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A brief review of compound semiconductor surface structures and properties stud-
ied with ab initio methods is given. First, the methodology based on the density-
functional formalism and local-density approximation is described, followed by a
description of two alternative computational techniques. Then, two chosen semi-
conductor surfaces are considered as examples, the (1010) face of a tetrahedrally
bonded CdS and the (110) face of a rutile SnOg2. Also, some aspects of the surface
chemical activity are discussed.

1 Introduction

Compound semiconductors offer a multitude of possibilities for designing new
materials. The number of possible binary compounds formed from the el-
ements of main groups from II to VII is very large, already, let alone the
combinations of more than two components. Furthermore, doping and use of
layered structures allows one to tune the electrical and optical properties of
semiconductor materials at will. A play with crystalline, layered, amorphous
and porous materials allows one to select the mechanical and chemical prop-
erties, too. In all, both the bulk properties and surface chemical activity of
compound semiconductors can be engineered, if the underlying principles and
origin of the properties are sufficiently well known. It is this expertise where
the theoretical and computational research can contribute most.

It is the surface of solid materials, where the contact and interaction with
the environment of a piece of matter takes place. It makes the surface proper-
ties of materials of essential importance. Until lately, the main focus of atten-
tion in surface science has mostly been in research of simple metal and other
elemental surfaces. Though, it has given us much insight to surface phenom-
ena, adsorption, surface diffusion, catalyzed reactions, etc., there still remain
details to be uncovered. This is true with complex compound materials, in
particular. On the other hand, as pointed out above the compound materials
offer good possibilities for materials engineering. This motivates the compu-
tational (and experimental) studies of compound semiconductor surfaces, in
general!~ 7 and in such new applications as gas sensors,? in particular.

In this text we first present the density-functional formalism, which is
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the basis of the applied ab initio methods in our studies. Next, the two
applied computational techniques, one based on the linear-combination-of-
atomic-orbitals (LCAO) and the other employing plane waves and pseudopo-
tentials (PWPP) are described. We aim at giving a relatively complete account
of these matters with as simple concepts as possible. Therefore, we start from
basics but include only the most essential concepts and try to keep the text
casy to read. Then, the use of these computational techniques is demonstrated
in the subsequent two case studies. Relaxation of the chosen cleavage surfaces
of tetrahedrally bonded CdS and rutile structure metal oxide SnOq are con-
sidered. Some aspects of the surface chemical activity are discussed, too.

2 First Principles Approach
2.1 Many-electron Problem

The vast majority of the properties of matter depend on its electronic struc-
ture, the quantum state of the electrons involved. The electrons bind the atoms
to molecules or solids and they are responsible for most of the interactions be-
tween pieces of matter. Furthermore, it is also the electrons that respond to
many external perturbations of matter, e.g. irradiation. The main job left
for the atomic nuclei is to provide the charge balancing environment for the
electrons to move, but the conformation and dynamics of nuclei, on the other
hand, follow the force field given by the electronic structure. It is this inter-
play between electrons and nuclei that is responsible for the surface chemistry,
thermal properties and many other bulk properties of solids. Therefore, we are
interested in computationally searching for the properties and dynamics of a
system of electrons and nuclei.

The stationary quantum state of the many-particle system (here, electrons
and nuclei) is a solution to the Schrodinger equation

HVU = BV, (1)

where the hamiltonian H includes all of the Coulomb pair interactions and the
kinetic energies of all particles in the system. The total energy of the system F
is obtained as an eigenvalue associated to the wavefunction W. This solution,
in principle, provides us with all the information we may wish.

In what follows we do not treat nuclear dynamics quantum mechanically
and we limit us to the non-relativistic treatment. Furthermore, the spin of
the electrons is not treated explicitly. Thus, the N-electron hamiltonian in the
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surroundings of M atomic nuclei reads (in atomic units) as

N 1 N,N 1
_ 2 ) .
H= Z (5% + vne(rl)> + Z . Van, (2)
7 1<J
where v
M 1,0
Z, ~ 7,7
ne(li) = - | Vnn = #7 3
B (2) w-EEE o
I3 u<v

rip = |ri—Ry|, 15 = |ri—1;|, R = |R,—R, | and Z, are the nuclear charges.
The two terms, v,e(r) and Vi, Egs. 3, are the Coulomb potential energy of
electrons in the field of nuclei and the mutual Coulomb repulsion energy of
nuclei, respectively. They depend on the set of electronic coordinates {r;} and
the set of nuclear coordinates {R,,}.

It should be noted that it is the nuclear conformation {R,}, nuclear
charges {Z,} and the number of electrons N that suffice to specify the whole
quantum state of the electronic system. The calculation procedures which start
with this least possible information about the system and use only principles
of quantum theory are called ab initio or “first principles” methods. DBasi-
cally both of these terms mean the same concept, though some authors have
assigned them to some specific calculation procedures, too.

