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Introduction and orientation

Quantum mechanics
» was needed to interpret and explain new experimental observations

* replaces Newton's equation of motion by Schrédinger equation, which is the "equation of
motion" of very small particles

"replacing zero by Planck's constant h"
+ yields classical mechanics for macroscopic objects as a limiting case, if h —= 0.

* leads to the concept wave function and quantization of energy, and consequently,
particle—wave dualism, uncertainty relation, probability interpretation and quantum state

« all experimental observations, so far,
support quantum theory 4

Quantum theory and relativity are called
modern physics.

Next, we will briefly consider the "new
experimental observations" more than
100 years, ago, which led to the need of
formulation of quantum mechanics.
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0.1 Black-body radiation

Black body (musta kappale):
Detected
+ absorbs all radiation radiation

+ emits according to Stefan—Boltzmann law

M = oT", (0.1)
where o =567 x10®% Wm-2K*# Pinhole
For example 1 cm? area at 1000 K temperature emits Container _
power of about 6 W. at a temperature T Fig. 0.1.

N
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The power distribution in wave length or frequency cannot
be explained in classical physics. Fig. 0.2.
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Let us assume that the electromagnetic field is
composed of oscillators, whose energy depends on T
frequency and the energy distribution is continuous for
each frequency according to the Boltzmann distribution

v

Planck's quantum hypothesis:

Oscillator energies are
multiples of hv (plus possible A T
zero point shift), where h is a

constant. Thus, hv is the
quantum of energy.

Planck distribution for
the spectral density (1900) is

v
v

_ 8xhv3 | ehvkT |
U= c3 { l—c—h\'.-"kT) dv. (05)

Example. The 2.7 K cosmic background radiation contains about 400 photons / cm3.
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0.2 Heat capacities Debye

Dulong and Petit formulated (1819) a theory for the heat capacities of
solids. It is based on a hypothesis of atoms being the oscillators,
similarly as the EMF, above. This allows classical formulation of
internal energy and heat capacity of solids, valid for insulator type
solids in room temperature and higher, but not at very low
temperatures.

Einstein

N

-

Molar heat capacity, C,, /R

Einstein in 1906 realized the analogy between oscillating matter
particles and those of EMF, "quantized" energies of oscillating atoms % 05 1 1z 2
and derived the theory of heat capacities of solids, valid also at very Temperature, 7/0

low temperatures. Fig. 0.3.

0.3 Photoelectric and Compton effects

In 1906 Einstein explained the photoelectric effect in terms of quanta hv of light given to the
emitted electrons from the metal. Therefore, the kinetic energy of an electron becomes as

12mv2 = hv —¢. (0.7)

This implies, that the quanta of
light have to be "localized" and
the light itself is a stream of
particles, i.e. the photons.
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Compton effect

If photons are particles with energy hv and zero restmass, they should carry momentum
p =hv/c (0.9)

In 1923 Compton demonstrated by using x-rays
that this is the case.

0.4 Atomic spectra
Atomic emission and absoption spectra show _»

discrete "lines", that can be understood only by
allowing discrete energy states for atoms, i.e. %.
quantization. Balmer noticed in 1885, that spectral

lines of hydrogen (in visible region) can be fitted to

relation 11

1 _
I—RH(?—F : (0.5)

where Ry = 1.09678 x 10> cm-!, known as Rydberg
constant,andn=3,4,5,.... Thus,2andn
correspond different states of hydrogen atom.

Based on this observation Bohr in 1913 developed
his atomic model by quantizing the energies of
electrons in hydrogen atom.
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0.5 Duality of matter

After realizing the analogy between Fermat's principle (in optics) and Hamilton's principle (in
mechanics) in 1924 de Broglie suggested, that with a moving body there is an associated
wave, whose wave length is

A = h/p. (0.14)

Davisson and Germer in 1925 observed diffraction
of electrons and verified the above relation (0.14).
G. P. Thomson in v. 1927 also found diffraction of
electrons as waves.

Uncertainty principle

From particle—wave dualism it follows the sc.

uncertainty principle (epatarkkuusperiaate) or

principle of indeterminacy (Heisenberg 1927),

according to which, sc. complementary pairs of properties of a system can be known
simultaneously with a limited precision, only. For the simultaneous particle position and
momentum, e.g., it holds Ax Apx = 7/2, where Ax and Apy are standard deviations of the
quantities.

One should note, that this does not relate to limited accuracy in carrying out the
measurement, but the fact that simultaneus exact values do not really exist.
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1. Foundations of quantum mechanics

Next, the basic concepts and postulates of quantum mechanics will be briefly presented.
Also, the usual notations and direct consequences of postulates are introduced.

Operators in quantum mechanics

In classical mechanics measurable observables are functions (of time, position, ...), whereas
in quantum mechanical description observables are operators, whose eigenvalues are
measured. Usually the same notation is used for observables and operators, e.g., Q.

1.1. Linear operators
An operator Q is a linear operator, if for all relevant functions f and g

Q (af+bg) = aQf + bQg, (1.1)
where a and b are some constants.

1.2. Eigenfunctions and eigenvalues
Function f is the eigenfunction of an operator Q (ominaisfunktio), if

Qf=of, (1.2)
and then, o is the corresponding eigenvalue (ominaisarvo).
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Eigenfunctions { f,} of an operator Q form a complete set (taydellinen joukko), a basis, in
which any other function g can be expanded as a linear combination

g= Z Ca I‘n' (1 3)
This is useful, if the eigenfunctions and eigenvalues are known, as
Qg =Q Z O Z Cy Qfy,= Z Cp Wy Ty, (1 4)

If more than one eigenfunction correspond to the same eigenvalue o, the state is called
degenerate. Linear combinations of degenerate eigenfunctions correspond to the same w.

