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PROPERTIES OF MATTER
�2

Where do properties of materials 
arise from? 
• mechanical 
• thermal 
• electrical 
• optical 
• ...

ELECTRONIC STRUCTURE !
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MOTIVATION FOR 
METHOD DEVELOPMENT

�3

Electronic structure is the key quantity to materials 
properties and related phenomena: 
Mechanical, thermal, electrical, optical,... . 

Conventional ab initio / first-principles type methods 
• suffer from laborious description of electron–electron 

correlations (CI, MCHF, DFT-functionals) 
• typically ignore nuclear quantum and thermal 

dynamics and coupling of electron–nuclei dynamics 
(Born–Oppenheimer approximation) 

• give the zero-Kelvin description, only. 
• are typically good for stationary states, only.
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QUANTUM MECHANICS 
THE CONVENTIONAL APPROACH

�4
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PATH INTEGRAL APPROACH: 
1. CLASSICAL PATH AND QUANTUM PATHS

�5

Let us consider particle dynamics from a to b. 
Lagrangian formulation of classical mechanics for finding the 
path/trajectory leads to equations of motion from minimization 
(extremum) of action  

                               where the Lagrangian L = T–V. 

                 =>                                => 

For example, the classical action of the free-particle is

S = 1
2
m Δx

Δt
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m (xb −xa )
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(tb − ta )
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δS = 0
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dt
∂L
∂x

−
∂L
∂x

= 0

a = (xa , ta )

b = (xb, tb )

Δx, Δt

S= L(x,x,t)dt
ta

tb

∫ ,

a = (xa , ta )

b = (xb, tb )

Ψ(a)

Ψ(b)– ∂V
∂x
=mx
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PATH INTEGRAL APPROACH: 
2. QUANTUM PATHS AND PROBABILITY

�6

Usually, the most probable quantum path is the 
classical one, but other paths contribute, too, with 
a certain probability.  Quantum probability of the 
particle propagation from a to b is 
  P(b,a) = |K(b,a)|2 , 
the absolute square of the probability amplitude K. 
The probability amplitude is the sum over all oscillating 
phase factors    (or interference) of the paths xab as 

                               
where the phase is proportional to the exponential of 
the action 

K(b,a) = φ[xab ]
all xab

∑

φ[x(t)]= A×exp i

S[x(t)]
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Quantum          Physical 
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PATH INTEGRAL APPROACH: 
3. PATH INTEGRAL

�7

Now, let us define the sum over all paths as a path integral 

  
We call this ”kernel” or ”propagator” or ”Green’s function”. 
In terms of stationary eigenstates it can be written as 

The kernel satisfies the Schrödinger equation in space and time {xb,tb}. 
For example, the free-particle propagator takes now the form 

 
 
                                             Classical action is
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K(b,a) = e(i/ )S[b,a ]
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∫ Dx(t).

K(b,a) = φ*n (a)φn (b)
n
∑ e−( i/ )En ( tb−ta )
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Ψ(b)Ψ(b) = ∫ K(b, a)Ψ(a) da
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PATH INTEGRAL APPROACH: 
4. MIXED STATE DENSITY MATRIX

�8

Considering all states          of the particle, for the probability p(x) of finding 
the particle/system in configuration space at x, we have 

Now, define the mixed state density matrix (in position presentation) 

                                                                        (                ) 
Thus, we find  
 
 
and normalization implies                     Expectation values evaluated from 
 
                                         

φn (x)

P(x) = pn (x)
n
∑ =

1
Z

φ*n (x)φn (x)
n
∑ e−βEn .

ρ(x ',x) = φ*n (x ')φn (x)
n
∑ e−βEn .

Z = ρ(x,x)∫ dx = Tr(ρ).

P(x) = 1
Z
ρ(x,x)

ρ(β) = e−βH.

β =
1
kT

A = Tr(ρA) / Z

Note!  The 
wave function does 

not exist in finite 
temperature!
Decoherence!
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PATH INTEGRAL APPROACH: 
5. EVALUATION OF DENSITY MATRIX

�9

Now, compare 

and 
 
 
in equilibrium (time independent hamiltonian) and tb > ta. 
Replacing  (tb – ta) = u  by  –iℏβ  or β = i(tb – ta)/ℏ  (imaginary time period) 

we obtain ρ(b,a), for which                                     Cf.

for a time independent hamiltonian.  Thus, we can evaluate the 
density matrix from a path-integral similarly

where the imaginary time action is

ρ(x ',x) = φ*n (x ')φn (x)
n
∑ e−βEn

∂ρ(b,a)
∂β

= −Hb ρ(b,a).
∂K(b,a)
∂tb

= −
i

Hb K(b,a)

K(b,a) = φ*n (a)φn (b)
n
∑ e−( i/ )En ( tb−ta )

S[x(u);β,0]= m
2
x2(u)+V(x(u))

!