The solution to the Eq. 1 should provide us with data to compare with
the related experiments, and concepts for obtaining physical insight to the sys-
tem. For these reasons it is helpful to decompose the complex many-electron
system (or state) to one-electron states, and correspondingly, describe the
many-electron quantities, like total energy, with contributions of single elec-
tron states. In fact, the standard solution procedures start with this s.c. one-
electron picture: mutually interacting electrons in their own separable eigen-
states. These eigenstates 1); are solutions to their one-electron Schrodinger
equations

hi(ri) ¥i(ri) = & ¥i(ri). (4)

There are two conventional ab initio approaches to solve Eq. 1 for ¥, the
wavefunction formalism and the density-functional formalism. The wavefunc-
tion formalism starts with the one-electron spin-orbitals v; of the electrons in
the system. An antisymmetrized product of spin-orbitals WHF e.g. a Slater
determinant® and the variational total energy minimization leads to a set of
one-electron equations of the form of Eq. 4. These are s.c. Hartree-Fock equa-
tions, where h; is called the Fock operator®? The antisymmetric Hartree Fock
wavefunction WHF includes the exchange interaction of electrons but does not
take into account all details of the mutual Coulomb correlations of electrons
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resulting from the interaction term ), ;1 /ri;. This deficiency is a limitation
of the one-electron picture and it is usually corrected with s.c. “configuration
interaction” or “multiconfiguration” scheme, where the correlated wavefunc-
tion WC is written as a linear combination of the ground state and a large
number of different excited state Hartree Fock wavefunctions WHE,

The configuration interaction method offers, in principle, a systematic pro-
cedure to the solution of arbitrary high accuracy. However, as the system size
or the number of electrons N increases the computational labor, increasing
as N3, soon becomes intolerable. This is due to the increasing number of
electron—electron interaction integrals. Furthermore, with infinite systems like
solids more fundamental problems arise. The long range of Coulomb interac-
tion of electrons leads to unphysical singularities, unless an additional screening
is included into the Hartree Fock formalism1©

In the next section we introduce the other formalism, which circumvents
many of these problems with a trade off of losing some of the accuracy. Nev-
ertheless, it is better suited for the treatment of large and infinite system like
crystals and surfaces. For finite systems, for example, the computational labor
increases only linearly with respect to the number of electrons V.

2.2  Density-functional Formalism

The density-functional theory (DFT) is the other conventional ab initio ap-
proach to search for a solution to the many-electron Schrodinger equation,
Eq. 1. A similar one-electron picture is invoked but the exchange and correla-
tion of electrons is treated differently. Within DFT, the description is based on
the electron density of the many-electron system. This is convenient, because
the electron density is a well-defined measurable physical quantity and becomes
even more relevant as the system size becomes larger. However, it should be
kept in mind that the DFT is based on the very same physical preassumptions
and first principles as the wavefunction formalism.

The starting point of DFT is the first Hohenberg Kohn theorem,'! which
says that the external potential is determined, within a constant, by the elec-
tron density. This implies that there is one-to-one correspondence between the
external potential of electrons v,e(r), Eq. 3, and the ground state one-electron
density p(r) for a fixed number of electrons N. As the external potential vy (r)
in the hamiltonian, Eq. 2, determines the many-electron wavefunction ¥({r;})
of Eq. 1, it follows that the one-to-one correspondence extends to the normal-
ized W({r;}), too. Thus, all the ground state properties of a many-electron
system are specified by its ground state one-electron density p(r). Note that
this is not restricted to Coulomb potentials, only.
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Now, for a certain external potential v,e(r), we can write the total energy
of a many-electron system as a functional of its electron density and decompose
it formally as

Elp] = Tp] + Vaelp] + Veelp]- ()

The first term T'[p] is the kinetic energy of electrons, the second term

mM=/MWwMM, (6)

is the Coulomb energy of charge density p(r) in the external potential vy (r)
and the third term Vee[p] covers all the electron—electron interactions.

Application of the variational principle to the total energy functional E[p]
with respect to the function p proves the second Hohenberg Kohn theorem: '
the total energy is stationary at the ground state density with the energy Ep,
or

Eo < Elpl. (7)

Thus, it has been demonstrated that solving the N electron problem for FEj
is equivalent with minimizing the total energy functional with respect to the
electron density or with searching for the ground state density p(r).

Again, a convenient practical approach 2 to search for p(r) starts with
writing it in terms of non-interacting one-electron states ¥;(r), for which

N
p(r) = §jmw §]m (8)

and [ p(r)dr = N. Hence, we can write

N
§jm VHM> 9

N
Vaelp] = ZW%\%eW%) (10)

and
N

D (@ilvnlthi) + Exelp). (11)

i

Veelp] =

N =

Here, the Hartree potential is

’UH(I‘):/ P(x’) dr’, (12)

v — /|
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which gives the larger term at the right hand side of Eq. 11, the classical
Coulomb repulsion energy of the charge density p(r), itself. The smaller con-
tribution, the exchange and correlation energy, can formally be decomposed to
the respective terms as

Eselpl = Ex[p] + Ec[p]- (13)

These terms contain all of the remaining electron electron interactions beyond
the Hartree energy.

