
4. Angular momentum
In the following we consider general and exact approaches, such as angular momentum
algebra and group theory, and later, mehods for approximations, such as perturbation
theory, in applications of quantum mechanics.
Consider first the angular momentum (liikemäärämomentti, kulmaliikemäärä, pyörimismäärä)
and derivation of its quantization from commutation relation, only.

Angular momentum operators
These operators can be written in terms of position and momentum operators q ja pq, whose
commutation relations are

[q, pq']  =  i!δqq' (4.1)
where q, q' =  x, y or z. 

4.1. Operators and their commutation relations
Classically angular momentun is defined as

(4.2)

and thus, its components are
ℓx = ypz– zpy,  ℓy = zpx– xpz  ja  ℓz = xpy– ypx. (4.3)
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=  ypz – zpy  i +  zpx – xpz  j +  xpy – ypx  k ,

Classically     and     ℓ2  =  ℓx2 + ℓy2 + ℓz2 (4.4)
Now, as in quantum mechanics

,                   and                      ,

it follows that the angular momentum components take the form

                      (4.5)

Let us find commutators:
[ ℓx, ℓy ] =

        (4.6)
Similarly, the other two, and thus,

       (4.7)
which are the basic commutation rules of angular momentum in quantum mechanics. 
As above, it can be shown that

  [ℓ2, ℓq ] = 0.        (4.8)
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andand



4.2. Angular momentum observables
In a compact form (4.7) can be written as

ℓℓℓℓ × ℓℓℓℓ  =  i!ℓℓℓℓ,                        (4.9)
because

ℓℓℓℓ × ℓℓℓℓ =

4.3. Shift operators
Let us define raising and lowering operator, which are also called
shift or ladder operators (nostava ja laskeva operaattori, tikapuuoperaattorit)

    ℓ+  =   ℓx + iℓy          and       ℓ–  =   ℓx – iℓy
with inverse relations

  ℓx  =  ( ℓ+ + ℓ– ) / 2    and       ℓy  =  ( ℓ+ – ℓ– ) / 2i.
It is easy to show that 

and that  ℓ2  commutes with ladder operators
[ℓ2, ℓ±]  =  0.

Note that shift operators are not hermitian, but complex conjugates of each other.

Definition of states
Next, we will find the angular momentum states by using the commutation relations.
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Fig. 4.2.

 ℓ+ , ℓ z[ ] = −!ℓ+, ℓ−,ℓ z[ ] = −!ℓ− ja ℓ+,ℓ−[ ] = 2!ℓ z,

(4.10)

(4.11)

(4.12)

(4.13)

4.4. Effect of shift operators
Because  ℓ2  ja  ℓz  commute, (4.8), they have the same eigenfunctions.  Thus, from (3.33)
and (3.37) we have the eigenvalue equations

where  ℓ = 0, 1, 2, 3, ...  and  mℓ = ℓ, ℓ–1, ℓ–2, ... , –ℓ .  Let us find next               .  From (4.12)

Therefore,                is an eigenfunction of  ℓz  with the eigenvalue  !( mℓ+1).  So,

and similarly

These equations hold, if  mℓ ≤ ℓ  and  mℓ  ≥ –ℓ , except for 
For this reason ℓ+ and ℓ– are called raising and lowering operators.

4.5. Eigenvalues of angular momentum
As discussed in sec. 3, operators  ℓ2  and  ℓz  correspond the "rotational states" of electrons
on atomic orbitals, when  ℓ = 0, 1, 2, 3, … .  Then, quantization follows from the uniqueness of
the wavefunction.
More generally, starting from the commutation relations (4.6), only, one can choose to
accept half-integral quantum numbers, too.   Then, the angular momentum can assume
"half-integral" values, as well.  For example, the spin of an electron or proton are half-integral
angular momenta.
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 ℓ+ ℓ, mℓ

 

ℓ2 ℓ, mℓ = !2ℓ(ℓ+1) ℓ,mℓ ja
ℓ z ℓ,mℓ = !mℓ ℓ,mℓ ,

 

ℓ+ℓ z − ℓ zℓ+ = −!ℓ+, thus ℓ zℓ+ ℓ,mℓ = ℓ+ℓ z +!ℓ+( ) ℓ,mℓ

= ℓ+!mℓ ℓ,mℓ +!ℓ+ ℓ,mℓ = !(mℓ +1)ℓ+ ℓ,mℓ .

(4.14–15)

 ℓ+ ℓ, mℓ

 ℓ+ ℓ, mℓ = constant × ℓ,mℓ +1

 ℓ− ℓ, mℓ = constant × ℓ,mℓ −1

(4.17a)

(4.17b)
 ℓ+ ℓ, ℓ = 0 ja ℓ− ℓ,− ℓ = 0.

and

and



Let us denote the common eigenfunctions of general angular momentum  j  and its z-
component with  | j, mj 〉.  Then we can write the eigenvalue equations as

                           and

4.6. Matrix elements of angular momentum
The matrix elements of angular momentum can be obtained by using relations (4.10) and
(4.11).  Therefore, let us find  j± | j, mj 〉 = c± | j, mj ± 1 〉.   So,
    j– j+ = 

Now,   ( j+ | j, mj〉 )*  =  〈 j, mj | j– ,  and thus,

Similarly, we can derive
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(4.22)

(4.29a)

(4.29b)

4.7. Orbital angular momentum eigenfunctions

As an example, let us consider orbital angular momentum ℓ, whose eigenfunctions are the
spherical harmonics, in sec. 3 these results were found directly from the Schrödinger
equation.  Now, let us find these results from the general properties of angular momentum.
In polar coordinates the
angular momentum operators are

and

Thus, for the eigenfunctions of the state state  mℓ = ℓ   we can write   ℓ+ | ℓ, ℓ 〉 = 0 or
      whose solutions are the spherical harmonics, for mℓ = ℓ

because

Now, the eigenfunctions for the other values of  mℓ  are easily obtained by using  ℓ– .
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(4.30)

(4.31)

(4.32)



4.8. Spin
In 1925 Uhlenbeck and Goudsmit suggested an internal angular momentum of electron, its
spin, and its only quantum number 1/2, to simplify interpretation of atomic spectra.  Later,
Dirac "found" the half-integer quantum numbers and the electron spin, in particular, from his
relativistic extension of quantum mechanics.
So, the electron spin is 1/2 and denoted as  s = 1/2.  Therefore, its z-component is  ms = ±1/2 
(up or down).  The corresponding eigenstates are  |s, ms〉,  usually written as

Eigenvalue equations are

and by using the ladder operators, we obtain

and thus, the non-zero matrix elements are
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α = |1
2

, 1
2
〉  ja  β = |1

2
, -1

2
〉 .

(4.33)

(4.34)

(4.35)

and

and

and

and

Coupling of angular momenta in composite systems
Nex, consider a system formed by two angular momenta, e.g. orbital angular momenta of
two electron  ℓ,  or the orbital angular momentum ℓ and spin s of a single electron.

4.9. Uncoupled and coupled states
The state of two angular momenta can be defined by "listing the quantum numbers" in ket
vector   It can be done so, because
 j12, j1z, j22

  and  j2z  all commute.
For finding the total angular momentum "vector" j,  the two vectors  j1  and  j2  are "summed
componentwise", and the sum can be written as                         because 

 j12, j22, j2 and jz  all commute.  This is called coupling  of  j1 and j2.
However, generally

[ j1z, j2 ] ≠ 0  and  [ j2z, j2 ] ≠ 0 ,
and therefore,  mj1  ja  mj2  can not be used to describe the state simultaneously with  j.  
Later we will see, that depending on the case it is better to use the
uncoupled representation                            or the coupled representation                           
Exercise:  Find out, if  j = j1 + j2  is an angular momentum?
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| j1, mj1 ; j2, mj2 〉 .

| j1, j2 ; j, mj 〉 ,

(4.37)

| j1, mj1 ; j2, mj2 〉 | j1, j2 ; j, mj 〉 .