"#
$

%&0

b

∫ du.

ρ(xb,xa;β) = e(− i/ )S[β,0 ]
all x(u )
∫ Dx(u),
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PATH INTEGRAL APPROACH: 
6. MC SAMPLING OF IMAGINARY TIME PATHS

�10

For the density operator we can write 

if the kinetic and potential energies in the hamiltonian 
      H = T + V 
commute.  This becomes exact at the limit of imaginary time period goes to 
zero, the high temperature limit, because the potential energy approaches 
constant in position representation for each imaginary time step. 
Thus, we can write 

where 
                   ,       
and  M  is called the Trotter number. 
This allows numerical sampling of the imaginary time  
paths with a Monte Carlo method.

ρ(β) = e−βH = e−β/2He−β/2H ,

ρ(r0 , rM;β) = ρ(r0 , r1; τ)ρ(r1, r2; τ) ...ρ(rM−1, rM; τ)∫∫∫ dr1dr2 ...drM−1,

τ =β /M β =
1
kT

Decoherence!
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EXCHANGE AND CORRELATION
�11

ϕa(1) ϕb(1) ... ϕN(1)
ϕa(2) ϕb(2) ... ϕN(2)

Φ (1,2,...,N) = (1 / N!)1/2   :   :   :  = (1 / N!)1/2 det | ϕa(1) ϕb(2) ...    ϕN(N) | 
  :   :   :
ϕa(N) ϕb(N) ... ϕN(N)

9.6. Configuration interaction (CI)
The exact N electron many-body wavefunction can be written as

       Ψ =  C0Φ0 + Σa,p CapΦap + Σa<b,p<q CabpqΦabpq + Σa<b<c,p<q<r CabcpqrΦabcpqr + ... ,
i.e., as a linear combination of the Slater determinants.

QTMN,  2018     179

Note!  The one-electron picture is becomes lost, now!

From one-electron picture to  
many-fermion description: 

• fermionic wave function              Slater determinant of 
                                                           one-electron orbitals: 

• Many-body effects or correlations by 
configuration mixing or CI:
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EXCHANGE AND CORRELATION (DFT)
�12

Jacob’s ladder for exchange 
and correlation:

Exc = Ex + Ec

Vxc = Vx + Vc

Only      for HEG, and thus for LDA, is 
known analytically.  The rest of the 
exchange and correlation functionals 
are increasingly better approximations 
for climbing up the Jacob’s ladder to the 
heaven of chemical accuracy.

Ex

f ψi  =  εi ψi
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SOFTWARE: DFT
�13

ACADEMIC/COMMERCIAL CODES: 

• PlaneWave basis 

• localized (atomic) basis  

• Real-space grid 

• (Gromacs for molecular dynamics)

ASE:

PBC

finite

PBC and finite

DMol3
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PATH INTEGRALS IN 
IMAGINARY AND REAL TIME

�14

H (x, t) = i
@ (x, t)

@t

⌧ = it

 (x, ⌧) =

Z
G(x, ⌧ ;xa, ⌧a) (xa, ⌧a)dxa  (x, t) =

Z
K(x, t;xa, ta) (xa, ta)dxa

Coherent time evolution in real time 
and stationary eigenstates from 

incoherent evolution 

Quantum statistical 
physics in 

equilibrium at 
temperature T > 0,   
τb–τa =β= 1/kBT

The 
conventional 

Diffusion Monte 
Carlo (DMC)

Feynman–Hibbs, Quantum Mechanics and Path Integrals, 
(McGraw-Hill, 1965) 

H (x, ⌧) =
@ (x, ⌧)

@⌧

PATH INTEGRAL  APPROACHES
    𝝉DMC                         PIMC                              RTPI                           tDMC

K =

Z
exp(iS) Dx(t)⇢ =

Z
exp(�S) Dx(⌧)

G = Gdi↵GB

Gdi↵ = C1 exp(��x2/2⌧)
GB = C2 exp[�(V̄ � ET )⌧ ]

everywhere real 
and positive !

complex function !
K = C exp(i�)

S[xb, xa] =

Z tb

ta

Lxdt
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QUANTUM MONTE CARLO (QMC)
�15

What? 
Stochastic method for working out quantum many-body 
problems, like finding the electronic structure of materials 
from first-principles, i.e., ab initio. 