Example. Hydrogen atom p orbitals and d orbitals.

Functions g, g2, ..., gn are linearly independent, if constants ¢y, ca, ..., c,, such that
Zicigi=0 (1.7)

do not exist. Otherwise functions g; are linearly dependent and one of the functions g; can be
presented as a linear combination others.
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1.3. Representations

The choice of operators corresponding to the observables is not unique. Also, the formal
operators can be chosen different ways, but usually differential operators or matrices are used.

Most often the operator corresponding to position is chosen to be coordinate x (or vector r), as
X — X and px — —ih d/0x.

That is called position representation. In momentum representation we have (1.8)
X — ih d/0px and Px — Px-

There are also other possible representations.

1.4. mm ion and non-comm ion

For the operators A and B generally AB # BA. If so, the operators do not commute. Operators
commute, if AB = BA. We define the commutator as

[A,B] = AB — BA. (1.10)
Example 1.3. Find [x, p«] in position representation.
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1.5. nstruction of rator

Many other physical operators can be constructed from the position and momentum
operators. For the kinetic energy T = p?/ 2m we obtain the corresponding operator

p | [ . d )" nod’
T="=—|-ih—| ==-——
2m 2m I !dx 2m dx” (1.11a)

for the one dimensional motion on x-axis. In three dimensions we can derive

(1.11b)

Usually the potential energy depends on the position, only. Thus, the potential energy
operator of an electron in the electrostatic field of a nucleus is simply

V = — | Z e? . .
dngy T (1.12)
where r is the electron—nucleus distance. For the total energy or Hamilton's function
H=T+V (1.13)

the corresponding hamiltonian (operator) becomes as

(1.14)

(1.15)
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1.6. Integrals over operators
Often, as matrix elements we need to evaluate integrals
[ = [f*Qgdr, (1.16)

where f* is the complex conjugate of f and dt is volume element for integration over the
whole volume. Scalar product of functions f and g

S = [frgdt (1.17)
is called as overlap integral. If functions are normalized such, that
Jf*fdt =1 and [g*gdr = 1, (1.18)

the overlap integral is a measure of similarity of the two functions given inrange 0 <S < 1.
If S =0, the functions f and g are called orthogonal.

Functions gi, g, ..., g, are orthonormal to each other, if
fgn* gm dt = dum, (1 A 9)
where 3., is the Kronecker delta function.
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Example 1.4. Normalize the function f, = N sin(nzix/L) in 0 < x <L. Consider orthogonality
of functions f;,.

1.7. Dir rack nd matrix n ion

Let us denote by using angle brackets

(mIQIn) = [ Pu* Q, dr, (1.20)
and
<m|n> = f wm* wﬂ dt = 6mn- (1 21)



QTES, 2022 13
Thus, the orthonormality condition can be written as

(mn) = dmn. (1.22)
We also denote Q In) = w, In), where In) =, and furthermore (nl = y,*, thus
(mln) = (nlm)*. (1.23)

Operator and commutation relations can be described also by using matrices as an
alternative for differential operators.

A product of matrices A and B as C = AB can be written in terms of matrix elements
Ci = 25 A Bse
Thus, in general AB = BA.
The above integrals (mIQlIn) are matrix elements of Q, as Q,,, = (m/QIn). Thus,
(rIClcy = X (rlAls)sIBlc) = (rlABIc),
because C = AB. Therefore, we make an interpretation
Yels)sl= 1. (1.25)

This is called completeness relation or closure relation, because these orthogonal functions
Is) span the whole functional space. Therefore, any function hp) can be expanded as

|lp> = XCs |S> (1 3)
By multiplying this from left with (rl, we obtain (rhp) = ¢, and change to position representation
(thp) = = (thp)Ir) = (r).

(1.24)
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Example: Diagonal hamiltonian A

Consider Schrodinger equation Hy = Ey as a matrix equation. Now, substitute ¥ =3 c.In) .
which gives HY ciln)=> c,HIn) = E Y c,n).

By multiplying from left with bra vector (ml, we obtain

Y ¢, (mHn)=E Y ¢, (mn)=Ec,,

_n

and because (mlHIn)=H,,. we have
Z Hmn Cn - E CI'l'l *
for the hamiltonian in basis { In) }.

Now, if we find a basis { In) }, which makes hamiltonian diagonal, i.e., Hpn, =0, if m #n, it
follows that
H.,,.c.=E,c,.

This means that the diagonal matrix elements are the eigenvalues, H,,, = E,. Furthermore, it
can be shown that the eigenvectors are the corresponding eigenfunctions. Thus, we have
the solution to the Scrdédinger equation, and for this reason, solving the Scrédinger equation
is often called diagonalization of the hamiltonian.

This procedure is limited by the finite dimension of the hamiltonian or the quality of the finite
basis set. However, there are efficient numerical algorithms for diagonalization of high
dimensional matrices, i.e., finding the the eigenvalues and eigenvectors of non-singular
matrices. Therefore, this is the most popular method in practical numerical and theoretical
approaches.
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1.8. Hermitian operators
An operator Q is hermitian, if

[ ¥n* Qadt = {f Yo* Q iy dr }* (1.26a)
for any two functions vy, and y,,. Alternatively,

[ Yn* QYydt = [ {Q Yu}* Py dr, (1.26b)
where integrations are over the whole space.
With bracket notation the hermiticity condition (1.26a) is (1.26¢)

(mlQIn) = (nlQlm)*.

Example 1.5. Show that the operators x and px are hermitian.