(4.38)



4.10. Permitted values of total angular momentum
Let us find the permitted values of  j  and  mj.  Because

and                                                             we get
mj = mj1 + mj2.

As the maximum value of  mj  is  j1 + j2,  j  is allowed to
assume values from "Clebsh–Gordan series"
               j = j1+j2, j1+j2 –1, …, | j1– j2 | .
The lower limit of Clebsh–Gordan series  | j1– j2 |  is defined by
the condition, that the coupled presentation has to contain the
same number of states as the uncoupled one does.  This can be
formulated as sc. "triangle condition".

Example Coupling of orbital angular momentum and spin of a p-
electron ℓ = 1  and  s = 1/2 in hydrogen atom.
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(4.41)

(4.42) Fig. 4.4.

4.11. Vector model of coupled angular momenta
Coupling of two angular momenta can also be graphically illustrated.  It should fullfil the
following conditions:
 1. |j| = √(j(j+1)), where j  is one of the permitted values in Clebsh–Gordan series.
 2. For the  j-vector only the z-component is given, but not the x and y  ⇒  cone description.
 3. For j1 and j2:

|j1| = √(j1(j1+1))  and
|j2| = √(j2(j2+1))  
⇒ cone description.

 4. The  z-components 
mj1 and mj2 of  j1 and j2 
are shown in uncoupled 
representation.

The  z-component  
mj  of  j  is given in the 
coupled representation.
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Figs. 4.6–7.



Next, let us couple two spins  s1 = 1/2  and  s2 = 1/2.  Uncoupled presentation consists of four
possible states as

In coupling, the total angular momentum becomes  S = s1+s2, …, |s1–s2| = 1, 0  and the state
S = 1  is called triplet,  because  Ms = 1, 0, –1;  and the state  S = 0  and  Ms = 0  is called
singlet, correspondingly.   Thus, the couple representation also has four states

as
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| s1 ms1 ; s2 ms2 〉

| 1 1 〉 |    1    0    〉 |    1    –1    〉
|    0    0    〉

Fig. 4.8. Fig. 4.9–10.

4.12. Clebsh–Gordan coefficients
The coupled state wavefunction                     can be presented with those of uncoupled
ones

where cmj1 mj2 are Clebsh–Gordan coefficients (or Wigner coefficients).  Note, mj = mj1 + mj2.

Now, let us determine the coupling constants in case of two spins, as

Obviously,
thus  cαα = 1.  Now, by using the lowering operator  S– = s1– + s2–,  Eq. (4.30)

we get from left hand side
From the right we get

which means

Further operation with S– = s1– + s2–  gives
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(4.43)

| j1 j2 ; j mj 〉
| j1 mj1 ; j2 mj2 〉

| 1 1 〉 = α1 α2 , (4.45)

(4.46)

|1 0〉 = 1
2
  α1 β2 + β1 α2  .

|1 –1〉 =  β1 β2 .

(4.47)

(4.48)

thus



The state                                        is found from the orthogonality condition                    ,
which together with normalization gives

Table of the coupling coefficients for two spins  s1 = 1/2  and  s2 = 1/2:
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ms1 ms2 | 1 1 > | 1 0 > | 0 0 > | 1 –1 >
α

α

α

β

1
0

0
(1/2)1/2

0
(1/2)1/2

0
0

β

β

α

β

0

0

(1/2)1/2

0

–(1/2)1/2

0

0

1

〈0 0|1 0〉 = 0

(4.49)

4.13. Coupling of several angular momenta
Coupling three or more angular momenta can be carried out pairwise, e.g., first two of those,
and then, adding a third one, then fourth, and so on.

Example 4.2 Coupling three of the hydrogen atom p-orbitals ℓ1,2,3 = 1.
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5. Group theory
Use of the symmetry properties of the system usually helps in finding the solutions to the
Schrödinger equation.  It simplifies calculations particularly in cases, where qualitative
information is sufficient, e.g., showing if some quantities are equal or zero.  Examples of
these are the matrix elements (integrals) 〈n|Ω|n〉 ja 〈n|Ω|m〉 and degeneracy.  Also, group
theory usually defines the most fundamental and natural (symmetry related) quantum
numbers, like those of atomic orbitals: s, p, d, f, g, . . ..

Example  What are the conditions for  ℓ2  or  ℓz  to commute with the Hamiltonian (and
therefore, to give good quantum numbers for the energy eigenstates) ?

and   thus

[ H, ℓz ] =
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Symmetries of objects
Systematic inspection of symmetry properties is based on the relevant symmetry operations
and the group they form.  Then the group theory immediately classifies the system and its
basic properties.

5.1. Symmetry operations and elements
Symmetry operation is an act of doing something to the system, which remains apparently
unchanged, e.g., after changing positions of identical parts of the system.  The more the
system, e.g. a molecule, has symmetry operations the higher is its symmetry.  Usual
symmetry operatios are rotation, translation, reflection and inversion, which happen with
respect to a symmetry element (axis, direction, plane or point).
The symmetry operations of molecules and atoms form sc. point groups  (pisteryhmä), which
do not include translations as do the more general space groups  (avaruusryhmä).
Symmetry operations of point groups always leave one point (center of the molecule)
unchanged.

Point groups incorporate five different operations:
E, identity or unit operator (yksikkö- tai ykkösoperaattori), which does nothing.
Cn, n-fold rotation (n-lukuinen rotaatio) is a rotation by an angle 360°/n wrt. symmetry axis.
The clockwise (seen from below) rotation is Cn+  and counterclockwise Cn–.  Note, that 
C2+

  = C2–.  If the object has several rotation axes, the one with largest value of n is called
principal axis (pääakseli).
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σ, reflection (heijastus) wrt mirror plane  (heijastustaso).  If the principal axis is in the plane,
it is called vertical plane and the operation is denoted by σv, and if it is perpendicular to the
plane, it is called horizontal plane and the operation is σh.  Dihedral plane σd (and reflection)
is  a spcial case of vertical reflection plane, where it bisects the angle between two C2-axes,
which are perpendicular to the principal axis.
i, inversion (inversio) wrt center of symmetry.  In inversion wrt origin each point of the object
at (x, y, z) becomes transferred to the opposite side with same distance, i.e. to (–x, –y, –z).
Sn, improper rotation or rotary–reflection
(kiertoheijastus) wrt rotation axis.  Improper
rotation is a composite operation consisting
of an n-fold rotation and horizontal reflection.
Note that  S1 = σh ja S2 = i.
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Fig. 5.3.

5.2. Classification of molecules
The list of all symmetry operations of a molcecule defines its point group.  Molecules with the
same point group have several common properties.  This is an incomplete list of most
important symmetry operations:
C1 contains only identity E or 1.
Cs : E and one reflection σ or m.
Ci : E and inversion i or �1.
Cn : E and n-fold rotation Cn or n.
Cnv : E, Cn and n vertical reflections σv .
Cnh : E, Cn and σh .
Dn : E, Cn and n two-fold rotations C2 perpendicular to Cn.
Dnh : All operations in group Dn added by σh.
Dnd : All operations in group Dn and n reflections σd.
Sn : E and Sn.  Note, for odd n Sn = Cnh.
Note that some combinations of symmetry operations
produce new ones, e.g.,
point group C2h has inversion i = σh C2.  
Groups T and O are sc. cubic point groups without
principal axis.  They contain several axes of highest n,
similarly as the icosahedral group I.
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T  : E, 3 C2, 4 C3 ja 4 C3'.
Td : "T" + 6 σd ja 6 S4 
      (group of regular tetrahedron).
Th :  Td  + i (inversion). 
O  : E, 8 C3, 3 C2 = 3 C42,
         6 C2' and 6 C4.

