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Outline of the Talk

❖ Introduction to Graphene and Modeling Methods

❖ Phase Field Crystal Model

❖ Multi-Scale Modeling Strategy for Graphene

❖ Large Multigrain Flakes

❖ Heat Conduction in Graphene

❖ Summary and Conclusions
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Introduction
❖ Graphene is often grown on metal surfaces to 

achieve epitaxial configurations (usually under 
tensile stress)

3
[S. Marchini et al., PRB 76, 075429 (2006)] 

30 Å
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Introduction
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High resolution electron microscopy of graphene flakes 
[Huang et al., Nature 469, 389 (2011)]
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Introduction
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High resolution electron microscopy of graphene flakes 
[Huang et al., Nature 469, 389 (2011)]

Photonic wave guide between grain 
boundaries

[Mark et al., J. Nanophoton. 6, 061718 (2012)]
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Introduction
❖ Controlled growth of grains can now be achieved with modified chemical vapour deposition

6[T. Ma et al., Nat. Comm. 8, 14486 (2017)]
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Modeling Graphene
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Phase Field Crystal (PFC) Model1

1K. Elder et al. PRL 88, 245701 (2002)

Atomistic description: Statistical description:n(r) =
X

j

�(r� rj) n(r) =

*
X

j

�(r� rj)

+

8



MSP Group

 TiTiTyy 26.10.2017

F [n(r, t)] =

Z
r


�B

2
n2 +

Bx

2
n(1 +r2)2n� ⌧

3
n3 +

⌫

4
n4

�
PFC Free Energy

9

❖ Graphene (honeycomb) ground state

d

TEM
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Modeling Scales
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❖ Describes the energy of the system as functional of the atomistic number density field - liquid and 
crystalline ground states (and coexistence)

❖ Contains topological defects and elastic excitations

❖ Can be derived from classical DFT [Elder & Grant (2004), Jaatinen & T.A-N. (2010)]

❖ Usually coupled to dissipative dynamics in time

[Swift & Hohenberg (1977), Elder et al. (2002)]

d
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Multi-Scale Modeling Strategy for Graphene

❖ Use PFC to generate 2D grain boundary configurations 

❖ Input to all-electron QM-DFT calculations for grain boundary energy and 
use these to fix energy scale in PFC

❖ Generate large-scale, multi-grain PFC samples as input to MD to relax for 
further calculations (e.g. heat conduction and electric conductivity)

11
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Methodology III: 2D PFC Models

❖ PFC1: Standard PFC (412 - 41 600 atoms)

❖ APFC: Amplitude expansion of PFC1 (1 140 - 5 900 000 atoms)

❖ PFC3: Three-mode PFC model (412 - 41 600 atoms)

❖ XPFC: PFC model with two and three-body interactions (412 - 166 400 
atoms) [M. Seymour and N. Provatas, PRB 93, 035447 (2016)]  

X
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PFC Density Fields

           PFC1                        APFC                        PFC3                          XPFC
X
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           PFC1                        APFC                        PFC3                          XPFC
X

TEM
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Step 1: Creating PFC Grain Boundaries

❖ Bicrystalline layout (with two 
GBs) and periodic boundaries

❖ Finite size effects eliminated 
(system sizes > 10 nm) 

❖ Atomic positions used as input for 
QM-DFT and MD relaxation

X

APFC

PFC3

Atomic
 positions

4 nm
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Step 2: Fitting to QM-DFT
❖ Small-angle GB limit              

used to set energy scales in PFC 
models

❖ Read-Shockley equation in small 
GB angle limit:

X
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QM-DFT fitting point
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Step 3: Grain Boundary Energies

X
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2D QM-DFT as benchmark
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Large Multigrain Flakes

12
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Large Multigrain Flakes

13

❖ Large, relaxed multigrain samples can 
be used to study e.g. heat and electrical 
conduction

❖ Strategy: Generate large samples with 
PFC1 and relax with MD (optimized 
Tersoff potential used here)

[H. Ago et al., ACS Nano 10, 3233 (2016)]
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Graphene Grain Boundaries

14

Atomic
 positions

4 nm

❖ Bicrystalline samples are 
generated by having two 
grain boundaries with 
periodic boundary conditions
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Graphene Grain Boundaries

154.4º             9.4º             16.4º            21.8º           27.8º            32.2º            
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Large Multigrain Flakes

16

97 nm

PFC1 3D MD (Tersoff, t = 1 ns)
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Large Multigrain Flakes

17
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Triple Junctions

X
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Triple Junctions in Graphene

X
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Triple Junctions in Graphene

X

❖ Total energy of the system
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Triple Junctions in Graphene

X

Total energy of the system
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Triple Junctions in Graphene

X

❖ For most orientations, the triple 
junction formation energies are 
negative

❖ Grain boundary energies are 1-5 eV/
nm i.e. (at least two) orders of 
magnitude larger and dominate the 
total energy
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Heat Conduction in Graphene