Why? 
• Transparent account of many-body effects, i.e. correlations, 
  typically included exactly within numerical accuracy 
• Systematic way to improve accuracy 
• Allows easy way beyond Born–Oppenheimer approximation 
• Allows quantum dynamics 
• Allows nonzero temperature 
• Allows even chemical reactions         All from first-principles!
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QUANTUM / CLASSICAL 
APPROACHES TO DYNAMICS

�16

time 
dependent MOLECULAR 

DYNAMICS 

Wave packet 
approaches 

RTPI RTPI TDDFT 
RTPI

Car–
Parrinello 

and

T > 0 
equilibrium

MOLECULAR 
DYNAMICS 

Metropolis 
Monte Carlo

PIMC 

Rovibrational

PIMC PIMC

ab initio 
MOLDY 

T = 0 Molecular 
mechanics

approaches 
RTPI 

DMC 
VMC

ab initio 
Quantum 

Chemistry / 
DFT / 

semiemp.

electronic dyn.: 

nuclear dyn.:

  

Class

  

Q

 Q 

Q

Q Q 

Class
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SIZE AND TEMPERATURE SCALES
�17

T / K 

100 000 

10 000 

1 000 
RT 

100 

10

10     100    1000    10 000   100 000   size/atoms
DFT

QC

MOLDY

PIMC  PATH INTEGRAL MONTE CARLO APPROACH 

Ab initio- 
MOLDY

RTPI

Decoherence!
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SIMPLE TEST CASES, FIRST: 
H ATOM, H2

+ AND D2
+ MOLECULES

�18

Hydrogen atom:   RH / R∞ 

Molecules: 
- Adiabatic nuclear dynamics, D2

+ 
             isotope effect:            H2

+      
- All quantum particles           H2

+ 

2.007 a0

2.019 a0

2.075 a0

e–

p+ p+

me, mp
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DIPOSITRONIUM Ps2

�19

• Pair approximation and matrix squaring 
• Bisection moves 
• Virial estimator for the kinetic energy 
• same average ”time step” for all temperatures                
‹ τ › = β/M = 0.015, M ≈ 105

                      M = 217 ... 214
e–

e–

e+

e+
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Ps2 @ 0K – 900K
�20

We find: 
• EPs =  – 0.250
• EPs2

 =  – 0.5154
• ED = 0.0154
        ≈ 0.435 eV 
        :≈ 5000 K

Ps2 @ T ≤ 900 K

Ps

Ps2 @ T = 0 K 

       T ≤ 900 K 

e–e, p–p
e–p

e–p
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7

19 March 2009

APPARENT DISSOCIATION ENERGY
�21

ED = 0.0154
      ≈ 0.44 eV 
      ≈ 5000 K

@ 950 K 
kT ≈ 0.082 eV

Dissociation energy from the equilibrium total energies 
as 

DT = 2 EPs – EPs2

Low density limit !
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 SMALL LIGHT NUCLEI MOLECULES: 
ELECTRONS, PROTONS AND POSITRONS

�22

3-particle        and          4-particle ”molecules”

H– e+ or PsH

Ps2

H2

@ 300 K

Kylänpää, TTR and D.M. Ceperley, PRA 86, 052506 (2012)

H–

H2+

Ps2+, Ps–

e+H 
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H3
+ MOLECULE

�23

Quantum statistical physics of two 
electrons and three nuclei 
(five-particle system) as a function of 
temperature: 

• Structure and energetics: 
• quantum nature of nuclei 
• pair correlation functions, 

contact densities, ... 
• dissociation temperature 

• Comparison to the data from 
conventional quantum chemistry.

e–

p+ p+

p+

e–

me, mp

Ab initio or 
first-principles!
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H3
+ TOTAL ENERGY: 

FINITE NUCLEAR MASS AND ZERO-POINT ENERGY

�24

Total energy 
of the H3+ ion 
up to the 
dissociation 
temperature. 
Born–
Oppenheimer 
approximatio
n, classical 
nuclei and 
quantum 
nuclei.
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H3
+ MOLECULAR GEOMETRY AT 