Oh : O + reflections of octahedron 
      (group of regular octahedron).
  I : Group of icosahedron.
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Fig. 5.17. Fig. 5.18.

Above, we have used sc. Schoenflies notation/names for the point groups.  There is another
notation, which lists the symmetry elements, which is sc. Herman-Mauguin or International
notation, in this table:

The point group of atoms is R3, the point group of the sphere, the full spherical symmetry.
Naturally, none of the molecules belong to this point group.  Properties of R3 are the ones of
angular momentum.
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Calculus of symmetry
5.3. Definition of group

A set of elements with "multiplication"
RS  =  T,

where, R, S and T belong to this set, form a group, if
(1) identity E belongs to this set,
(2) multiplication is associative, which means that T(SR) = (TS)R,
(3) the "product" of two elements also belons to this set, and
(4) the each element R has its "inverse" R–1, which also belongs to this set.
Note! The product needs not to be commutative, TS ≠ ST.

Note!
     R R–1  =  R–1 R  =  E.

It is easy to inspect and find, that the symmetry operations of "point groups" form a groups.

5.4. Group multiplication tables
Consider next the representation  (esitys) of a point group by matrices, which allows
calculation of a "product"  i = σh C2  by the usual rules of matrix multiplication.
Let us first find multiplication table of one specific group, independent of matrices, as an
example.
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Consider point group C3v as an example.  Now, the symmetry
elements of C3v are rotation axis C3 and 3 reflection planes σv,
and symmetry operations are  E, C3+, C3–, σv, σv' and σv".
Number of elements in the group is 6, which is called order of
the group, h.
The multiplication table is (shown as R = ST)

5.5. Matrix representations
Matrices, which obey this multiplication table can be chosen in
many (∞) different ways.  The choice is defined by sc. basis,
which we now choose as shown in the figure.  The picture
shows, e.g. 1s-orbitals of the atoms in NH3 molecule.
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      T=
 S= E C3+ C3– σv σv' σv"

E
C3+

E
C3+

C3+

C3–
C3–

E
σv
σv'

σv'
σv"

σv"
σv

C3–

σv
σv'
σv"

C3–

σv

E
σv"

σv'
σv"

σv
σv'

C3+

σv'
σv"
E

σv"
σv

C3+

C3–

σv

C3–
σv'
C3+

E
C3+

C3–

E

Table 5.2.

Fig. 5.19.

Fig. 5.23.



Dimension of this basis is 4, i.e. the number of basis functions.   The basis can be given as a
"vector" f  = (sN, sA, sB, sC),  and the effect of symmetry operations can be written as
σv (sN, sA, sB, sC) = (sN, sA, sC, sB).  This can be written as a matrix multiplication

This matrix is called a representation (esitys) of σv and it is denoted by D(σv),  whose
components can be written as Dji(σv).  One should note, that multiplication by a matrix only
means that

Generally for any basis function fi and operation R, we can write

Similarly for C3+

                            or

for any fi.  The representations of all operations in group C3v are given in basis  (sN, sA, sB,
sC)  in the Table 5.3, on next page.
Consider now two consequent operations or "product", e.g.  σv C3+ = σv"  with matrices.
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R fi = fj Dji(R)∑
j

 .

C3
+ (sN, sA, sB, sC) =                                                      

= (sN, sA, sB, sC) 

1 0
0 0

0 0
0 1

0 1
0 0

0 0
1 0

 = (sN, sB, sC, sA) C3
+ fi = fj Dji(C3

+)∑
j

 ,

(5.3)

(5.4)

This means that the
"product" of operations can
be found by matrix
multiplication.  In general, 
if R and S are symmetry
operations of a group,
then

       D(R) D(S) = D(RS).

Table 5.3.  Matrix representations of C3v in the basis (sN, sA, sB, sC).

If the multiplication table
of two groups is the
same, the groups are
called homomorphic.
Note, that notations are
  (RS) f = f D(RS) 
             = f [D(R) D(S)] 
             =  [f D(R)] D(S) ,
though
  (RS) f = R (S f);
and

       D(R–1)  =  D(R)–1.
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(5.5)

(5.6)



5.6. Properties of matrix representations
Let us consider another basis f ' = (sN, s1, s2, s3),
which is defined by f = (sN, sA, sB, sC)  such, that 
s1 = sA + sB + sC,   s2 = 2 sA – sB – sC  and   s3 = sB – sC.
The transformation can be written as

or
       f ' = f c,                    (*)

where

         c =                (*)

Equation (5.4) can be written in compact form
    R f = f D(R)                  (**)

and correspondingly, in basis f ',
  R f ' = f ' D'(R).

With substitution of (*), we get R f c = f c D'(R) and with multiplication from right by c–1, follows
R f = f c D'(R) c–1.  Comparison with (**) allows us to write sc. similarity transformation

      D(R) = c D'(R) c–1  

and
      D'(R) = c–1 D(R) c.
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fi
' = fj cji∑

j

1 0 0 0
0
0

1
1

2
-1

0
1

0 1 -1 -1

(5.7a)

(5.7b)

As
c–1 =   / 6 , 

the matrix representation of C3v in basis f ' can be calculated.
       Table 5.4.  Matrix representation of C3v in basis (sN, s1, s2, s3).

In Tables 5.3 and 5.4 it is also given the trace (jälki, German Spur) of the matrices, which is
the sum of diagonal elements.  Compare!
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6 0 0 0
0
0

2
2

2
-1

2
-1

0 0 3 -3



5.7. Characters of representations
The trace of the matrix (sum of the diagonal elements) is its character (karakteeri)

We note, that the characters of symmetry operations remain in similarity transformations.
This is easy to generalise, because

       Tr ABC = Tr BCA = Tr CAB.
Thus, in general

          χ(R) = χ'(R).

5.8. Characters and classes
In addition we note, that different types of operations have different and similar ones have
the same characters.  Now, for C3v we have:  χ(E) = 4,  χ(rotation) = 1  ja  χ(reflection) = 2.
Thus, we see that the character characterizes or classifies the elements of the group, and
therefore, we define the concept class (luokka):  
The elements R1 and R2 belong to the same class, if such element  S  belong to the group,
that

R1 = S–1 R2 S.

However, depending on the representation it may accidentally happen that operations
belonging to different classes have the same character.  As an example, consider the one
dimensional representation consisting of 1×1 matrices [1], only.
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   (5.8)

(5.9)

(5.10)

5.9. Irreducible representations
If the matrix representation of the goup is or can be transformed to block-diagonal form, like
the matrices in Table 5.3, the representation can be reduced to two (or more) representa-
tions.  Thus, the 4-dimensional representation in Table 5.3  can be reduced to 1- and 3-
dimensional representations, as D(4) = D(1) ⊕ D(3), (direct sum). The 1-dimensional represen-
tation consists of six 1×1 matrices [1], which obey the multiplication table of C3v, Table 5.2.
After transformation to another basis the reduction can be continued, as seen in Table 5.4.
We obtain  D(4) = 2 D(1) ⊕ D(2).  The reduction can not be continued further, and therefore,
these are the irreducible representations of the point group C3v (redusoitumaton esitys).
From now on let us use a short form "irrep".
Let us make a look at the basis sets of irreps.  We see that
the functions sN  and s1 have the same symmetry species
(symmetrialaji) in group C3v and they span (virittää) or form
the bases for the two 1-dimensional irreps.  Functions s2  and
s3 are of different symmetry (species) and span the 2-dim
irrep.
Thus, we learn that "different" basis functions span different
irreps, and therefore, irreps can be used to "describe symme-
try properties".
Let us name the irreps or symmetry species.  The 1-dim irrep
with characters (1, 1, 1, 1, 1, 1) is called Γ1 and 2-dim irrep with
characters (2, –1, –1, 0, 0, 0) is called Γ3.  The more usual
notations for these are A1 and E.  Note that incidentally the
identity operation is denoted by E, too.
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Figs. 5.23–24.