Now, using the variational principle to the energy expression Eq. 5 written
in terms of the orbitals 1);, one can derive!? one-electron equations of the form
of Eq. 4,

hi(ri) ¥i(ri) = eii(rs). (14)

These are called Kohn Sham equations, 213

as the Hartree-Fock equations are in the wavefunction theory.

which are in the same role in DFT

From Eqs. 9 11 it is relatively easy to inspect what the one-electron hamil-
tonian of the Kohn—Sham equations becomes to. It can be written as

1
hi(r) = =5 Vi + ven(12), (15)

where the effective one-clectron potential is

Vet (T) = Vne(r) + v (T) + Ve () (16)
and further,
Uxe(r) = (SE%[:@)] (17)

is sc. exchange—correlation potential. Solutions 1; to the Eq. 14 should be
self-consistent, because the one-electron hamiltonian depends on the potential
Vee(r) = vH(T) + vy (r), which depends on p(r) written in terms of {i;}.
Note that in writing the one-electron equations we have not done any ap-
proximations to the exact DFT, so far, and we are dealing with electrons whose
all interactions are included in a functional of p, the effective potential veg (),
Eq. 16. This can be contrasted with the more complex Hartree-Fock equations
of the wavefunction theory, which however, are known to describe an approxi-
mation including only the exchange but excluding the correlation interactions.
In fact, the correlation interactions of electrons are usually defined to be those
which are not described within the Hartree-Fock theory. Of course, things are
not that simple with the DFT, either. The problems are just swept under the
carpet for the present, i.e., the more complex interactions are gathered into
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the exchange—correlation potential vy.(r). It looks simple, it is just a function
of r (for a fixed p) and even known exactly for the uniform electron density
(for practical purposes). However, for the general case, non-uniform densities
of atoms, molecules or solids, there are just various levels approximations of
Uxe tO choose from, so far.

The simplest approximations to the exchange—correlation potential vy, and
the corresponding energy per electron ey are based on the properties of uni-
form electron gas. As mentioned above, for practical purposes these properties
are known accurately enough from the Monte Carlo simulations of Ceperley
and Alder! In such case the constant density p or ry = (3/4mwp)'/3 is the only
parameter describing the whole system, if retaining to the spin-restricted case,
only. Now, consider an electron gas with slow spatial variations, where we
could expect the local properties of the electron gas to vary slowly, too. We
could further expect that these properties depend almost entirely on the local
electron density, not differing essentially from the properties of the uniform
clectron gas with the same density.

The slow spatial variations is the idea behind the local-density approxi-
mation (LDA), where the functional vy.[p] defined in Eq. 17 is replaced by a
local function vXP4 (p(r)). With the same approximation to the exchange and
correlation energy per electron e“P4 (p(r)) the exchange and correlation energy
of the density p(r) can be approximated with a simple integral

BEDA = [ o) k0 (o) . (18)

For practical calculations there are parameterized formulae fitted to the Monte
Carlo data of the homogeneous electron gas!3—16

The LDA works well for solid materials®>'® especially for metals, and
it has proven to be surprisingly successful even in cases where the density
variations are relatively large like in free atoms and molecules!® The general
experience is that LDA is good in predicting bond lengths and conformations,
forces on atoms and vibrational frequencies, and general trends in chemistry.
On the other hand, LDA fails in predicting bond energies accurately, and
nonbonding interactions, and it systematically underestimates the band gap of
semiconductors.

The most popular methods to improve LDA are based on sc. generalized
gradient approximation ! (GGA), where the effects of local density variations
are described by density gradients and parameterized accordingly. The GGA
is known to improve calculated total energies, atomization energies, energy
barriers and the band gaps of semiconductors, though not always sufficiently.
There are also methods?° that do even better with these properties, especially
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with the band gap problem, but are relatively heavy in practical computations.

From comparison of the results of DFT and wavefunction methods one can
conclude that generally LDA does better than Hartree-Fock for the molecular
properties®1® However, where computationally feasible, i.e. for small mole-
cules, the highly correlated wavefunction methods are the most accurate. For
solids, on the other hand, the DFT method is the only applicable choice, in
practice.

3 Computational Methods
8.1 LCAO Method

The one-electron states or orbitals of electrons are most conveniently solved
as an expansion of suitable basis functions. Only spherically symmetric free
atoms make an exception for which other numerical techniques are usually
adopted. The set of basis functions can be chosen to suit best for the system
in question. For small or disorderd structures with localized characteristics
a set of atomic orbitals expanded around the nuclei may be the best choice,
whereas for periodic bulk or other infinite structures plane waves may serve
better. In this section, we first consider the common technique of using a set of
localized basis functions, and in the next section, we consider the use of plane
waves as basis functions.