For x:
(mlxIn) = x (mln) = x {nlm)* = (nlxIm)*

QED.

For px:
[ Yn* pxYndt = =it [ Yu* P /ox dt = —if {/ PYu* Yu — [ OP*/9X P, dT }

= i1 {0~ [ OPn*/0X Yadr} = —ifi { - [ MYm*/Ox YPpdr }
= iR {— [ Yo* OYm/Ox dT ¥F = {—ih [ Yu* OPn/ox dr I
= {J Yu* px Y dr }*

QED.
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By using the hermiticity condition (1.26¢) (mIQIn) = (nIQIm)* we can derive two important
properties:

Property 1: Eigenvalues of an hermitian operator are real.
As Qlw)=wlw), then (0l Qlw)=n (wlw)=w
and (wl Q lo)* = w*.
But (1.26c) => (0l Qlw) = (0l Qlw)* => o= w*.
Therefore, o has to be real!

QED.

Being real, the eigenvalues of an hermitian operator are good for representing
measurable values of observables.

Property 2: Eigenfunctions corresponding to different eigenvalues of an hermitian operator
are orthogonal.

Assume Qlw) =wlw), Qlo')=0lo') and o # o' .

Now, (@' 1Qlw)= o(o'lo) =o(olo)
and (0'1Qlw)= (WIQlw' ) =o' (owlw')
subtract --------------- mmmemmmemememen

0 =(o-0){olo)

Now, because 0 #* = (wlw') =0 QED.
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Postulates of quantum mechanics

1.9. States and wavefunctions

Postulate1: The state of a system is fully described by its wave function
Won (v, 1, s =Imyn, . t).

With bracket notation IK)=Wx and (LI =W *, where K and L are sets of quantum numbers.

1.10. Fundamental prescription

Postulate 2: Observables are represented by hermitian operators chosen to satisfy
certain commutation relations

For example xpy—pxx =i, ypx—pxy =0, xpy — pyx =0, etc.

1.11. Outcome of measurements
Postulate 3: For a system in state ), repeated measurements of an observable Q amounts

to the expectation value (Q):
The expectation value of Q in state v is f Wy de
.IQ:' - (1 288.)
f Y*pdo
or, if ¢y is normalized
@) - f 2y dr. (1.28b)

From now on we assume that 1 is normalized.
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In case y is an eigenfunction of Q, i.e., Q Y = w , then

(Q) = (1.29)
If ¢ is not an eigenfunction of Q, then y = X, c,y,, Where Q 1, = o, y,. Then,

Q) =
(1.30)

Thus, the expectation value is a weighted sum of eigenvalues with weigths Ic,I2.

Postulate 3': When v is an eigenfunction of the operator 2, determination of the value of the
observable yields the correspondig eigenvalue w. When v is not an eigen-
function, then a single measurement yields one of the eigenvalues w, with the
probability Ic,l2.

1.12. Interpretation of the wavefunction
Born interpretation:

Postulate 4: Probability, that the particle will be found in the volume element dt at the
position r is hp(r)I2 dr, if ¢ is normalized — otherwise propotional to hy(r)? dt.

Wavefunction v is the probability amplitude and hpl2 = y* ) is the probability density. In
order to define probability density, the wave function needs to be normalizable.
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1.13. Equation for the wavefunction

W
s TV + V¥ (1.33)
This is the Schrédinger equation (1926), where H =T + V is the hamiltonian (1.11). In one
dimensional space (x-axis) and in external potential V(x) for a particle with mass m this
becoms as v RPN
ih—=-——
ot 2m ox’

1.14. Separation of the Schrédinger equation

The Schrédinger equation can be separated into time and space parts by using a trial
solution W(x,b) =y(x) (1) , (1 35)

ih

(1.34)

+V(x,O)W

if the potential function is independent of time, i.e.V # V(t). We obtain

—ﬁ—{L”—w + V(N = iﬁlﬁ.
2ml p ox’ 0 dt

where the left-hand depends on space and the right-hand side on time, only. Therefore,
both sides have to remain constant E always and everywhere and we can write

i r')“lp

—=+ V(x) = Ey (1.36a)
2m ox°
and
in ‘(11*: =E0. (1.36b)
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Solution to the latter is
0(t) = C e-iEwh (1.37)
and if the solution to the former is time-independent y(x), the full solution to Eq. (1.34) is
W(x.t) = Y(x) e-iEh | (1.38)
Equation (1.36a) is sc. time-independent Schrbdinger equation
B2 Ay N
B EIm dx? VO W=EYy

and its solutions  are called stationary states. Time dependence of stationary states is,
acconding to (1.38), modulation by a complex phase factor exp(-iEt/%), but the probability
density

PP = k) (1.41)
is time-independent — therefore the state is called "stationary".
In thre_e d_imensional space the Schrédinger
_ V7 + V(x, v, x)) P(x, y z)=E Y(x,y,2),

2m
2 9% 9 9?
where o Ty T
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Complementarity and time evolution
1.15 Simultaneous observables
Property 2: If two observables have simultaneously precisely defined
values, then their corresponding operators commute.

In case the two operators do not commute, the observables are
complementary. The complementary pairs of operators can be found
by inspecting the corresponding commutators, e.g., [x,px] = i% # 0.

1.16. Uncertain rincipl
Complementary pairs of observables obey sc. Heisenberg (1927) uncertainty relation, e.g.

Ax Apx = h/2. (1.42)
General form:
If the two operators A and B do not commute, but
[A,B] = iC,
then AA AB = KC)I /2, (1.43a)
where AA = {(A?) —(A)2}12, (1.43b)
1.17. Con n f uncertainty principl

Example 1.8. Consider the

uncertainty relation of x and px
in state ¢ = N exp(—x2/ 20).
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1.18. Uncertainty in energy and tim

In quantum mechanics there is no operator corresponding to time. Thus, time is not an
observable, but a "classical" parameter. Thus, the time and energy are not complementary
observables the usual way, as often expressed.