5.10. Orthogonality theorems
For irreducible representations we have the great orthogonality theorem (GOT):

where h is the order of the group, ℓ refers to the irrep  Γℓ  and  dℓ is the dimension of the irrep.
For irreps we also have the little orthogonality theorem (LOT):

       or
where c refers to the classes and g(c) is the number of symmetry operations in class c.
The GOT implies that 

number of symmetry species  =  number classes
and

Consider C3v, which consists 3 classes.  Then we have 3 symmetry species (and irreps), of
which we know two, Γ1 and Γ3 or A1 and E, already.  Let us
name the third one as  Γ2 or A2. Now, with (5.18) we can
write  12 + d22 + 22 = 6, which gives d2  = 1.  By using the LOT
(5.14) we can now fill the missing row in the character table
of C3v, Table 5.5.
Note!  Also the columns are orthogonal to each other.
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(5.12)

(5.13, 5.14)

(5.18)

C3v,
A1

E
1

2 C3
1

3 σv
1

A2
E 2 -1 0

Table 5.5.
Character table of group C3v.

Reduced representations
Let us find out how to identify the symmetry species, which are spanned by a given basis.

5.11.Reduction of representations
To identify the irreps, which the basis functions span, we need to reduce the matrix rep

            D(R) = ∑ℓ⊕ aℓ D(ℓ)(R) ,
corresponding the symmetry elements Γℓ

     Γ = ∑ℓ aℓ Γℓ .
E.g., for the basis (sN, sA, sB, sC) and C3v group we found  Γ = 2 A1 + E.
Thus, in general, we need to find the "reduction coefficients" aℓ.
Similarity transformation preserves the trace of matrices, and therefore,

              χ(R) = ∑ℓ aℓ χ(ℓ)(R),
which together with the LOT implies

and/or

Often, for finding the symmetry species it is sufficient to inspect the character tables, only.
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(5.19)

(5.20)

(5.21)

(5.22)

(5.23)



Example 5.8. What symmetry species do the s-orbitals of atoms in CH4 molecule span?
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5.12. Symmetry-adapted bases
Next, a method is described for projecting out from a given basis  f  a new one sc. symmetry-
adapted basis f ', which spans the irreps of given symmetry species.
A projection operator

has the property

thus, it projects from the irrep ℓ function fj(ℓ) another function fi(ℓ) belonging to the same irrep.
A projection operator

has the property

in words, it projects from function fj a sum of all functions belonging to ℓ.
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(5.24)

(5.25)

(5.29–30)

(5.31)



Example 5.9.  Construct the symmetry-adapted bases from basis (sA, sB, sC) for group C3v.
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Symmetry properties of functions
5.13. Transformation of p-orbitals

Consider the p-orbitals of N in NH3 molecule as a basis for symmetry
species in group C3v.  The real p-orbitals are

px   = r sinθ cosφ f(r) =    x f(r),
py   = r sinθ sinφ f(r) =    y f(r)    and
pz   = r cosθ f(r) =    z f(r),

where f(r) is the spherically symmetric radial part.  Thus, the symmetry
properties are the same as those of the basis f = (x, y, z), whose
transformations for the operations in C3v are shown in Fig. 5.28.  Thus, we
can write, e.g.

and

etc.  Representation of group C3v in basis (x, y, z) is given in Table 5.7.
Because the matrices are in block-diagonal form, we see, that z spans the
species A1 and functions (x, y) span the species E.  Note, that the sum of
characters add up correctly

       (3, 0, 1) = (1, 1, 1) + (2, –1, 0).
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σv(x,y,z) = (–x,y,z) = (x,y,z) 
-1 0 0
0 1 0
0 0 1

C3
+(x, y, z) = (– 1

2
x+1

2
3y, – 1

2
3x–1

2
y,z) == (x,y,z) 

– 1
2

– 1
2

3 0

1
2

3 – 1
2

0

0 0 1

Fig. 5.29.



5.14. Direct-product bases 
and atomic d-orbitals

A product of two bases with
dimensions d1 ja d2 form a sc.
direct-product basis,  whose
dimension is  d = d1 d2.  For a
direct product of two bases,
which span Γℓ and Γℓ ' , it can
be shown that
   χ(R) = χ(ℓ)(R) χ(ℓ')(R) .
Direct-product of basis (x, y, z)
with itself is (x, y, z) × (x, y, z) =
(x2, xy, xz, yx, y2, yz, zx, zy, z2).  Basis (x, y, z) spans species A1 and E, and its characters are
3, 0 ja 1, see Table 5.7.  Now, eq. (5.32) implies characters 9, 0 and 1, and by inspecting the
character table of C3v we find, that these numbers can be found from the direct-sum
2 A1 + A2 + 3 E, only.  Further inspection leads to conclusions, that

(z) × (x, y) = (xz, yz)     -> A1 × E = E
(x, y) × (x, y) = (x2, xy, yx, y2)     -> E × E = A1 + A2 + E.

Direct-products of symmetry species are tabulated, Appendix 1.  Further analysis shows,
that the symmetry-adapted x2+y2 spans A1, (x2–y2, xy+yx=2xy) span E and (xy–yx=0)
corresponds A2.  Also these can be found in tables in Appendix 1.
This is a direct (and easy) way to find atomic d-orbitals (xy, yz, zx, x2–y2, 3z2–r2) and the
symmetry species they span.

 D(E)               D(C3
+)  D(C3

–)

 
1 0 0
0 1 0
0 0 1

     
–1/2 –1/2 3 0

1/2 3 –1/2 0

0 0 1

     

–1/2 1/2 3 0

–1/2 3 –1/2 0

0 0 1
          χ(E) = 3               χ(C3

+) = 0                      χ(C3
–) = 0                      

 D(σv)               D(σv
' )  D(σv

")

 
–10 0
0 1 0
0 0 1

     

1/2 –1/2 3 0

–1/2 3 –1/2 0

0 0 1

     
–1/2 1/2 3 0

1/2 3 –1/2 0

0 0 1
     χ(σv) = 1               χ(σv

' ) = 1                    χ(σv
") = 1               

Table 5.7

(5.32)
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5.15. Direct-product groups
Consider two groups G and G' of the order h and h', whose only common element is E and
whose elements Ri ja Rj' commute, for i = 1, 2, …, h and j = 1, 2, …, h'.  Symmetry operations
Ri Rj' form the direct-product group of groups G and G' and it is denoted by G" = G ⊗ G'.  For
the characters it holds that

           χ(RR') = χ(R) χ(R'),
h'' = hh'   and similarly for the number of classes:   #(classes)'' = #(classes) x #(classes)'.

Example 5.11. Construct the character table of direct-product group D3h = C3v⊗Cs using

Similarly for groups D6h = D6 ⊗ Ci ja Oh = O ⊗ Ci .
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(5.37)(5.37)

(5.37)  



5.16. Vanishing integrals
Let us consider evaluation of an integral over a range for an
odd function f: f(–x) = –f(x) and an even function g: g(–x) = g(x)
in range  –a < x < a.  It is easy to see that the integral for the
odd function vanishes identically, whereas for the even
function it does not, necessarily.  However, incidentally the
latter one can vanish, as well.
Symmetry analysis of the range (–a, a) leads to the same
result, as follows.  The symmetry operations are E and σh, and
thus, it belongs to the group Cs.  Functions g and f span
symmetry species A' and A", in this order.  Now, based on the
possible symmetry of the integrand, we can conclude, that
an integral of an integrand with certain symmetry over a
symmetric range vanishes, except if the symmetry species of
the integrand is highest possible, sc. full symmetry, usually A1.
This result can be generalized and used in evaluation of
matrix elements, e.g., for expectation values and transition
probabilities, etc.  It is often called as "matrix element rule".
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Fig. 5.32.