LOW TEMPERATURE: ZERO-POINT MOTION

�25

Internuclear distance.  
Quantum nuclei, classical 
nuclei, with FWHM

Snapshot from simulation, 
projection to xy-plane.  Trotter 
number 216.
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H3
+ ENERGETICS AT HIGH 

TEMPERATURES
�26

Total energy of the H3+ 
beyond dissociation 
temperature. 
Lowest density, 
mid density, 
highest density.
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COMPOSITIONS
�27

5.4. H+
3 molecular ion
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Figure 5.9: Simulation total energy distributions. (LEFT) T ≈ 4498.2 K, (RIGHT)
T ≈ 6070.3 K. Notations are taken from Fig. 5.8.

sampling the imaginary time paths at about 5000KwithM = 2048 for all considered
densities.
For example, for our highest density (gray in Fig. 5.8) we see three main peaks,

and by inspection of that energy distribution the first and the second can clearly be
assigned to the rovibrationally excited H+

3 and H2+H+, respectively. As there are
no rovibrational excitations available for 2H+H+, the average position of the third
main peak is very close to −1Eh. The fourth fragment, H+

2 +H, can be identified
as the small high-energy side shoulder of H2+H+ peak. With the interpretation of
the area under the peak as the abundance of the fragment in the equilibrium we find
this contribution to be much smaller than that of the others. In Fig. 5.9 the same
is illustrated for two different temperatures, about 4500 K (left) and 6070 K (right),
also. There at the higher temperature the amount of H+

2 is found increased according
to the same interpretation as above.
It is important to note, however, that the above illustration is dependent on the

block averaging procedure, see the caption of Fig. 5.8. Pinning the energy data of
each and every sample, i.e. choosing block of size one sample, would broaden the
peaks in Fig. 5.8. At the opposite limit, all samples in one block, would give the
single mean energy or the ensemble average corresponding to the quantum statistical
expectation value. From the highest density to the lowest the expectation values
are −1.169(29)Eh , −1.020(33)Eh and −0.9995(4), respectively, Figs. 5.7 and 5.8,
where the statistical uncertainty decreases with increasing simulation length.

69

T ≈ 4500K T ≈ 6000K
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PARTITION FUNCTION
�28

Numerical integration 
of 

gives the partition 
function.   
We use the initial 
condition  Z(0) = 0.

lnZ(T ) = lnZ(T1) + ∫
T

T1

⟨E⟩
kBT2

dT
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FREE ENERGY
�29

104310-5 Dissociation–recombination equilibrium J. Chem. Phys. 135, 104310 (2011)

The weighted least squares fit of the above energy func-
tion, Eq. (8), to our data for temperatures up to about 3900 K,
see Table I, gives the parameters,

a = 0.00157426,

b = 0.000132273,

c = −6.15622 × 10−6,

d = 0.00157430,

α = 269.410, and

D = a/b ≈ 11.9016.

In the fit, in addition to the (2SEM)−2 weights, we force the
first derivative of the energy with respect to the temperature to
be monotonically increasing up to 3900 K. The fit extrapolates
the 0 K energy to about 0.000 549EH above that of the para-
H+

3 , i.e., it gives an excellent match within the statistical error
estimate.

In Fig. 3, the function ln Z(T ) from Eq. (9) is shown in
the range 0 < T < 4000 K — the behavior of the model at
higher T is illustrated by the dashed line. Above 4000 K, the
three curves for different densities are obtained from those
shown in Fig. 1 by numerical integration of Eq. (7) as

ln Z(T ) = ln Z(T1) +
∫ T

T1

⟨E⟩
kBT 2

dT , (10)

where T1 = 500 K.
In Ref. 2, Neale and Tennyson (NT) have presented the

partition function ln Z(T ) based on a semi-empirical poten-
tial energy surface, see Fig. 3. The NT partition function has
conventionally been used in atmospheric models. The overall
shape is similar to the one of ours. However, the energy ⟨E⟩
evaluated from their fit tends to be systematically lower than
ours, although roughly within our 2SEM error limits. Thus,
the deviations are not visible in Fig. 1. The energy zero of the
NT fit, black dots in Figs. 1 and 3, is the same as ours in this
work, and thus, allows direct comparison in Fig. 1.