Later, in section 6.11, we shall learn the relation between the lifetime t and uncertainty of the
energy OE of an excited state, who are related as 0Et = 7.

1.19. Time-evolution and conservation laws

It can be shown that d i 1.44
(@)= (H.Q) (1.44)

and Q is called as constant of motion, if d (Q) =0
dt '

Thus, an operator corresponding to a constant of motion commutes with the hamiltonian.

It is easy to show that [H.p = - h dV (1.45)
! i dx '
and according to Eq. (1.44) d ‘ _
~/ — 1/ H — /ﬂ>
dt \P‘> b \[ P, ]> \ i/ (1.46a)
thus dipy = (. (1.46b)
This is Newton's Il law. Similarly, it can be shown that
d iy =
m- (X = Py . (1.47)

These two relations form the sc. Ehrenfest's theorem.
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2. Linear motion and harmonic oscillator

Consider next briefly first the general properties of the wave equation, translational motion,
tunneling, and then, particle in a box and parabolic confinement as examples of confinement.

Characteristics of the wavefunction

2.1. "Well-behaving" wavefunctions
The wavefunction should be normalized .
J‘P*Wdt:l (2.1)

and it has to be single valued and finite (except for single points) to allow probablity
interpretation of y*y, it has to be continuous and possess first and second derivatives. Also,
the first derivative should be continuous, except for some model potentials.

2.2. m neral remarks on th hrédinger equation

Some general conclusions can be easily made from the differential equation
&y _ om
e - (V-E)y (2.2)
like the curvature of its solution
and relation to high or low
potential function, i.e. the

kinetic energy. Fig. 2.4.
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In case the potential function confines a single particle into some region of space, it defines
boundary conditions, which allow a certain set of solutions and corresponding discrete
energies, only, i.e. QUANTIZATION.

In the matrix mechanics formalism the boundary conditions and quantization come in
implicitly hidden in the basis functions.

The wave function and probablility density y*y typically penetrates to classically forbidden
region, where the classical kinetic energy is negative. This is called (Qquantum) tunneling.

Translational motion
Hamiltonian of the free particle (V(x) = 0) is

=- & (2.3)
) . 2m dx2
and the Schrédinger equation
A% e (2.4)
o 2m dx?
whose solution is
P(x) = A eikx + B e-ikx | (2.5)

where k= 2mE/h?»)"?,

or alternatively W(x) = C cos(kx) + D sin(kx) . (2.6)
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2.3. Energy and momentum

(kh)? . 2
Because E= -, and classically E = p

£ we can write
2m 2m

p=hk. (2.7a)

In Eq. (2.6) for the wave length A of sin and cos functions applies kA = 2xt, from which we get
the magnitude of the wave vectork as

k= 2T 2.7b
\ (2.7b)

Substituting this to (2.7a) the de Broglien relation results in,
p=h/n . (2.8)

Note, that the energy of the free particle is not quantized!

2.4. Traveling waves and standing waves

Let us determine momentum from the free particle wavefunction 1 (x) using the
momentum operator px =—if d/dx. Thus, for gy = A eikx
. h Wy M
py = —’di(AL ‘)= ‘—jlkACl = hky (2.9)
1 dX 1

and we get p = ik, and thus, A e** is a traveling wave to the direction of positive x-axis.
Similarly, B e is a traveling wave in direction of negative x-axis.

Consider the "standing wave" free particle wavefunctions C cos(kx) and D sin(kx).
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2.5. Flux density (virtatiheys)
(2.10)

(2.11)

2.6. Wav k

A complete wavefunction of a momentum
eigenstate is , (x )= A eikx e-iEth (2.12)
and for a wavepacket propagating on x-axis

W= | gk Wxt dk, (2.13)

where g(k) is thé shape or spectral function.
Fig 2.11.

Penetration into and through barriers 4
2.7.-2.9. Potential barriers and tunnelin
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Particle in a box

2.10.-2.13. 1D and 2D confinements 6 /\ /\
The patrticle-in-a-box is very useful confining model potential for _ \/ \/
nanostructures, such as quantum dots (QD), and in particular, for <
non-spherical parallel piped geometries. = /5\ /\
o
The quantum well (QW) is a modified case: A thin layer with an 2 \/ \/
attractive potential for charge carriers. < ] /\
We consider here an infinite square-well potential, only. lts E
solutions are those of the free particle waves, which fit to the & 8
boundary conditions
2
(2.31) 1
The energies are the corresponding free particle energies ‘ POSitiO",;i;_ 2_19":

(2.30)

L v, (x,y)

The two and three dimensional
problems trivially separate to
one dimensional problems.

We will consider the particle in
a spehre, later. fat
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Harmonic oscillator

2.14 Solutions

The harmonic oscillator is another, even more useful model potential, not only for
nanostructures but also for many vibrational phenomena in nature. For example, atoms in
molecules and solids can be successfully modelled as harmonic oscillators.