In case the integrand is a product of several functions and/or operators, its symmetry
species is found as a direct-product of its factors.  If it is other than the highest (usually A1),
the integral vanishes, otherwise not necessarily.
An alternative way of finding the same conclusion can be carried out based on the
orthogonality analysis

Example 5.12.  Find those orbitals of N atom in NH3 molecule, which may have nonzero
overlap integral (peittointegraali) with the 1s orbitas of H, i.e.,  s1,  s2  and  s3.
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(5.38)



5.17. Symmetry and degeneracy
Hamiltonian of a system has to be invariant (remain unchanged) in all symmetry operations.
Therefore, the hamiltonian has the full symmetry  and it commutes with all other symmetry
operations.  This implies, that ψ and Rψ are both eigenfunctions of the Schrödinger equation
Hψ = Eψ corresponding to the same eigenenergy E.
Thus, the eigenfunctions of the same symmetry species
are degenerate with the same eigenenergy and all
eigenfunctions of that species can be found by using
symmetry operators (or projection operators).
Therefore, the degree of degeneration is the dimension
of irrep or χ(E).

Full rotation group
5.18. Generators of rotations

The point group of heteronuclear diatomic or linear
molecule is C∞v and that of homonuclear diatomic is
D∞h.  Properties of C∞v  allows derivation of the
properties of the z-komponent of angular moment, i.e.,
operator ℓz.  This follows from the fact that rotation by
any angle φ with respect to a fixed axis is one of the
symmetry operations of the group.
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Fig. 5.35.

5.19. Point group of sphere
The point group of spherical atoms is R3 and it gives the properties of angular momentum
including the commutation rules.  Coupling of two angular momenta can be done by reducing
the direct-product of species spanned by the irreps of those two.
Writing the representation of rotation  Ca(z)  in a basis of spherical harmonics
{Yℓ, ℓ , Yℓ, ℓ–1, ..., Yℓ, –ℓ} it can be seen that its character is

                                                    (5.47b)
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6. Perturbation theory and variation 
    theorem

In practical calculations, after possibly utilizing group theory, approximate methods are
needed for finding the numerical values.  Next, we will consider the two most applied ones:
perturbation theory and variation theorem, and later, also the iteration algorithm.

Semiclassical WKB approximation
Let us start from the total energy in classical mechanics, E = p2/2m + V, and one-dimensional
time-independent S-equation

where now 
      p(x)  =  {2m [E – V(x)] }1/2.  

For a free particle  V(x) = constant, and then, the solutions to (6.1) are trivially
ψ±(x) = exp(±ikx) = exp(±ipx/!).

For a slowly varying potential function V(x) we now try a solution
   ψ(x)  =  c+ ψ+(x) + c– ψ–(x).

This is sc. Wentzel–Kramers–Brillouin (WKB) approximation.

Next, let us make a substitution
± px  =  S±(x)  =  S±(0) + ! S±(1)(x).  
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!2 d
2ψ

dx2
+ p2ψ = 0 ,

(6.1b)

(6.1a)

(6.2)

This leads to a solution (see the text book)

The probability density of ψ(x) in Eq. (6.5b) is proportional to 1/p.  This is the same as the
"classical probability density" 1/v.

For the classically allowed region,  E > V, where p is real, the
solution (6.5b) takes the form

where  C sin δ = (c+ + c– ).  In this region WKB approximation is
good, see the Fig. 6.1.

At  E = V  WKB diverges at  p = 0, and in classically forbidden
region  p  is imaginary.  In the latter case the solution to (6.5)
is a linear combination of exponentially decaying and
exponentially growing functions.
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ψ(x) =
C

p1/2(x)
sin

{
1

!

∫ x

0
p(x)dx + δ

}
, (6.6)

ψ(x) =

(
1

p(x)

)1/2{
c+ exp

[
i

!

∫ x

0
p(x)dx

]
+ c− exp

[
− i

!

∫ x

0
p(x)dx

]}
(6.5b)

Fig. 6.1.



Time-independent perturbation theory
Consider a system, whose hamiltonian H is almost the same as the one of the known
"reference system" H(0).  Let us denote the deviation or perturbation as H(1). Thus, 

H = H(0) + H(1).

Here we assume that both of the hamiltonians are time-independent.

6.1. Perturbation of two-level system
Assume we know solutions of the reference system, i.e., solutions to the equation

            H(0) ψ(0)m = E(0)m ψ(0)m.  
Let us further assume a reference system of two states, only:  ψ(0)m; m = 1, 2; in bracket
notation, levels  |1〉 and |2〉.  Now we search for solutions of the perturbed system

     H ψ = E ψ 

by using a trial wave function
        ψ = a1 ψ(0)1 + a2 ψ(0)2 = a1 |1〉 + a2 |2〉.

Thus, we need to find a1 and a2.
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(6.10)

(6.11b)

(6.12)

(6.11a)

Substitution of (6.12) to (6.11b) gives 
       H (a1 |1〉 + a2 |2〉) = E (a1 |1〉 + a2 |2〉) 

and multiplication by both 〈1| and 〈2| gives
      a1 〈1|H|1〉 + a2 〈1|H|2〉 = E a1     a1 H11 + a2 H12 = E a1 

or
      a1 〈2|H|1〉 + a2 〈2|H|2〉 = E a2     a1 H21 + a2 H22 = E a2

as 〈i|j〉 = δij.  This is a pair of coupled equations for the unknown factors a1 and a2

(H11–E) a1 +       H12   a2  = 0 
        H21      a1 + (H22–E) a2  = 0,

which has non-trivial solutions only if

This implies, that
(H11–E) (H22–E) – H12 H21 = 0,

with solutions
     E± = 1/2 (H11+H22)  ± 1/2 { (H22–H11)2 + 4 H12 H21}1/2.

Now, consider a special case, where Hmm = H(0)mm + H(1)mm = H(0)mm = E(0)m , i.e., H(1)mm = 0.
As for the nondiagonals we have   H12 = H(0)12 + H(1)12 = H(1)12 and similarly H21 = H(1)21 , it
follows

     E± = 1/2 (E(0)1+E(0)2)  ± 1/2 { (E(0)1–E(0)2)2 + 4 ε2}1/2,
where  ε2 = H(1)12  H(1)21.  Furthermore,  ε2 = |H(1)12|2, because H is hermitian. 
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H11–E  H12
H21  H22–E

 = 0 .

(6.13)

(6.14c)

(6.15)

(6.14b)

(6.14a)



Fig 6.4 shows how the "perturbation" ε  and ∆E = E(0)2 – E(0)2
cause increasing separation of the levels E(0)1 ja E(0)2.
If  ε/∆E << 1, by using   (1+x)1/2 ≈ 1+ 1/2 x,  where  x << 1, 
we obtain

E_ ≈ E(0)1 – ε2/∆E(0) 
and E+ ≈ E(0)2 + ε2/∆E(0).