The linear-combination-of-atomic-orbitals (LCAQ) is the general name for
methods where molecular orbitals or one-electron states 1); are expanded in
terms of atomic one-electron orbitals {¢,;} centered around the nuclei at R,.
The atomic orbitals can be written as

Pt (t) = Une(rp) Yem, (Tp), (19)

where u,e(r) is the radial part of the atomic orbital and Y, () is the angu-
lar part, the spherical harmonic function. Here r, =r —R,, r, = |r,| and
r = (0,¢), the angles of the polar coordinate representation of r. The sub-
script k stands for the set of orbital quantum numbers {n, ¢,m,}. Instead of
the complex spherical harmonics the real combinations can be taken with the
advantage of better suitability for describing bonding between atoms. For ex-
ample, the combinations Y, =Y _1 =Y 41, Y, =Y, 1 +iY; ;1 and Y, = Yo
are real functions for p-orbitals and conveniently oriented in space.

There are several forms in which the radial part of atomic type basis func-
tions une(r,) have conventionally been written for the computational use. The
gaussian type orbitals (GTO) are composed as a sum of primitives, u(r) =
> biexp(—a;r?), which have convenient analytical properties. The Slater
type orbitals (STO), usually scaled hydrogen like orbitals, have more realistic
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functional form but they are less convenient in analytical calculations. One
more practical alternative is the use of numerically calculated atomic orbitals
of free atoms and ions. This is the choice that can be kept in mind when
reading what follows.

The one-electron molecular orbitals are expanded now as a LCAO

Ny,
Pi(r) = Z ¢ij x5 (r), (20)
where
X;(r) = Z W,k Pk (T). (21)
nk

The Ny functions x,(r) are called symmetry adapted basis functions, which
are formed with coefficients w;,1 chosen to make the functions x; to transform
according to the symmetry properties of the hamiltonian, i.e. according to the
irreducible representations (irrep) of the point group of the hamiltonian. The
number of the basisfunctions N}, should be much larger than the number of
occupied orbitals N, that gives flexibility to the solutions and leads to better
description of 9; as a linear combination of functions ;.

With substitutions of Eqgs. 15 and 20, the Eq. 14 can be written in form
of the matrix equation, or a set of s.c. secular equations,

HC{ = €1SC1, (22)
where the matrix elements of the hamiltonian H are

Ho = [ 3G ) &) () i = () (23)

and those of the overlap matrix S are

S = / X () X (¥) dr = (). (24)
Note that 1
(mlBln) = (ml(~593)m) + (e (1)), (25)

that shows how the kinetic energy contribution is calculated from those of the
basis functions or atomic orbitals.

The N}, solutions, eigenvalues €; and eigenvectors ¢; = {c¢;;}, to the matrix
equation 22 are obtained through diagonalization of the hamiltonian H. As
the basis functions belong to the irreducible representations of the hamiltonian,
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the matrices H and S are reduced to blocks, one for each irrep. This follows
from the fact that (m|h|n) and (m|n) both vanish, if y,, and x, belong to
different irreps. Thus, the diagonalization can be carried out for each block
independently, reducing the computational task considerably.

As mentioned above, the solutions c¢; or ¥; must be self-consistent. The
charge density, obtained from Eq. 8 by summing over the N occupied orbitals,
is responsible for the Hartree potential in Eq. 12, which is a large contribu-
tion in the effective potential, of the hamiltonian, Eq. 16. As the solutions
are initially not known, the Hartree potential has to be approximated by an
initial guess and then iterated until self-consistency. In practice, rather than
evaluating vy (r) from Eq. 12 directly, it is usually solved from the Poisson
equation

V2 (r) = —4mp(r). (26)

This usually results in a higher accuracy with less effort.

The above described LCAO procedure is natural and was initially devel-
oped for finite systems, molecules and clusters, with a finite number of atoms
and electrons. It can be used, however, to evaluate the electronic structure
of periodic bulk materials, too. A straightforward “large-cluster” model for
infinite bulk always suffers from serious finite-size effects due to the cluster
surface, and therefore, is not a good scheme, in general. Instead, dividing
the bulk into identical computational unit cells or supercells, of which one is
computed with LCAO under the explicit interaction of others, leads to better
description of the periodic bulk. This kind of embedding of a supercell in be-
tween its identical images is what has been done in one of the commercially
available computer codes?!