Also in Fig. 3, the difference due to the choice of the
J = 0 state as the zero reference is illustrated by the NT par-
tition function values, black pluses — the shape is notably af-

 0 2000 4000 6000 8000 10000
0

5

10

15

20

T (K)

ln
(Z

)

FIG. 3. The molecular NV T ensemble ln Z(T ) from the energetics in Fig. 1
with the same notations. The blue solid line below 4000 K and its extrapo-
lation (dashed line) are from Eq. (9), whereas the curves for three densities
are from Eq. (10). The ln Z(T ) data (black pluses) and the fit (black dots)
of Ref. 2 are also shown. The black dots have the same zero energy as the
partition function of this work (see text).
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FIG. 4. Helmholtz free energy from Eq. (5) in the units of Hartree. Notations
are the same as in Fig. 3.

fected at low T , only. As mentioned above, already, the zero
reference of ln Z can be chosen differently.

Our low temperature partition function, Eq. (9), is close
to complete. With the PIMC approach, we implicitly include
all of the quantum states in the system with correct weight
without any approximations. This partition function is the best
one for the modeling of the low density H+

3 ion containing at-
mospheres, at the moment. However, it is valid up to the disso-
ciation temperature, only. As soon as the density dependence
starts playing larger role, more complex models are needed.
Such models can be fitted to our PIMC data given in Tables I
and II.

C. Other thermodynamic functions

In Fig. 4, we show the Helmholtz free energy from com-
bined Eqs. (6) and (9). As expected, lower density or larger
volume per molecule lowers the free energy due to the in-
creasing entropic factor. Dissociation and the consequent
fragments help in filling both the space and phase space more
uniformly or in less localized manner.

This kind of decreasing order is seen more clearly in the
increasing entropy, shown in Fig. 5. The entropy has been
evaluated from

S = U − F

T
, (11)
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FIG. 5. Entropy from Eq. (11) in the units of kB. Notations are the same as
in Fig. 3.
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(F = U − TS)
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ENTROPY
�30

104310-5 Dissociation–recombination equilibrium J. Chem. Phys. 135, 104310 (2011)

The weighted least squares fit of the above energy func-
tion, Eq. (8), to our data for temperatures up to about 3900 K,
see Table I, gives the parameters,

a = 0.00157426,

b = 0.000132273,

c = −6.15622 × 10−6,

d = 0.00157430,

α = 269.410, and

D = a/b ≈ 11.9016.

In the fit, in addition to the (2SEM)−2 weights, we force the
first derivative of the energy with respect to the temperature to
be monotonically increasing up to 3900 K. The fit extrapolates
the 0 K energy to about 0.000 549EH above that of the para-
H+

3 , i.e., it gives an excellent match within the statistical error
estimate.

In Fig. 3, the function ln Z(T ) from Eq. (9) is shown in
the range 0 < T < 4000 K — the behavior of the model at
higher T is illustrated by the dashed line. Above 4000 K, the
three curves for different densities are obtained from those
shown in Fig. 1 by numerical integration of Eq. (7) as

ln Z(T ) = ln Z(T1) +
∫ T

T1

⟨E⟩
kBT 2

dT , (10)

where T1 = 500 K.
In Ref. 2, Neale and Tennyson (NT) have presented the

partition function ln Z(T ) based on a semi-empirical poten-
tial energy surface, see Fig. 3. The NT partition function has
conventionally been used in atmospheric models. The overall
shape is similar to the one of ours. However, the energy ⟨E⟩
evaluated from their fit tends to be systematically lower than
ours, although roughly within our 2SEM error limits. Thus,
the deviations are not visible in Fig. 1. The energy zero of the
NT fit, black dots in Figs. 1 and 3, is the same as ours in this
work, and thus, allows direct comparison in Fig. 1.

Also in Fig. 3, the difference due to the choice of the
J = 0 state as the zero reference is illustrated by the NT par-
tition function values, black pluses — the shape is notably af-
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FIG. 3. The molecular NV T ensemble ln Z(T ) from the energetics in Fig. 1
with the same notations. The blue solid line below 4000 K and its extrapo-
lation (dashed line) are from Eq. (9), whereas the curves for three densities
are from Eq. (10). The ln Z(T ) data (black pluses) and the fit (black dots)
of Ref. 2 are also shown. The black dots have the same zero energy as the
partition function of this work (see text).
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FIG. 4. Helmholtz free energy from Eq. (5) in the units of Hartree. Notations
are the same as in Fig. 3.

fected at low T , only. As mentioned above, already, the zero
reference of ln Z can be chosen differently.