Let us find wave functions by using trial functions
ψ– = cosβ ψ(0)1 + sinβ ψ(0)2  and  ψ+ = –sinβ ψ(0)1 + cosβ ψ(0)2.
These are "already orthonormalized", if |1〉  =   ψ1 and |2〉  =
ψ2 are, because   〈+ | +〉  =  〈– | –〉  =  sin2β + cos2β   = 1  and 
〈+ | –〉  =  sinβ cosβ – sinβ cosβ   = 0.  Let us find β by substituting | –〉  = ψ–  into the
Schrödinger equation and using the orthogonality condition

0  =  〈+ |H| –〉  =  –sinβ cosβ H11 + cos2β H12 – sin2β H21 + sinβ cosβ H22,
which implies  (E(0)1 – E(0)2) sinβ cosβ = cos2β H(1)12 – sin2β H(1)21.  If  H(1)12 = H(1)21, it follows

     tan 2β = 2 |H(1)12|  / (E(0)2 – E(0)1).
In case of degeneracy, (E(0)1 – E(0)2) = 0, this leads to  tan 2β = ∞   or   sinβ = cosβ = 1/√2  and

            ψ+ = 1/√2 (ψ1 + ψ2)    and    ψ+ = 1/√2 (–ψ1 + ψ2).
In case of small perturbation, H(1)12 / ∆E << 1, we have  tan 2β = 2 H(1)12  / (E2 – E1) ≈ 2 β << 1, 
and  sinβ ≈ β  and  cosβ ≈ 1.  Thus,

 ψ– ≈ ψ(0)1 + (H(1)12 / ∆E(0)) ψ(0)2    and    ψ+ ≈ ψ(0)2 – (H(1)12 / ∆E(0)) ψ(0)1.
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Figs. 6.3 and 6.4.

(6.16)

(6.17a)

(6.17b)

(6.18)

6.2. Many-level systems
Consider a general case, where the (unperturbed) reference system is

         H(0) |n〉 = En(0) |n〉 ; n = 0, 1, ... 

and number of states is not restricted, but we assume the states are not degenerate.  Now,
we write

H = H(0) + H(1)  + H(2) + ... .
Let us define  λ  (strength of perturbation) to keep track of the order of perturbation, as

         H = H(0) + λ H(1) + λ2 H(2) + ... .
At the end we set  λ = 1.  Similarly, we write the wave function

                  ψ = ψ 0(0)+ λ ψ0(1) + λ2 ψ0(2) + ...
and eigenenergy

         E0 = E 0(0)+ λ E0(1) + λ2 E0(2) + ... .
Substitution to

H ψ = E ψ .
gives

      λ0 { H(0) ψ 0(0) E0 ψ 0(0) } + λ { H(0) ψ 0(1) + H(1) ψ 0(0)  – E0(0) ψ 0(1) – E 0(1) ψ0(0) } +
     + λ 2{H(0) ψ 0(2) + H(1) ψ 0(1) + H(2) ψ 0(0) – E0 ψ 0(2) – E(1)0 ψ 0(1) – E(2)0 ψ 0(0)}  + ...  =  0.

Considering λ as arbitrary, each of the orders must vanish separately, and thus,
   H(0) ψ 0(0)= E 0(0)ψ 0(0) 

  (H(0) – E(0)) ψ0(1) = (E0(1) – H(1))ψ 0(0) 

(H(0) – E0(0)) ψ0(2) = (E0(2) – H(2)) ψ0 + (E0(1) – H(1)) ψ0(1).
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(6.19)

(6.20a)

(6.20b)

(6.20c)

(6.21a)
(6.21b)
(6.21c)



The first order correction to energy
Eq. (6.21a) is simply for the ground state (n = 0) of Eq. (6.19).  Note that similar expansions
are valid for other states (n > 0), as well.
Let us search for the first order correction to the ground state ψ0(0) with a trial expansion

         ψ0(1)  =  ∑n an ψ(0)n  =  ∑n an |n〉 ,

substituted to (6.21b).  This gives
        ∑n an (En(0) E0(0)) |n〉 = (E0(1) – H(1)) |0〉 

Multiplying by 〈0| from the left we obtain  0 = E0(1) – 〈0|H(1)|0〉 , which gives the first order
correction to the energy

              E0(1)  =  〈0|H(1)|0〉.

The first order correction to wavefunction
Multiplying (6.23) from the left by  〈k|, for k ≠ 0, we get

ak (E(0)k – E(0)0) = –H(1)k0
and

ak = H(1)k0 / (E(0)0 – E(0)k).
Thus, the first order wavefunction is

                               ψ0    =    ψ0(0) + ψ0(1)   =    ψ0(0) +  ∑k≠0  { H(1)k0 / (E(0)0 – E(0)k) } ψ(0)k .
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(6.22)

(6.23)

(6.24)

(6.26)

(6.27)

The second order correction to energy
Let us use the same technique for finding the second order correction to the energy,  So,

              ψ(2)0  =  ∑n bn ψ(0)n  =  ∑n bn | n〉 ,

which we substitute into (6.21c).  Similarly as above, we get for the second order correction

6.3.Comments on perturbation expressions
It can be shown, that the wavefunction of order n is sufficient to give the energy of order 2n+1.
The main factor effecting on the convergence of the PT expansion is the strength of the
perturbation.  Another significant factor is the possible dissappearance of matrix elements

             H(1)0n  =  〈0|H(1)|n〉

because of symmetry, i.e., as "vanishing integrals".
The closure approximation

In case the denominator in (6.30) can be approximated as  E0 – En  ≈  –∆E,
       E0(2) ≈ H00(2) –  { ∑n H0n(1) Hn0(1)  – H00(1)

 H00(1)
  } / ∆E

and denoting the numerator as
       ε2 = 〈0 |H(1)2| 0〉 – 〈0 |H(1)| 0〉2,

we can write     
E0(2) ≈ H00(2)  –  ε2 / ∆E .
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(6.28)

(6.30)

(6.31)

Fig. 6.7.

(6.32)

(6.33a)

(6.33b)



6.4. Perturbation theory for degenerate states
The above perturbation theory does not apply for degenerate states, because of divergent
denominators in the expressions of wavefunctions and energies.  A modification is needed.
Consider r-fold degenerate eigenenergy E0 from the reference system equation 

         H(0) |0, ℓ〉 = E(0)0 |0, ℓ〉 ;  ℓ = 1, 2, ... , r

where |0, ℓ〉 are the linearly independent states.  And as before, we have  H = H(0) + H(1).
It is useful to choose such linear combinations of |0, ℓ〉 which fit to the symmetry of the
perturbation.  Therefore, we write

       ϕ(0)0i   =   ∑ℓ dℓi |0, ℓ〉   =   ∑ℓ dℓi  ψ(0)
ℓi

which should diagonalize H(1), i.e.,  〈ϕ(0)0i|H(1)|ϕ(0)0j〉 = 0,  if  i ≠ j.  Now, let us find the
coefficients dℓi doing that.
As before, we start with

    ϕi = ψ(0)0i + λ ψ(1)0i +...
and

    Ei = E(0)0i + λ E(1)0i +... ,
substitute these into  H ψi = Ei ψi  and obtain

H(0) ϕ(0)0i  =  E(0)0  ϕ(0)0i 
(H(0) – E(0)0) ψ(1)0i = (E0(1)0i – H(1))ϕ(0)0i , 

as Eqs. (6.21) above.
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(6.35)

(6.36)

(6.37a)
(6.37b)

Now, let us write the first order correction as
       ψ(1)0i  =   ∑ℓ cℓ  ψ(0)0ℓ  +   ∑n≠0 cn  ψ(0)n

where the former sum is over the degenerate states  ψ(0)0ℓ  and the latter is over all others.
With notation  ψ(0)

ℓ = |0 ℓ〉  and substitution with Eq. (6.36)   ϕ(0)0i   =   ∑r dℓi |0, ℓ〉  into (6.37b)
we get

          ∑ℓ cℓ (E(0)0 – E(0)0) |0 ℓ〉 + ∑n≠0 cn (E(0)n – E(0)0) |n〉 =  ∑ℓ dℓi (E(1)0i – H(1)) |0 ℓ〉.
Multiplying this from left by 〈0 k|, which is one (possibly linear combination) of functions 〈0 ℓ |
such that 〈0 k | n〉 = 0  and  〈0 k | 0 ℓ〉 = Skℓ ≠ 0, we get sc. secular equations