Although the embedding scheme is actually an application of the periodic
boundary conditions, the periodicity or the full translational symmetry can not
be used explicitly in defining the one-electron levels. The consequent drawback
is that the wave vector (or wavelength) dependence of the computed one-
clectron eigenvalues is not known, and all the levels are assigned to the I'-point
(zero wave vector) of the supercell. This is also called I'-point approximation.
The quality of the solution can be increased by increasing the size of the
supercell with respect to the primitive cell of the periodic bulk. This includes
more one-clectron levels from the Brillouin zone but in a reduced zone picture,
or alternatively, it reduces the size of the first Brillouin zone, and thus, makes
the I'-point a better representative of the k-points in average.
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3.2 Plane Wave Pseudopotential Method

The one-electron levels of a solid are delocalized and adapted to the infinite
and usually periodic configuration of the component atoms, except for the deep
core levels. The core levels are of less importance in cohesion of atoms and solid
phase formation. Therefore, the delocalized plane waves serve as a natural and
convenient basis set to expand the essential one-electron wavefunctions. The
localized core levels, on the other hand, could be described only with relatively
large plane wave expansions. As the main role of core electrons in this context
remains their “background interaction” with the valence and conduction elec-
trons, the ion cores can be replaced with suitable pseudopotentials with only
a minor loss of accuracy in the description of delocalized levels outside the
core region. A general acronym for these type of plane wave pseudopotential
methods is PWPP.

Transferable core pseudopotentials are ideally constructed so, that the
“scattering” properties of valence and conduction electrons, i.e. the form of
of their wavefunctions, remain the same outside and become smooth and ra-
dially nodeless inside the core region. Because the scattering depends on the
angular momentum of the incoming wave with respect to the nucleus, dif-
ferent pseudopotentials may be used for different angular momentum related
quantum numbers ¢ and my. Interactions between different ¢ channels can be
included. Such a pseudopotential is called non-local and can be written in the
form

Vpp(1,1) = > |plmy) Epg (b (27)
ulmyg
where
[plmig) = e (ry) Yom, (T), (28)

uye(r,,) is the radial part, Yo, () the spherical harmonic function, E,, a num-
ber (energy) and y labels the ion cores. The radial functions u,e and energy
parameters F,, of pseudopotentials are fitted to suitable reference systems
using various procedures??27 Relativistic corrections, if essential, can easily
be included into pseudopotentials, too. For more details of pseudopotentials
of ion cores see Ref. 22 and references therein. Finally, the pseudopotential
vpp 1s added to the effective potential veg, Eq. 16, of valence and conduction
electrons.

We now consider the effects of the periodicity of the bulk lattice of atoms
on the one-electron wavefunctions. Let the Bravais translation vectors defining
the unit cell be Ry, Ry and Rg3. This implies the periodicity of R = n1R; +
nsRa + n3Rs, where n; are integers, in the effective potential as

Vet (r + R) = ver (). (29)
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Now, Bloch’s theorem '° states that the one-electron eigenstates of the hamil-
tonian in Eq. 15 are of the form

Vi (1) = KT (1), (30)

where k is sc. wavevector, a point in the first Brillouin zone. The radius vector
r and the wavevector k form a Fourier pair, the variables in space (unit cell)
and in the reciprocal space (the first Brillouin zone). Thus, k| = 27/ is
proportional to the momentum of the electron wave and A is its wavelength.
Another consequence of the Fourier transform relation is the periodicity of
reciprocal space, for which reason it is sufficient to consider the first Brillouin
zone, only.

In Eq. 30, the one-electron eigenfunction is a product of a plane wave and
s.c. cell-periodic part. The latter can be expressed further in terms of plane
waves as

Unk(r) = Z Cn k+G ei’G'r, (31)
G

where G are the reciprocal lattice vectors defined by the condition G-R = 27m,
where m is an integer. Now, combining the two previous relations we obtain

i) = 3 ensee explifk + G) -1 (32)
G

for the plane wave expansion of one-electron eigenfunctions.

In an infinite solid there is an infinite number of electrons labeled with
the wave vector k. This makes the wave vector a continuous variable. On the
other hand, there are more than one electronic eigenstate for each k, labeled
with the band index n above. As the eigenenergy depends on both n and k,
this results in the band structure of solids. The bands are occupied up to the
Fermi energy cp.

It is not possible to compute an infinite number of solutions with any
numerical technique. However, the eigenstates vary continuously as a function
of k, and therefore, a representative but finite set of k-points is sufficient for
an accurate description of the electronic structure. Also, the number of plane
waves |k + G) = expli(k+ G) - r] in Eq. 32 should be finite for numerical
solution procedures. It is the lowest energy plane waves that are the most
important in the basis set, and therefore, the basis set can be truncated to
include only those plane waves who have kinetic energies %|k + G|? less than
some particular cutoff energy. Thus, the cutoff energy describes the size of
plane wave basis set and becomes a parameter that can be increased to increase
the accuracy, if the available computer capacity allows.
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There are a couple of more “simplifications” which we take advantage
of before writing the secular equations. One is the orthogonality of plane
waves, (k|lk’) = §(k — k'), that can be thought of emerging from the different
translational symmetries the different plane waves represent. This is analogous
with the symmetry adapted basis functions y; in Eq. 21, that simplified the
matrix diagonalization procedure. Here, the symmetry does much better work,
the hamiltonian becomes readily diagonal with respect to k (or kinetic energy).