The harmonic force F = —kx arises from the harmonic (or parabolic) potential

V(x)=1kx2, (2.37)
because
_dV _F
dx '
Thus, hamiltonian becomes as ’
—_h d* Ly y
H R k x (2.38)
and the Schrédinger equation is
n AW v = .
—zfm dx:+5kx~qr—tqr. (2.39) v
whose eigenvalues are
E, —(v+i)ho; v=0,1,2,3,.. (240
where o = (k/m)"2. The two lowest energy
eigenfunctions are gl . = |

'q)()(X) = NO e‘Y2/2 and

Yi(x) = N; 2y e¥2, where y = (mw/h)2 x. This is easy to verify by substitution to (2.39).
The lowest eigenvalue is called as zero-point energy (nollapiste-energia).
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The general form of the wave function of one-dimensional harmonic oscillator (ODHO) is
Pu(x) = N, Hy(y) e¥/2 | (2.41a)
where H,(y) are Hermite polynomials, for which

Ho(y) = 1, Hi(y) = 2y and we have a recursion formula H,,;=2yH,-2vH,_,.

The wavefunctions are eigenstates, and therefore, orthogonal and by using the normalization
factor Ny=(Lv!ial2 i (2.41b)

the eigenfunctions (2.41a) become orthonormal

J ‘-}’f{x} Pr(X) dX = dyr .

2.15. Properties of solutions

The level spacing of harmonic oscillator is constant 7w, i.e.
Ev+1 _EV = h(l), (2.42)

which is a consequence of hidden x>—p? symmetry. Another consequence is that for the
ground state the uncertainty principle gives the least for Ax Apx = #/2.

Furthermore, the two and three dimensional harmonic oscillators are trivially separable to
ODHOs, and consequently, the multidimensional wavefunction is a product of one-
dimensionals, and similarly, the eigenenergies sum up to the multidimensional case.
Because of this the three and two dimensional HO are popular models for circular,
ellipsoidal, spherical and parabolic quantum dots (QD).
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The hidden x>—p? symmetry can also be seen in the following:

Virial theorem: If the potential energy can be written as V(x) « a xs, where a is a constant,
the mean kinetic and potential energies are related by

2(T) = s (V). (2.43)

This theorem originally comes from classical mechanics, but applies also to quantum
mechanics.

Example for the harmonic oscillator s=2 =
for Coulomb potential s=-1 =>
2.16. Cl ical limit

At high quantum numbers the probability density
of quantum harmonic oscillator approaches that of
the classical. This is one example of the sc.
correspondence principle (vastaavaisuusperiaate).

Time evolution of a wavepacket follows classical
oscillation. The simplest classical like oscillation is
that of a sc. Glauber or coherent state (1963), the
"ground state wavefunction oscillation".

Generally, in harmonic oscillation classical and
guantum behavior are closely similar, the only :
difference being quantization, which may not be

always essential.
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3. Rotational motion and hydrogen atom

Particle on a ring and in a circle

Let us consider particle dynamics on a ring in a plane. This is equivalent with rotation
around a fixed axis. As another case, consider a particle in an "infinitely deep circular well",
where the wavefunction can be separated to the angular and radial motions. Then, the
dynamical states are determined by the moment of inertia 1, which in case of a mass on a
ringis I = mr2, where m and r are particle mass and radius of gyration, respectively.

In free rotation around z-axis (V(x,y)=0) the hamiltonian is (with r2 = x2 + y2 = constant)

9 9% |
-+

__
A== om | a2 ay? | (3.1)
and in polar coordinates x =rcos¢ and y =r sing
nood nd’
—— S (3.3)
2mr” dg” 21 dg°
Denote the wavefunction as ®(¢), and the Schrédinger equation and its solutions are
d:([) = 21E ([)
do’ n o (3.4)
([)(LIJ] - Acllll ¢ + BL‘ iim 4 ) (35)

where m, is only a short hand notation, like the one in free particle case.
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This short hand notation is a dimensionless number m, = (21E / #* ] and similarly as for the
free particle, it defines the wave length of the wavefunction, which should be "well-behaving".

Therefore, the boundary condition for the wavefunction (3.5) is uniqueness ®(¢) = ®(¢p+2),
which implies

Ae"" +Be "™ = Ae"™ 'UC':“'“ +Be e e
and thus, ez =1 and m,=0,+1,+2, ....
Therefore, the quantized energy is .
E=m’— (3:6)

21

Thus we see, that the energies are doubly degenerate except for the lowest one with m, =0,
and there is no zero-point energy.

3.2. Angular momentum

The classical rotation energy is /,2 / 21 and based
on the above 7,2 = m/2 72, where /, is the angular

momentum around a given axis a. Classically, (3.7)
for the rotation around z-axis we have )
gz = Xpy_yp)U (38)
and thus, the corresponding operator is . X , X i X (3.9-10)
! 1 dy Ldx 1d¢
Application on @, = A eim¢ gives the eigenvalue equation
. h o .. .
(P, = A‘—J[—c”'” =m hAe™" =m hd (3.11)

1 dp



3.3. Shape of the wavefunction

Thus, ®4 has an angular momentum
m, 71, which indicates rotation. Similarly,
® = B e-im¢ has an angular momentum
—m, 7 and rotates to the opposite
direction. Wavefunctions ®, ( or @3 )
are orthonormal with different values of
m, with the normalization constant

_B= ./ L
A=B= /L. (3.12)

It should be noted that these states are
stationary with constant probability
density, but the angle (or position on
the ring) is not defined at all, i.e., fully
uncertain.

.4. Classical limit

.5. Circular well (particle in a circl

Let us consider particle in a 2D circle of radius a, a
typical nanostructure in semiconductor interfaces or
surfaces.

Again, we have the hamiltonian (3.1), now with a
constraint r <a. We can separate the radial and
angular motion by y(r) = R(r) ®(¢), the latter being
the same as above, ®¢=C e#im¢ (3.3—-12).