     0 = ∑ℓ dℓi { E(1)0i Skℓ – 〈0 k |H(1)| 0 ℓ〉 }
or

       ∑ℓ dℓi ( E(1)0i Skℓ – H(1)kℓ ) = 0,
where

      Skℓ = 〈0 k | 0 ℓ〉

and       H(1)kℓ = 〈0 k |H(1)| 0 ℓ〉.
This group of equations,  i = 1, 2, ... , r;  (or matrix equation) for coefficients dℓi  (ℓ = 1, 2, ... , r),
has nontrivial solutions, if the secular determinant vanishes, i.e.,

       det [ H(1)kℓ – E(1)0i Skℓ ]iℓ = 0.
The first order energy corrections E(1)0i (i = 1, 2, ... , r) are found from matrix diagonalization.
The, the coefficients dℓi corresponding to each E(1)0i  are found from Eq. (6.41).
Note, if we choose  Skℓ = δkℓ  and  r = 2, the Eq. (6.42) returns the earlier two-level case, Eq.
(6.14c).
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(6.40a)
(6.40b)

(6.41)

(6.38)

(6.39a)

(6.39b)

(6.42)



Variation theory
Another approach to find or estimate the solution to the Schrödinger equation is to use a trial
wavefunction ψtrial.  It can be written by using a proper functional form (educated guess) with
parameters, which will be fitted or "optimized" to make ψtrial the best approximate to the
exact wavefunction.

6.5. Variation theorem
Define Rayleigh ratio

    E  =  〈ψtrial | H | ψtrial〉  /  〈ψtrial | ψtrial〉.

Then, we can use the variation theorem
  E  ≥  E0    for any ψtrial ,

where  E0  is the ground state energy of the hamiltonian H.  The equality E  =  E0 holds only,
if the the trial function is identical with the exact wavefunction,  ψtrial  =  ψ0.
Let us prove the variation theorem by writing  ψtrial = ∑n c n ψ n = ∑n c n | n〉,  where  {ψn}  is
the complete set of solutions to  H ψ n = En ψ n.  Because

〈ψtrial | (H–E0) | ψtrial〉 =  ∑n,m cn* cm  〈n | (H–E0) | m〉 
=  ∑n,m cn* cm  (Em –E0) 〈n | m〉  =  ∑n |cn|2 (En –E0) ≥ 0,

we obtain  〈ψtrial |H| ψtrial〉  ≥ E0  〈ψtrial | ψtrial〉, which proves the theorem.
Optimization of the parameters {pn} is done the "usual way" from the conditions

           (∂E/∂p1) = 0, (∂E/∂p2) = 0, ... ;
i.e., from the extremum of the gradient of E in the parameter space {pn}.
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Example 6.8. Use the trial  ψtrial(r) = e–kr  for the ground state of hydrogen like one-electron
atoms with nuclear charge Ze) .  Find the parameter k and the corresponding eigenenergy.
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6.6. Rayleigh-Ritz method
The Rayleigh-Ritz method is based on a trial wavefunction

ψtrial = ∑i ci ψi = ∑i ci | i 〉,
where the parameters ci are to be optimized. Functions {ψi}i=0N–1 are called as basis set.
Now, the Rayleighin ratio is
E = 〈ψtrial |H| ψtrial〉  /  〈ψtrial | ψtrial〉 = {∑ij ci*cj 〈i|H|j〉} / {∑ij ci*cj 〈i|j〉} = {∑ij ci*cj Hij} / {∑ij ci*cj
Sij}.

Allowing real coefficients ci,
only, minimization condition
for E  is

This implies, that for all k
∑i ci (Hik – E Sik) = 0,

and thus, non-trivial solutions
exist, if

det (Hik – E Sik) = 0.
This leads to N equations and N roots, i.e., N eigenenergies Ei , where N is the number of
basis functions in (6.44).  The lowest one, E0, is the ground state energy. For all energies the
coefficients are obtained from (6.46) and the wavefunction from (6.44).
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(6.44)

(6.45)

(6.46)

(6.47)

dE

Hellmann–Feynman theorem
For a system of quantum particles (atoms, molecules, nanostrutures) the structure and
external interactions are described in the hamiltonian.  In the following we inspect how the
total energy of the system is changed, when the hamiltonian is changed.
Consider hamiltonian with a parameter P (e.g. a bond length or an external field, etc.).  Then,
both the wavefunction ψ and the energy  E(P) = 〈ψ|H|ψ〉  depend on P.  Assume the
wavefunction is normalized 〈ψ|ψ〉 = 1.  Now, the change of energy as a function of P is

dE/dP  =  d/dP 〈ψ|H|ψ〉  =  〈 dψ/dP | H | ψ 〉  +  〈 ψ | dH/dP | ψ 〉  +  〈 ψ | H | dψ/dP 〉

 =   E  d/dP 〈 ψ | ψ 〉  +  〈 ψ | dH/dP | ψ 〉  =  〈 dH/dP  〉.

Thus, we have proved the Hellmann–Feynman theorem:

This is a practical method for calculation of forces in molecular dynamics simulations.  For
practical accuracy, the wavefunction should be known accurately, enough.
Example Find the molecular energy as a function of the external electric field E , when
H = H(0) – µzE 
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Time-dependent perturbation theory
6.7. Time-dependence of two-level system

Time-dependent perturbation theory is needed to consider the system response to turning
the perturbation "on" or "off", and also, if the perturbation operator explicitly depends on time,

   H(t) = H(0) + H(1)(t).
A usual time-dependent perturbation is the electromagnetic field

    H(1)(t) = A cos(ωt).  
Let us find the time-dependent solution  Ψ(t)  of the Schrödinger equation

     H Ψ = i! (∂Ψ/∂t).
Let us first restrict us to a two-level system (as we did in sec. 6.1), where the eigenenergies
E1 and E2 correspond to eigenstates ψ1 and ψ2 of the stationary state reference system

     H(0) ψn = En ψn ; n = 1, 2;     with     Ψn(t) = ψn e–iEnt/!

from Eq. (1.38).  Let us choose a trial wavefunction
  Ψ(t) = c1(t) Ψ1(t) + c2(t) Ψ2(t),

where also the coefficients ci(t) depend on time.  With substitution to (6.51) we obtain
c1 H(0) Ψ1 + c1 H(1) Ψ1 + c2 H(0) Ψ2 + c2 H(1) Ψ2 = i! (∂c1/∂t Ψ1 + c1 ∂Ψ1/∂t + ∂c2/∂t Ψ2 + c2 ∂Ψ2/∂t)

and by using H(0) Ψn = i! (∂Ψn/∂t)

we get c1 H(1) Ψ1 + c2 H(1) Ψ2 = i! ċ1 Ψ1 + i! ċ2 Ψ2 ,
where we denote  ċ = dc/dt.

QTMN,  2018     101

(6.49)

(6.50)

(6.51)

(6.52)

(6.54)

(6.53)

With substitution of (6.52), we get
c1 H(1) ψ1 e–iE1t/! + c2 H(1) ψ2 e–iE2t/!  =  i! ċ1 ψ1  e–iE1t/! + i! ċ2 ψ2  e–iE2t/!,

and further, multiplying by ψ1* and integrating  ( ∫ ψ1* ψ2 dτ = 0), we get
  c1 H(1)11 e–iE1t/! + c2 H(1)12 e–iE2t/! = i! ċ1 e–iE1t/!,

where 
   H(1)ij(t) = ∫ ψi* H(1)(t) ψj dτ  = 〈 ψi |  H(1)(t)  |  ψj 〉 .