Our low temperature partition function, Eq. (9), is close
to complete. With the PIMC approach, we implicitly include
all of the quantum states in the system with correct weight
without any approximations. This partition function is the best
one for the modeling of the low density H+

3 ion containing at-
mospheres, at the moment. However, it is valid up to the disso-
ciation temperature, only. As soon as the density dependence
starts playing larger role, more complex models are needed.
Such models can be fitted to our PIMC data given in Tables I
and II.

C. Other thermodynamic functions

In Fig. 4, we show the Helmholtz free energy from com-
bined Eqs. (6) and (9). As expected, lower density or larger
volume per molecule lowers the free energy due to the in-
creasing entropic factor. Dissociation and the consequent
fragments help in filling both the space and phase space more
uniformly or in less localized manner.

This kind of decreasing order is seen more clearly in the
increasing entropy, shown in Fig. 5. The entropy has been
evaluated from

S = U − F

T
, (11)
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FIG. 5. Entropy from Eq. (11) in the units of kB. Notations are the same as
in Fig. 3.
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FIG. 6. Molecular heat capacity as a function of temperature calculated using
the analytical model of this work. The values on the y-axis are given in units
of the Boltzmann constant kB.

where the internal energy is U = ⟨E⟩ − ⟨E⟩T =0. As expected,
both the total energy (internal energy) and entropy reveal the
dissociation taking place, similarly.

Finally, in Fig. 6, we present the molecular constant vol-
ume heat capacity

CV = ∂⟨E⟩
∂T

, (12)

where ⟨E⟩ is taken from Eq. (8), which is valid below disso-
ciation temperatures, only.

Considering the goodness of our functional form for ⟨E⟩,
it is very convincing to see the plateau at about 3/2kB corre-
sponding to “saturation” of the contribution from the three ro-
tational degrees of freedom. Thus, above 200 K the rotational
degrees of freedom obey the classical equipartition principle
of energy. It is the last term in the functional form of Eq. (8),
that gives the flexibility for such detailed description of the
energetics.

It should be emphasized that the plateau is not artificially
constructed to appear at 3/2kB, except for a restriction given
for the first derivative of the total energy to be increasing.
Thus, the analytical model we present, Eq. (8), is found to
be exceptionally successful at low temperatures, i.e., below
dissociation temperature.

IV. CONCLUSIONS

We have evaluated the temperature dependent quantum
statistics of the five-particle molecular ion H+

3 at low densi-
ties far beyond its apparent dissociation temperature at about
4000 K. This is done with the PIMC method, which is ba-
sis set and trial wavefunction free approach and includes the
Coulomb interactions exactly. Thus, we are able to extend
the traditional ab initio quantum chemistry with full account
of correlations to finite temperatures without approximations,
also including the contributions from nuclear thermal and
equilibrium quantum dynamics.

At higher temperatures, the temperature dependent
mixed state description of the H+

3 ion, the density dependent
equilibrium dissociation–recombination balance, and the en-

ergetics have been evaluated for the first time. With the rising
temperature the rovibrational excitations contribute to the en-
ergetics, as expected, whereas the electronic part remains in
its ground state in the spirit of the Born–Oppenheimer ap-
proximation. At about 4000 K the fragments of the molecule,
H2 + H+, H+

2 + H, and 2H + H+, start contributing. There-
fore, presence of the H+

3 ion becomes less dominant and even-
tually negligible in high enough T .

We have also shown how the partial decoherence in the
mixed state can be used for interpretation of the fragment
composition of the equilibrium reaction. Furthermore, we
have evaluated explicitly the related molecular partition func-
tion, free energy, entropy, and heat capacity, all as functions
of temperature. An accurate analytical functional form for the
internal energy is given below dissociation temperature. We
consider all these as major additions to the earlier published
studies of H+

3 , where the dissociation–recombination reaction
has been neglected.

It is fair to admit, however, that PIMC is computationally
heavy for good statistical accuracy and approximations are
needed to solve the “Fermion sign problem” in cases where
exchange interaction becomes essential. With H+

3 , however,
we do not face the Fermion sign problem, as the proton wave-
functions do not overlap noteworthy and the two electrons
can be assumed to form a singlet state, due to large singlet
to triplet excitation energy.
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