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9. First-principles methods

First-principles or ab initio methods are based on most fundamental starting point, /.e.
guantum mechanics together with constants and laws of Nature. If restricted to electronic
structure of atoms and molecules, then names ab intitio and quantum chemistry are used.
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Consider solving the nonrelativistic time-independent Schrédinger equation
Hy(r,R) = ER) y(,R) (9.1)

in Born—Oppenheimer-approximation, where r = {r;} and R = {Ry} are the coordinates of
electrons and nuclei. Then, the electronic total energy E(R) depends on the nuclear
configuration and contributes to the potential energy (hyper)surface (PES).

After separation of the nuclear Coulomb repulsion, the remaining electronic hamiltonian is
2 n 2 n N Z ez n 5
H=-1 Vi - L 1y __ e

2m 21 Z1 ; 4meg 13 * ZiZj 47eq Ijj (92)

where r; = Iri-Ryl, rj; = Iri—1jl and {Z;} are the nuclear charges, for a molecule with n electrons
and N nuclei.

Methods of solution, where only nuclear charges, constants of nature (and fixed nuclear
configuration, i.e. B—O approximation) are called ab initio- or "first-principles" methods.
Within sc. semiempirical methods parts of the hamiltonian and/or wavefunction are fitted to
the known experimental data.

Ab initio methods can be divided to two main formalisms: sc. wavefunction theory, which is
based on the Hartree—Fock theory, and density-functional theory (DFT), where the basic
concept is the electron density.

The target is finding the conformation dependent energy with the "chemical accuracy", which
is 0.01 eV (~ 1 kdmol™!). Then, the molecular structure and the energetics relevant for
chemical reactions are found with sufficient accuracy.
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Hartree—Fock SCF-method

.1. One-electron pictur

If ignoring the electron—electron repulsion, then for a nuclear configuration R, the N electron
wavefunction can be separated to one-electron wavefunctions or orbitals y,° and

H°y° = E°y°, (9.3a)
where
H, = 5Nh; (9.3b)
and
hi o °(ri) = Ey°gu°(ry), (9.4)
where
Yo(ry, 12, ..., IN) = PaO(ry) Ypo(r2) ... P, °(rn). (9.5)

The one-electron wavefunction added by the spin function, is called
spin-orbital ¢u(x;) = P°(rj) ou(i). This simplified method is called Hartree approach.

.2. Hartree—Fock r h
Now, the antisymmetrized N electron wavefunction y°, (sec. 7.15) is written as
YOX1, X2, ..o XN; R) = (N2 detla(x1) op(x2) .. ¢z(xn)1 = (ND)™'Z detiga(1) dp(2) ... (NI (9.6)

The one-electron picture can be retained, while adding to the above hamiltonian the average
Coulomb potential of orbital charge density, the Hartree potential. In case of atoms this is
the central-field approximation. In Hartree—Fock method, each of the N electrons feel the
Hartree potential of the other (N-1) electrons. Then, we change the notation ° — ).
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Now, let us find the best spin-orbitals with variation principle by minimizing the Rayleigh ratio

= SWH) 6.430)
= , 43a
(Yhp)
which leads to the Hartree—Fock equations, (Appendix 11), i.e. the one-electron equations
fi Gu(xi) = €uPu(xi) (9.7a)
for each spin-orbital ¢,; u=a,b,...,z. Then the Fock-operator f; becomes as given in
sec. 7.16 and eqgs. (7.47-49)
fi = hi+ 2y [d Ju(1) - Ku(®], (9.7b)

where u runs through occupied orbitals, d = 1 is spin-degeneration, and Coulomb operator J,
and excahange operator K, are

RE 2 \ (9.7¢)

ers(l)—\ f W@ e wr<2)d21ws(1)

and [ 2 \ 9.7d
Krws(l)—\ f W ws(z)dszra)_ (9.7d)

Note, that

Ju@®) pu(®) = Ku(@) pu(d).