Now, let us write for the difference  E2 – E1 = !ω21  and assume that H(1)11(t) = H(1)22(t) = 0,
again.  This is valid for the usual perturbations, like electromagnetic field.  Then, we find

 ċ1 = (1/i!) c2 H(1)12
  e–iω21t

and similarly
ċ2 = (1/i!) c1 H(1)21  eiω21t.

Now, let us discuss two cases: 
(i) The perturbation is "off" or absent.  Then  ċ1  =  ċ2  =  0, 
c1  =  c1(0)  =  constant, c2  =  c2(0)  =  constant  and

Ψ(t)  =  c1(0) ψ1 e–iE1t/!  +  c2(0) ψ2 e–iE2t/!.
Now, | c1(0) e–iE1t/! |2 =  | c1(0) |2 is a constant, whose
interpretation is the probability that the system
occupies the state ψ1. The other constant,  | c2(0) |2, 
is the probability for occupation of the state ψ2.

QTMN,  2018     102

(6.55b)

(6.57a)

(6.57b)

(6.58)

(6.55a)



(ii) Assume the perturbation is "on" with a constant strength, i.e., H(1)12 = !V and H(1)21 = !V*
are constants.  Then, solution to the pair of equations (6.57)

 ċ1 = (1/i!) c2 H(1)12
  e–iω21t

ċ2 = (1/i!) c1 H(1)21  eiω21t.
will be found from

   ̇ ċ2 = (1/i!) ċ1 H(1)21  eiω21t + iω 21 (1/i!) c1 H(1)21  eiω21t

          = (1/i!)2 c2  H(1)12 H(1)21 + iω 21 ċ2 
       = – |V|2 c2 + iω 21 ċ2 ,

with the notation H(1)12 H(1)21  =  !2
 V2.  Solution to this is

    c2(t) = ( A eiΩt + B e–iΩt ) eiω21t/2 ;  Ω = 1/2 (ω212 + 4 |V|2)1/2,
where A and B are given by the initial conditions.  Similar expression is found for c1, and if the
initial conditions are c1(0) = 1  and  c2(0) = 0, then

c1(t)  =  { cos(Ωt) + i (ω21/2Ω) sin(Ωt) } eiω21t/2 
and c2(t)  =  –i (|V|/Ω) sin(Ωt) eiω21t/2.
These are exact solutions in case of two levels.

Rabi oscillations
Consider the probabilities of finding the system in state 1 or 2.  Let us denote these as P1 and
P2.  P1 + P2 = 1,  as there are no other states.  Thus,  P2(t) = 1 – P1(t)  with the time dependence
called Rabi oscillations

QTMN,  2018     103

(6.60)
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(6.62)

(6.63)|c2|2

Now, let us consider two common cases:
(i) A degenerate system, where  E1 = E2, and thus,  ω21 = 0.  Then

P2(t) = sin2(|V| t),

shown in Fig. 6.12.  We see, that the larger the perturbation, the
faster the oscillation; but on the other hand, no matter how weak
the perturbation is, it is always sufficient for the "transition".
(ii) The other extreme  (E2 – E1)/! >> V, whence

P2(t) ≈ (2|V|/ω21)2 sin2(1/2 ω21t).
This is illustrated in Fig. 6.13.  Now, we see that oscillation
frequency is given by the level spacing and the amplitude by the
perturbation strength with respect to level spacing.  Occupation
probability of level 2 is always lower than 1.

6.8. Many-level systems
The order of the differential equations grows together with the
number of levels, and therefore, general solutions cannot be
found similarly to the two-level case.
For book keeping of the "virtual transitions" between the levels in
many-level case, one can use the sc. Feynman diagrams. 
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6.9. Fermi's golden rule
Consider a transititon in a many-level system from the initial state  Ei  to the final state  Ef.
Denote  Ef – Ei = !ωfi.  Assume interaction with the electromagnetic radiation

       H(1)(t) = 2 H(1) cos ωt.
Then, it can be shown that occupation probability of the final state f, if i is initially
unoccupied, is

where  Vfi2  =  H(1)if H(1)fi / !2  =  Vif2  =  V2.  Compare with the two-
level system, Eq. (6.65).  We see, that occupation probability of 
state f strongly increases while approaching the 
resonance  ωfi – ω = 0.

In case of several closely spaced final states we denote the density
of states (DOS) by ρ(Ef), at about  Ef.  Then, it can be shown that

  Pfi(t)  =  2π! Vfi2 ρ(Ef) t

and by defining the transition rate (spectral line intensity) as
       Wif  =  dPfi/dt,

we arrive at the Fermi's golden rule
         Wif  =  2π! Vfi2 ρ(Ef)  =  2π/! |H(1)fi|2 ρ(Ef).
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(6.77)

(6.82)

(6.84)

(6.83)

Pfi(t)  =  4Vfi
2

ωfi – ω 2  sin2 ωfi – ω
2

 t ,

6.10. Einstein transition probabilities (A and B coefficients)
Transition probability is propotianl also to the intensity of the electromagnetic field ρ(ν)
(number of photons / units of time and space), at the transition frequency.  Thus, the
probability for the stimulated absorption can be written as

       Wif  =  Bif ρ,
where Bif is sc. Einstein B coefficient for stimulated
absorption.  Correspondingly, the transition probability for
stimulated emission can be written as

       Wfi  =  Bfi ρ,
where Bfi is sc. Einstein B coefficient for stimulated
emission.  As  |H(1)fi|2 = |H(1)if|2, Bif = Bfi .
In thermal equilibrium the occupation of energy levels
obey the Boltzmann distribution, i.e.,
Nf / Ni = exp(–hν / kT).  Now, because  Wif = Wfi, for an
equilibrium, there has to be one more transition
mechanism.  This is the spontaneous emission, for which

         Wfi  =  Afi .
In equilibrium  Ni Wif = Nf Wfi , whence  Ni B ρ = Nf ( B ρ + A ), 
where  A = Afi  and  B = Bif = Bfi .  From comparison with the Boltzmann distribution we get

Nf / Ni = B ρ / ( B ρ + A ) = exp(–hν/kT), 
and further

                 ρ = (A/B) / {exp(hν/kT) – 1}.
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Now, comparison with the Planck distribution of black body radiation, Eq. (0.5)
              ρ(ν) = (8πhν3/c3) / {exp(hν/kT) – 1}

gives
A/B = 8πh(ν/c)3.

Thus, the proportion of spontaneous emission to stimulated increases as the cube of
transition frequency (or level spacing).

6.11. Lifetime and spectral linewidth (energy uncertainty)
Some unspecified time after excitation, the excited state will
decay to some lower state, e.g., the ground state, through
spontaneous emission.  All such transitions contribute to the
lifetime of the excited state.
The stationary state with an eigenenergy E, is described by the
wavefunction (6.52)  Ψ(t) = ψ e–iEt/!  and  |Ψ|2 = |ψ|2, but for a
decaying state

|Ψ|2 = |ψ|2 e–t/τ

and therefore,
Ψ = ψ e–iEt/!–t/2τ

where τ is the lifetime of the state.
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This kind of wavefunction is a superposition of "several" wavefuctions with energies close to
E.  This superposition wavefunction is 

i.e., a Fourier transform of the spectral line (spectral density function)

This is sc. Lorentz line shape of spontaneous emission of photons carrying away the energy
of transition, i.e., ∆E = Ei – Ef = !ωif.
Thus, the function g(E')  describes the energy
spectrum of contributing frequencies or
wavelengths.  So, if the state is metastable, its
energy is not discrete, but a distribution with
Lorentzian shape and a half width δE, an
uncertainty of the excited state energy,
broadening of the spectral line.
Fourier analysis gives for the half width δE = !/τ.
Thus, it is customary to present this as an
"uncertainty relation of time and energy"

τ δE ≈ !.

This can be used to determine the lifetimes of quantum states from experimental line widths.
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