h3 (120°), and a 
π-bond of the two px orbitals of both atoms.  This kind of π-bond is
torsionally rigid forcing all the H atoms into the same plane.
Consider next the butadiene molecule CH2=CH–CH=CH2, where
each of the carbon atoms initially have four valence electrons
(2s2 2p2) and the hydrogens have one each "for bonding".  Thus,
we have now σ-bonds from (2s, 2pz), as  H2C–CH–CH–CH2.
Each of the carbon atoms still have one p electron, perpendicular
to the σ-bonds, to form the π-bonds.  Separation by symmetry
allows us to consider these π-bonds, formed by the orbitals p1, p2,
p3 and p4, independently of σ-bonds.
Thus, secular equation of π-symmetry is

∑i ci {Hij – E Sij} = 0 ;   i = 1, 2, 3, 4,
and the energies can be solved from the corresponding secular
determinant

det | Hij – E Sij | = 0,
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Fig. 8.27.



i.e. H11 – E S11     H12 – E S12     H13 – E S13     H14 – E S14 

H21 – E S21     H22 – E S22     H23 – E S23     H24 – E S24 
                     =  0.

H31 – E S31     H32 – E S32     H33 – E S33     H34 – E S34 

H41 – E S41     H42 – E S42     H43 – E S43     H44 – E S44 

Let us solve this by using the Hückel molecular orbital approximation, which may also be
called as tight-binding approximation.  These are based on the following approximations:
(1)  Nondiagonal overlap integrals are set to zero:  Sij  =  δij,
(2)  the diagonal hamiltonian matrix elements are the same:  Hii  =  α  and
(3)  the nondiagonals vanish, except for the neighboring ones, all of which are the same:

  Hij  =  0, if  | i – j |  >  1;   and   Hij  =  β, if  | i – j |  =  1.
With these assumptions the secular determinant simplifies to

α – E        β          0            0 

   β        α – E       β           0 
     =  0.

   0           β      α – E        β 

   0           0           β      α – E
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The four roots of this determinant are  E  =  α ± 1/2 (√5 ± 1) β
≈   { α ± 1.6 β  ja  α ± 0.6 β }.  The orbital energies and
bonding are illustrated in Fig. 8.28.  Note, that both the
Coulomb integral  α  and the resonance integral  β   are
negative.
These π-orbitals are delocalized in the whole molecule and
a systematic wavelike behavior of bonding/antibonding
nature can be identified, see Fig. 8.29.
These kind of delocalized π-orbitals from "perpendicular" p
orbitals are called conjugated π-systems.
Now, we occupy the two lowest levels by four electrons and
get two more bonds, one between 1 and 2 and another
between 3 and 4.  Thus, we can write the molecular formula
as  CH2=CH–CH=CH2, though the π-electrons are
delocalized in the whole chain of carbon atoms.
The joint energy of these delocalized π-electrons can be written now as

2 (α + 1.6 β) + 2 (α + 0.6 β) = 4 α + 4.4 β.
Comparing this to the alternative of two localized pairs of bonding electrons with the energy
4 α + 4 β, we see, that delocalization lowers the energy by  0.4 β, where β < 0.  This is called
delocalization energy.
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Figs. 8.28–29.



These kind of conjugated bonds constructed from
delocalized electrons are common in organic compounds,
e.g., aromatic compounds.  Generally this kind of bonds are
called π-bonds, although the π-symmetry might be
somewhat broken, like in benzene.  There, the axis
of cylindrical symmetry is bent to make a ring.
In Fig. 8.30, the energy levels and delocalized
molecular π-orbitals of benzene molecule are illustrated.
It has been developed several other methods improved
from the Hückel MO-method by including more interactions
between the neighbors, overlap integrals and better basis
sets.  Often, instead of calculation of the integrals they may
be fitted to the experimental properties of molecules.  Such
methods are called semi-empirical, e.g.  CNDO and MINDO
(complete neglect of differential overlap  and  modified inter-
mediate neglect of differential overlap).

8.9. Ligand field theory
This is kind of "3-dimensional Hückel method", with which
the main features of bonding can be deduced in some 3D
cases.  One example is the system of a transition metal
atom with ligands and some relate to atoms or molecules in
voids of crystals.
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Fig. 8.30.

Band theory of solids
8.10. "Tight-binding"-approximation

Tight-binding-approximation is a Hückel like
approach, mostly for conduction and valence bands
of electrons in crystals. 
In a simple model we assume one s electron from
each atom given to a set of joint valence electrons.
Like delocalized π electrons, these form the sc.
bands, see Fig. 8.40.
In the crystal, the quasi-continuous energy bands
consist of an infinite number of states.
Depending on the occupation of the states, the
crystal is metal, semiconductor or an insulator/
dielectric.
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Fig. 8.29.

Fig. 8.40.Fig. 8.39.



8.11. Electrons in periodic crystal
Let us assume, that conduction electrons feel an average constant potential in a crystal, in
1D or 3D.  This is the free electron model,  whose Schrödinger equation is

(–"2/2m ∇2 + V) ψ  =  Ε ψ,

whose solutions are
 ψ  =  A eik·r ± B eik·r      or    C eik·r + δ.

These are standing or propagating waves. Here k is the
wavevector, |k| = (2mE / "2)1/2 and the energy spectrum of
electrons is the free electron parabola, Fig. 8.45.

       E(k)  =  "2/2m · k2.
The Fermi energy  and wave vector are EF = "2 kF2 / 2m   and  
kF =  (3π2 n)1/3, where the electron density  n = N/V.  The density-
of-states in 3D space is      g(E)  =  Ω / π2"3 · (2m3 E)1/2,
where Ω is the atomic volume.

In general,
                g(E)  ∝  E d/2 – 1,
where d = 3, 2, 1 is the
dimension of the nanostructure.
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(8.39a)

(8.40)

Fig. 8.45.

(8.39b)

(7.51)

Taking into account the periodicity ak in direction k, V(k,r+ak) = V(k,r), the wavefunction
takes the form

      ψk(r)  =  u(k,r) eik·r.
This is the Bloch theorem: the wavefunction of an electron is a plane wave modulated by the
crystal periodicity. The Kronig–Penney model is a simplified periodic model of crystals.

8.12. Brillouin zones
The band structure of periodic free
electron model is presented in Figs. 8.45
and 8.46 in the reciprocal space as a
function of k.
Note that  λ = h/p = h/("k) = 2π/k
as k = 2π/λ, where
λ is the electron
wave length.
Compare with the
Fig. 8.29, where
delocalized π-
electrons are
illustrated.
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Fig. 8.45. Fig. 8.46.Fig. 8.29.

(8.41)
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