The spin-orbitals should be iterated to self-consistency (SCF), see p. 130, sec. 7.16, and
such, that in the ground state y = @y the N lowest spin-orbitals are occupied. The occupied
spin-orbitals contribute to the Fock-operator. In genenral, the Fock-operator has an infinite
number of eigenstates and energies, which relate to the one-electron excited states.
However, in matrix formalism the number of eigenstates and energies is restricted to the
number basis functions, see sec 9.3 below.
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"Restricted" and "unrestricted" Hartree—Fock

If the atomic or molecular orbitals or shells are “closed”, i.e. fully occupied, the spin state is
singlet, S =0, because all orbitals have the same number of o and f electrons. The Hartree—
Fock wavefunction is then

Dy = (N2 detl ,* paP wp® PP ... Y, P P .

In case of closed shells this is called restricted—HF (RHF) wavefunction, whereas the open
shell unrestricted—HF (UHF) wavefunction is

Dy = (ND2 detl a1 YaoP o1 “ppoP .. a1 * PP I,
The UHF one-electron orbitals may depend on spin, because of spin imbalance. Thus, e.g.
Pa1(r) # Pao(r).

The RHF wavefunction is an eigenfunction of the spin operator S with an eigenvalue
S(S+1)#2, but the UHF wavefunction is not, in general.

9.3. Roothaan equations

In lower than (atomic) spherical symmetry, i.e. molecules, the HF wavefunction is generally
expanded in a basis set {0;}. The HF equation (7.47a) for an orbital y,(r) is

fk Yu(ry) = &y Yu(ry), (9-9)
and thus, the form of the solution
Yur) = My, 6;(r). (9.8)
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We substitute (9.8) to (9.9), multiply from the left by 6;* and integrate. We use a notation

Sij = J6i*(r) B;(r) dr, (9.11)
for the overlap matrix element, and similarly for the Fock matrix
Fj = JO*(ry) fi 0;(ry) dry. (9.12)

Then we obtain for alli =1, 2, ..., M; sc. Roothaan equations, which can be presented as a
matrix equation
Fc, = e8¢y, (9.13a)

where F ={Fjj}, § ={Sjj}, cu = {cju} foreach u=a,b,...,z. These M equations can also be
presented in form

Fc =Sce, (9.13b)
where ¢ = {cy} = {cju} and € = {gju}, when &j, = &.

The solution, eigenvalues ¢, and the corresponding eigenvectors c,, must be determined
self-consistently (SCF), because the Fock operator, see (7.47—-49), depends on the solution,

Fij = hij +2/m Pm {< il 1 1/rp2 1 jm > - < il 1 1/r12 | mj >} (9.18)
where the elements of the sc. density matrix are
Pim = dZycn™® Cmu- (9.19)

Here, d is the occupation of orbital vy, usually 2.

The sc. two-electron integrals (ijli/m) = (i/ | 1/r3 | jm ) are many, of the order of M*.
Therefore, they take a significant part of the computational capacity and power.
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Geometry and SCF Cycles
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4. STO and GTO basis set

For an accurate, but easy presentation of molecular orbitals a good basis set is needed. In
general, a complete basis consists of an infinite numer of basis functions, M = «. The
solution in a complete basis set is called the Hartree—Fock limit and the difference from that
is called as the basis-set truncation error.

In the basis set Slater type orbitals (STO) the radial partis e %, where T is orbital exponent,
see sec 7.14. The infinite set {e‘cr}g is complete, if T € R, but in practice, only a limited
number of T, are chosen by fitting to STO.

STO is not very popular, because evaluation of two-electron integrals with STO is laborious.
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Gaussian type orbitals (GTO) basis functions assume the radial part e **. Sc. cartesian
GTO functions take the form 1 <
gijk(r) = N x! yj z* efarz, (9.20)

where r=rq—rc=x/i\ +y'j +zﬁ, i,j and k are nonnegative 0.8
integers, r. is position of the "center", usually the nucleus, )
and rq is position of the electron . Now, /=i+j+k, and
therefore, 1 =0,1,2,..are s, p, d, ... type GTO functions. 06
If xiylzX are replaced by spherical harmonics Y, ,, we have "
sc. "spherical gaussians" basis set.
The size of the Fock matrix to be diagonalized can be 0.4
reduced by contraction of the basis {g;}; to a smaller s—type.
"contracted GTO basis" {);}; by 85 Gaussian

Xj = Zidji gi (9.21) ' n=1STO
where the contracted function ; is a sum of primitive GTO-
functions g;. The coefficients d;; are determined by fitting ; 0
to atomic orbitals. Distance from nucleus

Molecular orbitals are then written in the form Fig. 9.4.