Then, the radial equation becomes as

(3.23)

m=0,ka=2.4

“Fig. 3.10.
where z=kr and k2 =2mE/A2. As m, are integer 1oo—;"§’I
numbers, solutions to this Bessel's equation are 90
Bessel functions I, (kr), also called as cylindrical 80 5
harmonics and can be presented as series < 70— 2
expansion £

S0y
£

(3.24) T :

40—
With the boundary condition Sl
2
In(ka) = 0 B2 :
the total energy eigenvalues and the shapes of iy A
some Bessel functions are shown in Figs. (3.8-10). 0~ Fig. 3.8
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Radial wavefunction, J_(kr)

0 02 04 06 08 1
Radius, r/a

Im =1

m

3.8

o
o1

o

Radial wavefunction, J_(kr)

.5
0 02 04 06 08 1
Radius, r/a

33

34

Fig. 3.9.
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Particle on a sphere

Consider now the particle motion with a constant radius of rotation r. This is also the
quantum dynamics of rotation of a solid uniform sphere with a radius a = (2/5)-12r.

As the external potential is zero, the hamiltonian is
_ _ h® o2
H = 2m Ve (3.26)
Writing the Laplace operator in spherical coordinates
x=18iNnB cos¢, y=rsinB sing and z=rcos B (3.27)

we have
V2=11,§:2r+r121\2, (3.28)
where , ' '
A= Loy LS ging © (3.29)
sin-6 dg sing a0 do

is the angular part of laplacian, sc. Legendre operator.

Thus, the rotational hamiltonian is .
H=- /" A’
2mr?
and because mr?2 =1 is the moment of inertia, the related Schrédinger equation is

Ay = - 2IE
h=

(3.30)

(3.31)

Solutions to this are spherical harmonics Y .,(0.9), which are eigenfunctions of legendrian

AY,, =-Ul+])Y,, .
where (=0,1,2,... and m,=/,/(-1,/(-2, ... ,—/.

(3.33)
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TABLE 3.2
Some Spherical Harmonics /
90 9
MNormalization
Symbol Polar Cartesian Constant . g
Yoo 1 1 1/ -
Yio cosfl z/r $(3/m)"2 L5e 7
F(sinO)et* Flx + iy)fr 1(3/2m)"2 s
Yio (3cos’d — 1) (32* = r¥)fr? 1(5/m)t? > 42 6
Yasy F(sin 6)(cos Me*' Fzlx + iypr? 1(15/2m)12 g
} (sin?@)e* 2% (x + iy)¥r? 1(15/2m)12 w 30 5
Yo (S5cos*d — Icosf) z(5z% — 3Ird)/r? (/)2 20 4
) AP FsinO(5cos?0 — 1)e** Fix + iy)52% = r?)r? H21/m)t2 1o )
Yisz (sin®8)(cos G)et 2® z(x + iy)¥/r? 1(105/2m)' 12 6 2
Yisa :F'[sina'ﬂ]fi al¢ Fix + i','r’]].-'rr3 %{35“]!;‘2 20 ——
Douglas, Bodie E. and Hollingsworth, Charles A Sywwneiry in Boading and Specira — An .
Infroducton (Odande, Flenida: Academic Press, Inc., 1985), p. 88 Fig. 3.13.

Comparison of Egs. (3.31) and (3.33) shows the quantization
E=£r'( {+1); (=0,1,2,...
21

and the degeneracy (2/+1) of each eigenenergy: m, = /,/—1,....—/.

19

17

Degeneracy
L -_—
w o

—_
—_

01 N ©
w

(3.34)

(3.35)
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3.7. Angular momentum of the particle
Comparison with E, = 72/ 21 shows that

0= kOl + 1) (3.36)

and that the angular momentum is quantized with
¢ being also the quantum number. Thus, we give
two meanings for /.

Fig. 3.14-15.

The spherical harmonics are also eigenfunctions
of ¢,
EZ Yﬁmfg(e ’q)) = my h Yfm[(eaq))s (337)

where m,=—(,—(+1, ..., /.

Fig. 3.19.

The spherical harmonics are not, however, eigenfunctions of
!y and /,, because these do not commute with /,.

/=0, m=0

3.8. Properties of the solutions >
Notice that, again, there is no zero-point energy related with \
rotation. Kind of centrifugal effect is seen as m, — /. )
The cartesian p-orbitals: It m0 It me
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. Rigid rotor
For two particles m; and m; with a constant separation r, but otherwise, in free motion
H = —7%22m; V2| — #2/2m;, V?,, (3.39)

which can be separated to center of mass (CM) and relative motion. Then
1/1’1’11V21 + 1/m2V22 = l/mVZCM + I/MVZ,
where m = m; + m, and

1/u=1/m; + 1/my. (3.40)
where w is reduced mass.
Thus, the Schrédinger equation is

—22m VoW — 722u V2 = Eo W (3.41)
and with the trial W =vycuy we get
72/ 2m V2emyem = EcmYem (3.42a)
—12/2uV2y = Ev, (3.42b)

where E.:=Ecm + E. The former equation describes the free-particle dynamics (2.5-6),
which is in 3D yem(R) = A exp(ik-R).