The other simplification is due to the lattice symmetry, other than trans-
lational, encountered in the reciprocal lattice, too. For this reason, only one of
the rotation and/or reflection related k-points need to be considered and the
solutions at the others are found using the relevant point group symmetry op-
erations. There are methods to choose the minimal set of k-points to represent
the reduced or the whole Brillouin zone?

Now, substitution of the plane wave expansion, Eq. 32, to Eq. 14 together
with Egs. 1517 and 27 yields the matrix equation, or the s.c. secular equations,

HeEnk+G = €n k Cn k+G - (33)

The overlap matrix is an identity now, but for a certain k
1
Hgfgl = §‘k+G‘2(5(G—Gl)+7Jeﬁ‘(G—G/) (34)
and v (G) is defined by

Ve () = Z’Ueﬂ‘(G) G, (35)

G

The diagonalization can be carried out for each k-point in a chosen set inde-
pendently. In each case the matrix size depends on the number of included
reciprocal lattice vectors G, which further depends on the cutoff energy para-
meter. Here, too, the solutions have to be iterated until self-consistency.
Finally, it should be mentioned that solving the secular equations is equiv-
alent with minimization of the total energy of the electrons, Eq. 5. Based
on this there are other alternative ways of solving the electronic structure of
matter, see e.g. Ref. 22. There are even straightforward methods to calculate
the “molecular dynamics” of atoms simultaneously with the solution of the

electronic structure and forces between the atoms3”

4 Surface Relaxation

The cleavage faces of binary compounds may be terminated by either of the two
components. Due to the charge transfer in binding of two different elements
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such a surface exposes charged surface layers and forms s.c. dipole bilayer. Such
atomic scale charges effect dramatically on the physical and chemical properties
of the surface. First, they create Coulomb forces between the surfacemost
atomic layers that may lead to a reconstruction of the atomic geometry, or
at least, to relaxation though retaining the original symmetry of the surface
unit cell. Secondly, the change in chemical properties may change the nature
and strength of the interactions between the surface and adsorbates, and thus,
the consequent surface chemistry. Moreover, all these phenomena may further
effect on the bulk properties of the material, such as the electrical conductivity,
for example.

Comprehension of these phenomena motivates the detailed studies of the
origins, mechanisms and consequences of the surface relaxation. In what fol-
lows, however, we concentrate more on the computational studies of these
phenomena than the analysis and significance of the results and their conse-
quences. We illustrate how the above presented methods can be applied to
such investigations and compare the two different computational approaches,

LCAO and PWPP.

4.1 (1010) Face of CdS

Tetrahedrally coordinated compound semiconductors occur in two crystallo-
graphic allotropes: zincblende and wurtzite. Zincblende materials exhibit only
(110) cleavage face but the wurtzite exhibit two cleavage surfaces: (1010) and
(1120). All these three surfaces relax strongly resulting in deviations up the
order of one Angstréom from their positions in the truncated bulk geometry.
There are recent reviews *® of general trends and other investigations of spe-
cific cases, see Ref. 24 and references therein. The general trend in surface
relaxation is anions outwards from the surface, which relates to the covalent
bonding and surface electronic states. Furthermore, the surface atomic geom-
etry is 7universal” among the I[1-VI wurtzite semiconductors but the extent of
relaxation scales linearly with the bulk lattice constant?

We have chosen to consider the more general hexagonal wurtzite and the
more stable of its surfaces, the (1010). We will find that our results, like the
other recent ab initio results?® are in line with the general trends.

The bulk lattice parameters of the hexagonal wurtzite CdS are a = 4.14 A
and ¢ = 6.72 A with the ¢/a ratio 1.623. To be able to conveniently treat the
(1010) surface we use an orthorhombic supercell with eight atoms (two prim-
itive cells), shown in Fig. 1. An optimization of the bulk lattice parameters
with a fixed c¢/a ratio using total energy minimization resulted in lattice con-
stants which deviated less than 0.1 % from the experimental ones and a very
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Figure 1: The orthorhombic supercell of wurtzite CdS. Smaller spheres describe anions (S)
and larger cations (Cd). The upper half of the supercell illustrates the relaxed (1010) surface
but the lower half is fixed to the bulk geometry. There are eight inequivalent atoms (two
primitive cells) in the corresponding bulk supercell (6.72 A x 4.14 A x 7.17 A) and ten atoms
in the supercell of the thinnest slab model.

small relative shift in the Cd and S lattices, with both of the computational
methods. Therefore, we chose to use the experimental bulk lattice constants
for the bulk and surface unit cells.