Pi = Zj Cji X
for the coefficients c;; to be searched.
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The basis set formation and contraction schemes of GTO are many, e.g.:
* minimal basis set
+ DZ, double—zeta basis set
+ TZ, triple—zeta basis set
+ SV, split-valence basis set
+ DZP, double—zeta basis set plus polarization functions
+ STO-NG, e.g. STO-3G
Basis set Hz NZ CH4 NH3 H20
* (4s)/[2s], (9s5p)/[3s2p] STO-3G “1.117  —107.496  —39.727  —55454  —74.963
4-31G -1.127 ~108.754 —40.140 ~56.102 ~75.907
N o 6-31G* -1.127 —108.942 —40.195 —56.184 -76.011
* 3-21G, 6-31G", 6-31G 6-31G** -1.131 ~108.942 ~40.202 ~56.195 ~76.023
An incomp|ete basis set |mp||eS HF limit -1.134 —108.997 —40.225 —56.225 ~76.065
errors or deficiencies in the Table 9.3. HF-SCF energies (in units of Hartree = 27.21165 eV = 4.35975 aJ
solution. One of these is sc. -
"basis set superposition error", Basis sct H, Na CH, NH, H.0
\,/’vhlchtcan t,)e correct?d t?,y ScC. STO-3G 1.346 2.143 2.047 1.952 1.871
coun er,OOISG correction. 4-31G 1.380 2.050 2.043 1.873 1.797
6-31G* 1.380 2.039 2.048 1.897 1.791
6-31G** 1.385 2.039 2.048 1.897 1.782
Observed 1.401 2.074 2.050 1.912 1.809
Table 9.4. HF-SCF bond lengths (in units of Bohr = 0.529177 A)
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Electron correlation

HF theory includes the Coulombic repulsion between
electrons in an average way, in form of Hartree potential, only.
This means, that the HF theory does not include the many-
body effects or correlations. This is the "definition of
correlations" used with the ab initio methods.

9.5. Configuration state functions (CSF)

Assuming the number of basis functions is n, then we have 2n
spin-orbitals, which can be occupied with N electrons in

different ways.

Let us denote the ground state Slater determinant as ®, and
once excited determinant as ®,P and twice excited one as
D P9, ete.

Now, the configuration state function (CSF) is defined as the
symmetry-adapted linear combination of these determinats.
These can be used as a basis set for eigenfunctions of the
hamiltonian and all operators commuting with the hamiltonian,
e.g. the operator S2.
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9.6. Configuration interaction (Cl)

The exact N electron many-body wavefunction can be written as
W = CoPp + Zy p CPDL + Zacp p<q Cab?IPabPd + Zachc p<ger CabcPF PapcPd + ..., (9.23)

i.e., as a linear combination of the CSFs defined above, and assuming that the one-electron
basis set is complete. This means, that the CSFs or N-electron determinants form a
complete CSF-basis for N-electron wavefunctions.

Full

The excat many-body wavefunction W does not include
10* Cl Exact

the one-electron picture of Hartree—Fock theory, i.e.,
occupation configuration of one-electron orbitals, but
instead, a superposition of those. Therefore, this is
called configuration mixing or configuration interaction
(Cl).

The concepts "full CI" and "basis set correlation energy"
are definend in Fig. 9.6.

Correlation phenomena can also be called
structural/static, dynamic or partly both depending on
the interpretation of the case. 10
Hartree- Fock
limit
1 Y |

510 15 20 25 30

Number of basis functions
Fig. 9.6.

Number of configuration state functions
o
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.7. Cl calculation

The coefficients C in CSF expansion of W (9.23) are found with a similar hamiltonian matrix
diagonalisation as for finding coefficients c in the expansion of spin-orbitals v; in (9.8) in sec.
9.3. Many of the matrix elements vanish and the most contributing CSF "basis functions"
are @, and doubly excited ®,,4. According to the Brillouin theorem (@, I H | ®p ) =0.

Depending on truncation of series (9.23) various limited Cl are called:
- DCI

+ SDCI

« SDTQCI

Limited ClI lack of sc. "size-consistency".