Based on (3.28) with r = Irl = constant V2— A2/r2 and the latter takes the form
—h2/2urz A2y = Ev (3.43)

With I = ur? this becomes (3.31, 33), whose solutions are spherical harmonics and energies
are given in (3.35)
Eyvy = JA+1) K2/ 21. (3.44)
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3.10. Particle in a spherical well, e.g., an electron in a spherical deep quantum dot

Now the Schrddinger equation takes the form 1
(3.45)
which separates with '%o i 3.1
Y(r.0.9) = R@) Y(O.0), (3.46)
where Y, (0,0) is a spherical harmonic in (3.33) ~§ 6.3
and the radial wavefunction is a solution to £,
(3.47a) g 0.4
or =0
(3:470) 100 n | ka MO 04 06 08 1
with k2 =2mE/#2 and z = kr. Solutions to that 90410094 1 0 Radiuza
are spherical Bessel functions j,(kr), such as 80— 82 91 05
< 4.5
jo(kr) = sin(kr)/(kr)  and (348) ST — 7482 9 =
jitkr) = sin(kr)/(kr)? — cos(kr)/(kr). Eeoo—8617783 § e
] s 3
For the infinitely deep well with radius a 50537057 5,
iti S40+— 1206331 3
we apply the boundary condition 5] 4083451 g
jika) = 0, (3.49) 5 =1
. ) ) 20— 2 1 45 3 ks
which leads to eigen energies 10— 1031 B 55 04 06 08 1
Ey = Fu, 72/(2ma?). (3.50) o _ (b) Radius, rfa
Fig. 3.22. Fig. 3.21.
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Motion in Coulombic field
The Coulombic potential +1/r is spherical, and thus, the above considered angular motion is
valid as such. We just need to find solutions to the radial part of full stationary states.

3.11. Schrdédinger equation for hydrogenic atoms
The hamiltonian for the electron and nucleus under their attractive Coulomb field is

(3.51)
which can be separated as before, leading to the reduced mass u = n'i%":ﬁp ~ m,
(3.52)
The center-of-mass is free particle as before and we obtain for the relative motion
P o2 1 e, _
" % U',_4Ttt'u —y =Ey (3.53)
or
| @2 1 A2 ue? _2uE
rop" Ve A+ 2me S’ vETTe v (3.54)
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3.12. Separation of radial and angular coordinates
Separation goes with the trial wavefunction

W(0.9) = R() Y(0.9), (3.59)
which leads to the angular equation and quantization A? Y (0,9) = — (({+1) Y 1 (0,9)
and the equation | @ | e WE
5 2
TarerY'r_z“””RY*zngl,h'erY" b RY. (3.56)
The function Y can be cancelled throughout and we are left with radial equation
_h* du Ve(r) U = Eu | (3.58)
2u dr?
where u(r) =r R(r). Thus, we have an 1D Schrédinger equation for the radial motion with an
effective potential 5 u
P Vei(n) = — L€ 4 (i+1) (3.59)
4me, T 2ur?
The effective potential _
depends on the angular V| @) fafh ©
momentum, that with the e
classical analogy can be -\ enerey
assingned with the "
centrifugal force of rotation.
Thus, the Coulomb attraction
contributes to the singularity
for the ¢ = 0 state, only.
Fig. 3.24.
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.13. Solutions of the radial equation

For ¢ =0, the solution of equation (3.58) behaves as u ~ Ar + Br2, when r — 0, and then
R =u/r = A, which means that the probability density of the electron at nucleus is Az 0.

For /#0, u—= Ar*! and R=ur - Ar’, whenr—0.

The wavefunctions of the hydrogen atom can be written in terms of associated Laguerre
functions:

The unit of length,

TagLe 3.4 Radial functions for hydrogen sc. Bohr radius

5 ap = (4meoh?)/(mee?),  (3.65)
n= 1 If — ||} Rlﬂ — ﬁ e~
[{F . .
1" is the radius of the electron
= 1=10 R = F(1 i ;){,_,-_.-z.,., in Bohr atomic model
2a} g (infinite nuclear mass).
i .
I=1 Ry = 7—Fl£ For the hydrogenic atoms,
i in general, it is often used
2 2y it ioyans
= 3 =) R = —'_1(] - — 4+ _’) 3y _
. Ll 07 3\3ag\ Selot 20 - a = (4meoh?)/(pe?)
= e L([ - f_J[‘ and
; 276ay ai, bay 0 = (2Zma)r.
o
I[ = 2 = g

Ry = —e
2 83043 .rrf]{ (replace -r/nap by —0/2)
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The radial wavefunctions hydrogen atom: Eigenenergies of the hydrogenic atoms are

I

alel
ez 2 W
E =-l(e—]__-,n=1,2,.... _
" 2\4ne,) H* n? (3.66)
18 I[E;l=1 Ry (Rydberg) =13.6¢eV
=12 Ha (Hartree).
rla
g ] ; 3
a**R,
Ir g, 0.15F s >
1-0.45 0.10} 2p
005
3p
0 ‘; é 12 rla
RN SR I e
e 1 (7
e "mR!u
0.4:0_35 0.04
a]lZRh
0.03
0.2 0.02
001
e Cf. 0.4
0 '\_l/' o r}‘i 0 %0 20 77a on p. 5.
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.14. Probabiliti nd radial distribution function

P(r) = 4mr? (hp()l?) is called the radial distribution function. It is the particle
probability density as a function of r. For a spherical wavefunction y(r)

P(r) = u’(r) = R%(1) 1 = 4mr? hp(r)P? (3.69)

3.15. Atomic orbitals
The hydrogenic wavefunctions

Fig. 4.16. The volume element
in spherical polar coordinates.

4nrlay’

wnf'nn(rsesq:') = Rnl(r) Y| m|(9:¢') CEtp

are called orbitals. Their degeneracy is n? and including the spin 2n2.
The (2/+1) degeneracy
arises from symmetry, ¢= 0 1 2 3 0, 1,...,n-1)
but n degeneration is  d€g- 1 3 5 7 (20+1)
accidental. n=1 Is

2 2s 2p AR
The s orbitals are 3 3s 3p 3d 00 10 2030 40
spherical The p 4 4 dp 4d 4 A BT
orbital is a real function _ orbital.

and the same as p,orbital. The p,; and p_; are
complex combinations of real p, and py,
Pu=(Ex—ipyV2 and  p.=i(p.+ipy)2,
see also the example on p. 8.