18

[Z. Fan, L.F.C. Pereira, P. Hirvonen, M.M. Ervasti, K.R. Elder, D. Donadio, T. Ala-Nissila, and A. Harju, Phys. Rev. B 95, 144309 (2017);  
Nano Letters 7b1072 (2017); K. Azizi, P. Hirvonen, Z. Fan, A. Harju, K.R. Elder, T. Ala-Nissila, and S. M. Vaez-Allaei, Carbon 125, 384 
(2017)]
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Heat Conduction in Graphene

19

❖ Heat conductivity in and out-of plane can be calculated from the 
heat (energy) flow autocorrelation function

where
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Heat Conduction in Graphene

20

❖ Heat conductivity in and out-of plane can be calculated from the 
heat (energy) flow autocorrelation function

where

and

,

in/out in/out

in/out in/out in/out
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Heat Conduction in Graphene

21

❖ … or from Fourier’s law by setting an external thermal gradient

10 nm

0.2 - 12.8 µm 
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Heat Conduction in Pristine Graphene

22

❖ The out-of-plane component converges much slower than the in-plane one
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Heat Conduction in Pristine Graphene
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❖ The out-of-plane component converges much slower than the in-plane one
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Heat Conduction in Pristine Graphene

24

❖ For pristine graphene we find at T = 300 K (MD with opt. Tersoff)

Experimentally
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Heat Conduction in Pristine Graphene

25

❖ For pristine graphene we find at T = 300 K (MD with opt. Tersoff)

Experimentally

❖ For uniaxially strained graphene the out-of-plane component diverges for 2% strain
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Heat Conduction in Multigrain Flakes

26
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Heat Conduction in Multigrain Flakes

27

❖ Heat flow across an interface is 
characterised by Kapitza conductance
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Heat Conduction in Multigrain Flakes

28

❖ Heat flow across an interface is 
characterised by Kapitza conductance

❖ The Kapitza length L equals the 
thickness of the material of thermal 
conductivity κ that provides the 
same change in temperature as a 
given interface
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Heat Conduction in Multigrain Flakes

29

❖ Heat conductivity out of plane 
is strongly suppressed by grains
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Heat Conduction in Multigrain Flakes
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❖ Heat conductivity out of plane 
is strongly suppressed by grains

❖ The Kapitza length L for out of 
plane is an order of magnitude 
larger than that of the in-plane

crossover at 250 nm
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Heat Conduction in Multigrain Flakes
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❖ Heat conductivity out of plane 
is strongly suppressed by grains

❖ The Kapitza length L for out of 
plane is an order of magnitude 
larger than that of the in-plane

crossover at 250 nm
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Heat Conduction in Multigrain Flakes
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Heat Conduction in Multigrain Flakes
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Heat Conduction in Multigrain Flakes
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Heat Conduction in Multigrain Flakes
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Heat Conduction in Multigrain Flakes

36

[Y. Wang et al., J. Mater. 
Res. 29, 362 (2014)] 

[K.R. Hahn et al., 
Carbon 96, 429 (2016)]
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Heat Conduction in Multigrain Flakes
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Heat Conduction in Multigrain Flakes

38

❖ Spectral conductance

[K. Sääskilahti et al., AIP Adv. 6, 12190 (2016)]
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Heat Conduction in Multigrain Flakes

39

❖ Spectral conductance

[K. Sääskilahti et al., AIP Adv. 6, 12190 (2016)]

❖ Quantum corrected by Bose-
Einstein factor
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Heat Conduction in Multigrain Flakes

40
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Heat Conduction in Pristine Graphene

41

❖ For pristine graphene we find at T = 300 K (MD with opt. Tersoff)

Experimentally
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Heat Conduction in Pristine Graphene
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❖ For pristine graphene we find at T = 300 K (MD with opt. Tersoff)

Experimentally
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Heat Conduction in Pristine Graphene

43

❖ For pristine graphene we find at T = 300 K (MD with opt. Tersoff)

Experimentally

Recent lattice dynamics calculations give 5 450 W/mK [Y. Kuang et al., Int. J. Heat Mass Transfer 101, 772 (2016)]
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Heat Conduction in Multigrain Flakes

44

❖ Final estimates for the 
Kapitza lengths
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Summary and Conclusions
❖ Phase-field crystal models can be employed for a quantitative description of 2D 

grain boundaries in graphene by proper fitting of the elastic properties

❖ PFC models produce realistic 5|7 grain boundaries in most cases

❖ Large multigrain samples (microns in linear size) can be generated for MD 
relaxation in 3D and used for further investigations (thermal, mechanical and 
transport properties) - thermal transport is controlled by flexural modes in pristine 
graphene and strongly affected by grains 

❖ Quantum corrections need to be taken into account both for pristine and 
multigrain graphene (because of high Debye temperature)

45
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