8. M F and MRCI

In basic Cl approach all different CSF determinants are formed from the same HF optimised
spin-orbitals for @,. But in case the set {c;i} in (9.8) y =Zjmc;i0; is optimised simultaneously
with {Cy,. P9} in (9.23), the approach is called “multiconfiguration—-SCF" (MCSCF). Thus, in
MCSCEF there is no ground state configuration ®,, which is improved with excited states.

The "Complete active-space—SCF" (CASSCF) is a MCSCF approach, where the spin-
orbitals are grouped to inactive, active and virtual, based on how they are excited or
occupied in CSF states.

Sc. Multireference—CI" (MRCI) is an intermediate between Cl and MCSCF, which gives
relatively good description of correlations with a small set of CSF functions. Thus, e.g. the
"size-consistency" error of MRCI can be made small.

Cl approaches are variational, but suffer from lack of size-consistency.
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9.9. Moller—Plesset many-body perturbation theory
Many-body perturbation theory (MBPT, monihiukkashéiribteoria) is an alternative to improve
HF approach with a systematic manner. MBPT is not variational, but it is size—consistent.

In Moller—Plesset perturbation theory the reference state is chosen to be the sum of one-
electron Fock operators
HO = 3 fi. (9.27)

HF wavefunction @, is an eigenfunction of this operator, see the example 9.4 in text book.
Next we choose the first order perturbation operator to be
HD = H- HO, (9.28)

which "corrects" the reference state H® energy to the Hartree—Fock energy, where H is the
molecular hamiltonian (9.2).

Thus, the Hartree—Fock energy is Eyr = E@ + E), where

EO = ( Oy | HO | dy)
and

ED = ( Dy | HO | By ).
The second order correction is

E(Z) — Z (WJ'H(1)|1P0> <w0|H(1)hPJ> (9_29)
J20 E(O) - EJ ’
where ®; are "excited" CSF functions. In the numerator all the matrix elements vanish

except for those, where @; is a doubly excited CSF. This second order MP perturbation
theory is called MP2. The third and fourth order theories are correspondingly MP3 and MP4.
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.10. upled-Cluster method

The correlated N-electron wavefunction can also be written as

¥ = eCy, (9.30a)
where ¥, is the Hartree-Fock wavefunction
e = 1+C+Cx21+C¥31+. .., (9.30b)
where C is "cluster operator"
C=Ci+C+Cs+...+4Cy (9.31a)
and C is k-fold excitation operator. For example, 2 9

CiW = ZptpDp and Cr, Wy = ZyppqtanPd Dap. (9.31b)

It can be shown, that e.g. out of 2-electron excitations C,C; ¥, and G, SE
C, W, only the latter one should be counted, the coupled one, see
the diagrams in Fig. 9.8. The same rule should be followed in case

of all other excitations, too. 619 C1<P
Thus, in "coupled cluster doubles" (CCD) approximation C = C,
and ¥ = e“2 ¥, and Schrddinger equation is written as CzCP QQ
HeC W, = Ee W, (9.32)
Due to the orthogonality conditions, that results in energy C1C[> C1<P C1Q
E = EHF + < Y, | HG, | ¥, ) (9.33)

C
jL Fig. 9.8.
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Density functional theory (DFT)

Density functional theory (DFT) is an alternative approach to solve the many-electron system
Schrédinger equation (9.1). DFT is a natural approach for extended systems (solids,
sizeable clusters or molecules), whereas the Hartree—Fock wavefunction theory and its
derivatives are that for smaller systems: atoms and smaller molecules.

9.11. Hohenberg—Kohn existence theorem

The starting point is the electron density, see sec. 7.18, p. 134. All properties of the ground
state system of electrons in a given external potential (e.g., that of the nuclei) uniquely
depend on the electron density p(r). This is the first Hohenberg—Kohn theorem.

Let us prove, that the ground state electron density uniquely gives its external potential, i.e.,
its hamiltonian, which proves the theorem. Thus, let us assume two different hamiltonians
H and H' with two different ground state wavefunctions ¥ and W', which lead to the same
ground state density.