The hydrogenic orbitals are simplified models for
atomic orbitals. They are used for classification
in the periodic table of elements.




TABLE 4.1

Angular Factors of Conventional Atomic Orbitals

Symbol Polar Cartesian Normalizing factor
1 ] 1/2
s 1 1 [ -
I 3 12
sinfcos ¢ x/r -
P Z(rv)
o 1/3\'*
Py sinfsing y/r 5\ x
173\
P cos@ zfr i(;)
d,: (3cos?8 — 1) (322 —rY)r 1/5\'2
(222 —x )/r? a\r
. ., 1715\
d,, sin @cosflcos ¢ xz/r® _’( )
. . 2 1715\
u‘,_. sin Bcosfsin ¢ yz/r? é( ,-:-)
s 115\
[ sin*fcos 2¢ = yr ( )
4\ n
. . 1 fls 12
dy, sin‘@sin 2¢ xy/r 4(’1)
S (5cos*d — 3cosé) (5 3r¥)r 1 7)' :
[2z% = 3z(x? + y3))/r? a\n)
St (Scos’@ — )sinfcos ¢ x(5z% — riyr? 1/42\!2
[4xz? — x(x? + yH]/r? s\ n
Sosa (5cos?@ — 1)sin Osin WSzt — r¥r? 1/42\'?
[dyz? — yix® + y3)1/r i\
X 2 1/105\"?
Ja sin*fcos Bsin 2¢ xyz/r? 4( )
3 . 1/105\!
j A sin?fcos 0 cos 2¢ (x yi)/r 4(
1/70\"2
faxi-yyy  sinfcos3g x(x* = 3y)/r? q({ )
in¥0si . 1/70\12
Sioaxt -y sin*0sin 3¢ Y(3x* — et —(7)
S\ =

Douglas, Bodie E. and Hollingsworth, Charles A. Sywwenetry in Bonding and Specira— An

Fntsnddosnti o

w (MM andn Rlavida: Aca

Acwmnic Dronn

Tor 10081~ 192

j-:ig. 4.21. Boundary surfaces of s- and p-orbitals.

Px = (Ps1 + P-1)V2
Py = i (P = P2
pz = pO

dp=
ds
do

d.
d-

Example The ground state wavefunction of hydrogen atom is

where aj=0.5292 A.

a) Where is the most probable position of the electron?

b) What is the probability to find the electron in a volume 1 fm3, when (i) r=0 and (ii) r=ay ?
c) What is the probability to find the electron in a sphere of radius a, around the nucleus?

QTES, 2022

Fig. 4.22. Boundary surfaces for

d-orbitals.
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Schrédingerin yhtélo ja etenevat aallot

Vaikka Schrédingerin yhtéld voidaan postuloida kvanttimekaniikkaan, voidaan sitd myds
"perustella" aalto—hiukkas-dualismin perusteella.

P P2

Valoaallon eteneminen
Geometrisessa optiikassa valoaallot etenevat
suoraviivaisesti ns. Fermat'n periaatteen
mukaisesti: valonsade kulkee tietd, jonka optinen
matka on lyhin (tai saa aariarvon).

Fysikaalisessa optiikassa tamé voidaan selittaa
Huygensin periaatteen ja interferenssin avulla:
lahekkaiset valoaallot interferoivat konstruktiivi-
sesti siella missa optinen matka saa aariarvonsa.

1.23. Hiukkasten eteneminen

Klassillisessa mekaniikassa hiukkaset etenevat
Newtonin liikeyhtal6éiden mukaisesti. Ne voidaan
kuitenkin johtaa ns. Hamiltonin periaatteesta, jo-
ka on analoginen Fermat'n periaatteen kanssa.

ds

Phase length, ¢

ds

Olettamalla etenevalle hiukkaselle aaltoluonne,
voidaan koko kvanttimekaniikka johtaa siita

B|"|B’ Al |A

A1
A

Feynmanin polkuintegraaliformalismia kayttaen.

2 Displacement, s

QTMN, 2015
Hiukkasten eteneminen aaltoina

Kun hiukkaseen liitetdan (aallon) amplitudi samoin kuin valoon fysikaalisessa optiikassa ja
sovelletaan sitten Hamiltonin periaatetta, saadaan ajasta riippuva Schrédingerin aaltoyhtalo.
Siten Schrédingerin aaltoyhtéld voidaan johtaa aineaaltohypoteesista lahtien.

Alkeishiukkasten, esim. elektronien, spin ei ole johdettavissa naisté oletuksista vaan se on
postuloitava kokeellisten havaintojen selittamiseksi tai yleistettava kvanttimekaniikka
relativistiseksi, jolloin elektronin spinit tulevat teoriasta omina kvanttitiloinaan.

Schrodingerin aaltoyhtélén suorassa yleistimisesséa suhteellisuusteoreettiseksi on ongelma-
na se, etta aika- ja paikkakoordinaattien "rooli" on erilainen: yhtaléssa paikan suhteen esiin-
tyy 2. kertaluvun derivaattoja, mutta ajan suhteen vain 1. kertaluvun derivaatta. Schrédinge-
rin aaltoyhtald

v n

ih— = -——V>+ V(X)W

ot 2m 09

onkin itseasiassa diffuusioyhtalon
of

92~ p Vv
ot

kaltainen.

v

A2

A