For the LCAO calculations we used a commercial software DSolid?! It
allows self-consistent ab initio calculation of periodic structures with numerical
atomic orbitals as a basis set, as described in Sec. 3.1. The typical extent
of radial functions is 5 6 A. For sulfur we used the following basis: (1s?),
(2s%), (2p%), 3s%, 3p?, 3s9%, 3p’*, 3d%* where those in parentheses form an
atomic ”frozen core” and those denoted with an asterisk have been generated
in ions rather than in neutral atoms. With the same notations the basis set
for cadmium is (1s2), (2s?), (2p%), (3s?), (3p%), (3d'0), (4s?), (4p®), 4d0, 5s2,
4d%*, 5s9% 5p0*. Thus, the highest in energy of the inactive (frozen) set of
basis functions is Cd 4p at about —65 ¢V (the free atom eigenvalue). The Cd
4d functions were kept active to see, if their role is important in energetics
of geometric relaxation. We used the LDA parametrized by Vosko, Wilk and
Nusair!?

For the PWPP calculations the “fhi94md” code package 26 was used. Es-
sentially the same LDA as for LCAO was taken, but now with the Perdew-
Zunger parametrization.!® The pseudopotentials with fhi94md are of gener-
alized norm-conserving type2” They consist of 1s-, 2s- and 2p-potentials for
sulfur, with s being treated as a nonlocal component. The cadmium PP con-
tains s, p and d-type functions (1s 4d) with sp-nonlocality. The number of
plane waves varied from 4000 to 16000 depending on the slab thickness, as the
cutoff of 10 Hartree was adopted after careful testing. For integrations over
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Table 1: The perpendicular relaxation parameters of the topmost layer of wurtzite CdS
(1010) surface. A2 is the splitting of Cd and S atoms to the S and Cd layers (in A) and w
is the corresponding rotation of the Cd—S bond from the initially horizontal direction. TB
denotes tight—binding method.

CdS | Unrelaxed LCAO PWPP PWPP 25 TB 28
A1z | 0.0 0.7 0.6 0.7 0.7
w 0° 18° 14° 16° 18°

the reciprocal space the I'-point (k = 0) value was taken as the representative
average of the first Brillouin zone (I'-point approximation).

The bulk supercell in Fig. 1, contains eight atoms (4 Cd 4+ 4 S) and increase
of the cell size was found to drastically increase the computational task with
LCAO. With PWPP, a 16-atom (8 Cd + 8 S) supercell (two adjacent supercells
of Fig. 1) was used. This was advantageous in bringing the orthorhombic
cell geometry closer to cubic that was found to stabilize the internal bulk
geometry very close to the experimental one. Furthermore, it increases the
accuracy of the I'-point approximation. Relaxation energies for bulk CdS with
the experimental lattice constants, from the initial configuration, were 0.24 eV
and 0.28 eV per primitive cell with LCAO and PWPP, respectively. The bulk
relaxation results in a small relative shift of the Cd and S lattices, only.

The surface calculations were carried out with various supercell geometries.
A supercell structure with four vacuum layers and four atomic layers was found
to be relatively good for a quantitative description of the relaxation of the first
two surface layers. The relaxed geometry is given in Table 1 together with that
from the tight-binding calculations of Wang and Duke ?® and ab initio PWPP
calculations of Schréer, Kriiger and Pollmann2?® The results from all of the
calculations show a bond-length-conserving relaxation in which the top-layer
cations move towards bulk and the anions move outwards from the surface
plane. The rotation angle w of the bond direction between the surface layer
atoms is given in Table 1, too. The calculated relaxation is driven by the
energy gain of 0.56 eV per surface unit cell according to both of our methods.

Surface densities-of-states, relevant to the chemical activity, were consid-
ered and slab models of various thicknesses were tested, too. For more details

sce Ref. 24.

4.2 (110) Face of SnOqy

The rutile crystal structure of SnQOs is 6:3 coordinated and the bonding between
atoms has a relatively strong ionic character. The (110) face is the most stable,
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Figure 2: The orthorhombic supercell of rutile SnOg. Smaller spheres describe anions (O)
and larger cations (Sn). The upper half of the supercell illustrates the relaxed (110) surface
but the lower half is fixed to the bulk geometry. There are 12 inequivalent atoms (two
primitive cells) in the corresponding bulk supercell (6.67 A x 3.19 A x 6.67 A) and 15 atoms
in the supercell of the thinnest slab model.

and therefore, it is the most dominant surface of the crystallites of the usually
porous SnOs material. The ideal (110) cleavage face is non-polar, but again,
becomes a dipole bilayer due to the relaxation. Furthermore, the surface tends
to oxidize easily, which effects on the relaxation or reconstruction, surface
charge and potential, and thus, the chemical properties. Also, the oxygen
vacancies present in the bulk, close to the surface and even mobile at higher
temperatures interfere with the above mentioned properties.