Then, By <(W IHIW) = (WIHIW) + (WIH-HIW) = E + [p(r) [v(r)—v'(r)] dr,
but E¢ <(WIHIW) = (WIHIW) + (PIH-HIW) = E;— [p(r) [v(r)—v'(r)] dr.
Now, sum of these inequalities implies

Eo + E¢'< E¢' + Ey,

which proves that the assumption of two different external potentials for a given electron
density must be wrong.
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9.12. Hohenberg—Kohn variational theorem

The first Hohenberg—Kohn theorem implies, that with variation of the electron density the
total energy can be minimized to that of the ground state, but not below. Thus, minimizing

Elp] = TIp]l + Veelp] + [p(r) v(r) dr = Epklp] + [p(r) v(r) dr (9.36)
with the condition & { E[p]-u [p(r)dr} = 0 we get
w = v(r) + SEuk[p)/Sp(r), (9.37)

where u is the chemical potential. Cf., Thomas—Fermi theory in sec. 7.18, p. 134.

.13. Kohn-Sham equation

Introducing one-electron orbitals of non-interacting electrons or sc. Kohn—Sham orbitals ;
the ground state total energy can be written as

2m 4 I 47eq 11

Em=—ﬁ§mewwma—§flﬁwmm

2
i [P e oo
+ 5 f drigo 1y dridry + E.lp],

where p(r) = I hpi(r)l*. The first term is the kinetic energy, the second is the potential
energy, the third is Hartree energy and the last one is sc. exchange and correlation energy.
Thus, the energy is a functional of electron density, E[p].

The last term corrects the independent electrons energy to the interacting electrons energy.
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Application of variational principle to the total energy, silimarly to HF earlier, here leads to the
Kohn—Sham equations

fi = &y, (9.39)

where

_ Ry Zie? 1| et
t= 2m VI ; 4‘31:180 I M zj 47‘:80 T drj + VXC[p] (9'42)
and
OE[p]
Vidpl = P ©.41)
op

If Exc[p] was known, the exchange and correlation potential V«.[p] could be found as its
functional derivative.

Thus, with DFT we can keep the one-electron picture, although we have all the correlations
fully included. Therefore, interpretation of the Kohn—Sham orbitals as quasi-electron states
is different from the wavefunction theory. It can be shown, e.g., that the eigenenergy of the
highest occupied Kohn—Sham orbital is the first ionization energy, exactly!

Historically, the DFT was preceded by the Thomas—Fermi method, see sec. 7.18, where
however, calculation of the kinetic energy without the one-electron picture is not simple.

The sc. X,-method derived from the HF theory by Slater is also reminiscent of DFT or LDA,
see the next sec. X,-method includes exchange energy as a functional of electron density.
Also, hungarian Gaspar had presented similar suggestion even before Slater.
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9.14. Local-density approximation (LDA)

For DFT calculations the exchange and correlation energy functional Ex.[p] needs to be
known for a given p(r). This functional is known very accurately for the homogeneous
electron gas (HEG), which can be described with a single parameter pg or rs = (3 / 4po)'3.
In fact, the energies per electron in HEG &x[po] = ex[po] + €c[po] are known and the
functional is then

Exclp]l = [p(r) exc"PA(p(r)) dr, (9.43a)

where &, 'PA(p(r)) = exc[pol, when po = p(r). Thus, at every position r the ¢,. is approximated
by that of the HEG, when pg = p(r). This is the LDA.

The LDA can be expected to be viable for conduction electrons of metals, for example, but it
has turned out to be very useful in many other cases as well and for molecules, in particular.
In general, LDA can be expected to be viable, in cases where the exchange and correlation
hole is localized around the electron.

While HF approach is accurate for an one-electron system, e.g. hydrogen atom, the LDA is
exact for an infinite HEG. Between these extremes the structure dependent correlations
need to be considered and HF is completed with ClI, for example. So far, the corrections to
LDA are based on the "nonlocal" functionals of the form e, .N-[p(r); Vp(r)] and many kind of
hybrids of HF and DFT. The DMFT approaches are under fast development, nowadays.

Jokingly, we can say that the hamiltonian of wavefunction theories is exact, but the resulting
wavefunctions are not, whereas in case of DFT it is vice versa, the hamiltonian is
approximate (due to the functional V[p]), but the resulting wavefunction is exact (for that
hamiltonian, within numerical accuracy).
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