Extensive amount of research has been done on the SnO, material and
its surfaces both experimentally and theoretically, see Refs. 1-3, 29-31 and
further references therein. Earlier, we have carried out LCAO calculations with
a finite cluster model 2939 and found out the necessity of proper embedding
or inclusion of periodicity as described in Secs. 3.1 and 3.2, above. Here, we
counsider relaxation of the ideal (110) cleavage surface of SnOs. This strongly
relaxing face is called “reduced” in contrast to the “oxidized” surface which
relaxes less.

The tetragonal unit cell contains two tin and four oxygen atoms with lattice
parameters a = 4.74 A and ¢ = 3.19 A. Here again we used an orthorhombic
supercell with 12 atoms, shown in Fig. 2, to make calculations simpler. The
same experimental lattice parameters were used throughout the study to retain
simple comparability of the results from the two methods.

For the LCAO calculations the DSolid 2! software and the LDA parame-
trized by Vosko, Wilk and Nusair '® were used again. For oxygen and tin we
used the basis sets: 152, 2%, 2p#, 250, 2p°, 3d°%, 3d%*, and (1s?), (2s?), (2p%),
(3s%), (3p%), (3d19), (4s?), (4p°), 4d10, 552, 5p2, 4d%*, 50*, 5p0* 5d* respec-
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Table 2: The perpendicular relaxation parameters of the topmost layer of rutile SnO2 (110)
surface. A1z is the splitting of O and Sn atoms (average) and A1 the splitting between the
two inequivalent Sn atoms (both in A).

SnO> | Unrelaxed LCAO PWPP TB?36
A1z | 0.00 0.40 0.35 0.25
A1 | 0.00 0.07 0.11 0.05

tively. The basis set notation is the same as above. The PWPP calculations
were carried out with the PlaneWave software?!:33

Tindioxide appeared to be calculationally more demanding than CdS. The
total energy minimization with PWPP led close to the experimental lattice con-
stants only with the “extended-norm-and-hardness-conserving” pseudopoten-
tials$4 which required the cutoff energy of 40 Hartree (80 Ry !). The quality of
the calculation was increased also by including three k-points for the evalua-
tions of Brillouin zone averages. The LCAO calculations were done roughly at
the same level as those for CdS. Increase of the basis set and possibly a larger
supercell would have been necessary to obtain the experimental lattice con-
stants to 1 % accuracy with LCAO. The higher demands for the calculations
of SnQsy, as compared with CdS, are obviously brought by the element oxygen
which is known to require not only numerically higher level calculations but
also non-local corrections to LDA.

The parameters given in Table 2 describe the relaxation within the first
layer of (110)-1x1 surface. They are seen to be less than those in Table 1 for
CdS (roughly half). The common feature in both is, however, the anion (S
or O) relaxation outwards. In case of SnOs the two inequivalent Sn cations
relax slightly differently, too. The two methods, LCAO and PWPP, are seen
to lead relatively similar relaxation, whereas the tight-binding method?3® seems
to yield smaller relaxation. For more details, including supercell size effects
and different slab models, see the original work32

5 Conclusions

The density-functional theory is the proper framework for the ab initio calcu-
lation methods for solids and surfaces. It offers a straightforward formalism for
numerical approaches, which become most efficient in case of large and infinite
systems. Furthermore, the results are relatively accurate already at the lowest
level of approximation to the exchange and correlation of electrons, the LDA,
as shown in this text above. This formalism also defines the relevant concepts

18



for the solid state electronic structure in a simple way, and that may be more
suitable even for use in qualitative molecular orbital theory of small molecules
than the conventional Hartree Fock theory, as argued in a very recent paper3?

Evaluation of the two different computational approaches to DFT, namely
LCAO and PWPP, shows that both of them are able to describe the surface
structure and properties of compound semiconductors. A reasonable accuracy
can be achieved with reasonable computational efforts due to the LDA. In
comparison of LCAO and PWPP the largest differences, therefore, remain in
the concepts which these methods use to describe the electronic structure of
periodic solids. The LCAO accounts for bonding and other phenomena in
terms of atomic orbitals, whereas the PWPP emphasizes the band structure
in the description of valence and conduction electrons.

As expected, the relaxation of (1010) surface of CdS and (110) surface of
SnOs occur essentially in the perpendicular direction, only. Lateral relaxation
is negligible. Symmetry breaking reconstruction was not found, in either case.
The most prominent common feature for both surfaces is the anion relaxation
outwards from the surface. Various ab initio results for the relaxation parame-
ters seem to mutually agree, but differ somewhat from those of tight-binding
results. The extent of relaxation and the consequent effects on the surface
properties are definitely essential for the adsorption and surface chemistry of
these materials.
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