

Art of metal making: science or alchemy?

Pekka Taskinen
Senior Technology Director, Outotec Research Oy, Pori

February 4, Outotec Research Oy 2008

Outotec Oyj

- A new listed company former technology division of Outokumpu Oyj
- 1800 persons in 18 countries
- Turnover >1 b€ (est. 2007)

2 February 4,

February 4,

Outotec Research Oy

Outline

- Outotec Oyj
- Outotec Research Oy
- Metals as a natural resource
- Some key skills in technology development
 - chemical equilibria and reactions
 - reactor dynamics

Outotec Research Oy

properties of construction materials in use

Commissioning of DON Flash Smelter Mineracto Serra da Fordaleza, Brazil Fordaleza, B

YEAR

Milestones of Flash
Smelting: 'the invention
of 20th century in
metallurgy' (American
Society for Metals)

Outotec

Outotec Research Oy

- Location: Pori 'sister R&D unit' in Frankfurt
- 165 employees (25 PhD level scientists)
- Research facilities:
 - 8 laboratories
 - 2 bench scale pilots
 - Pyro- and hydrometallurgical pilot plants
 - HydroCopper® demonstration plant
- - process and equipment development (low & high temperature)

Outotec

More out of ore

February 4, Outotec Research Oy

Metals as a natural resource

- Fully recyclable, without any degradation of props
- Availability secured to the next century - at least
- General trends & facts:
 - unit price lower each year
 - leaner deposits in use every year
 - increasing energy price
 - most metals are commodities the prices are determined by daily 'auctions' (LME)

ORC: Core and generic competencies

February 4,

Outotec Research Oy

Some key skills in our technology development

- As technology and equipment developer, we must be well aware of the advancement of science in our key areas, as typically today:
 - computational methods in materials properties (thermodynamics) – modelling of fundamental materials properties (i.e. c_n , G(T,P,n), $G^{ex}(T,P,x)$...)
 - computational and experimental fluid dynamics
 - performance of construction materials (metals, organics, ceramics...) in demanding conditions - wear, surface scales, coatings etc. - cost vs. life
- Knowledge management and dissemination within the group is the responsibility of the R&D unit

Thermodynamics-stability of substances

- Large number of thermodynamic stability criteria (G, F,
- Only two fundamental properties can be measured:
 - heat content or enthalpy
 - heat capacity is (∂H/∂T)_{p or V}
 - lim c = 0 as T → 0K (all crystalline substances in eq.)
 - changes in Gibbs energy in various 'transformations'

Outotec

More out of ore

February 4, Outotec Research Oy

PROPS INFLUENCING THE THERMODYNAMICS TO BE **MODELLED TODAY**

- Compositional and temperature dependency
 - miscibility gaps
 - congruent melting
 - azeotropic points
- Magnetic transformations
 - λ-transformations
- Pressure contribution
- Crystallographic structures
 - sublattices
 - interstitial phases
 - electronic defects
- Short range ordering
- Chemical ordering

Computational methods in materials properties – thermodynamic simulation (I)

- Industrial processes are chemically complicated:
 - several components
 - a lot of phases ('substances')
- Metal making reactors often involve hostile or dangerous environments:
 - high temperature, explosive
 - toxic, closed, etc.
- High-temperatures allow fast material transport-equilibrium
 - the approach used since '30s with success
 - phase diagrams as practical

February 4,

Outotec Research Oy

Computational methods in materials properties – thermodynamic simulation (II)

- Advanced property databases developed in cooperation with NPL
- Areas of application:
 - Smelting and refining processes in metal making (high temperature and aqueous)
 - Hot-corrosion, joining, coating and other features in use and fabrication

2. mekaaninen tasapaino eli kaikissa sen faaseissa vallitse sama paine:

$$\alpha P = \beta P = ... = P.$$

3 kemialinen tasanaino eli kullakin sen komponentill a i on sama kemialinen potentiaali eli moolinen Gibbsin energia kaikissa

$$\alpha G_1 = \beta G_1 = ... = G_1$$

$$\alpha G_2 = \beta G_2 = ... = G_2$$

$$\vdots$$

$$\alpha G_N = \beta G_N = ... = G_N$$

JW Gibbs, On the equilibria of heterogeneous substances, 1873

THE SOLUTION MODELS USED

- The database Mtox and its analytical formalisms:
 - The Gibbs energies of stoichiometric compounds and species within solution phases are expressed in the G-H_{SER} form
 - The liquid oxide ('slaq') phase is modelled in terms of a series of non-ideally interacting species
 - Crystalline solution phases. such as the spinel, halite, olivine and pyroxene structures are represented using the compound energy model ('sublattice treatment')

- Uniformal definition of the reference
- for any stable form of the elements:

 $\Delta H(298.15 \text{ K}, 1 \text{ bar}) \equiv 0$

Molar Gibbs energy of a phase is:

$$G = G^{id} + E^xG$$

where $^{Ex}G = \Phi(P, T, ^{\alpha}x_i)$

- substitutional solution:

 $G = \sum x_i \circ \mu_i + RT \sum x_i \ln x_i + E^xG$, i = 1... N

- interstitial solution (two sub-lattices):

$$\begin{split} G &= y_{M} y_{Va}{}^{\circ} G_{MVa} + y_{N} y_{Va}{}^{\circ} G_{NV} + y_{M} y_{C}{}^{\circ} G_{MC} + \\ y_{N} y_{C}{}^{\circ} G_{NC} + RT[y_{M} ln \ y_{M} + y_{N} ln \ y_{N} + y_{C} ln \ y_{C} \\ &+ y_{Va} \ ln \ y_{Va} \] + G^{Ex} \end{split}$$

Outotec

More out of ore

February 4, Outotec Research Ov

Examples: melting points of industrial 'substances'

- (I) Low temperature fluidity of nickel mattes is known in the literature, but a CT-approach allows us to study this phenomenon in detail and in the very conditions of a smelting vessel
 - unexpected matte leakages
 - refractory failures and
 - problems in tapping during the operation
- DON technology challenges the smelting furnace design and puts new requirements to molten nickel matte handling, when smelting low-Cu raw materials

THERMODYNAMIC SOLVER AND AN EXTENSIVE **OXIDE DATABASE**

- The phase equilibrium calculations carried out using a thermochemical modelling package MTDATA
- •The content of an extensive oxidesulphide database Mtox is described in table I
- Model coefficients appropriate to large multicomponent systems are build up gradually, from smaller subsystems, in a careful validation work
- •The focus of Mtox is in smelting and refining slags and their equilibria:
- thus the thermodynamic components of the database are typically slag-forming oxides, such as CaO and SiO₂, and not their elements

Outotec Research Ov

Systems	Current Database
Oxide base system	Na ₂ O-K ₂ O-CaO-Fe-O-MgO-Al ₂ O ₃ -SiO ₂
Sulphur in slags	Dilute solution of S
Cu-O	CaO-Cu-Fe-O-MgO-Al ₂ O ₃ -SiO ₂
PbO and ZnO	CaO-Fe-O-PbO-ZnO-Al ₂ O ₃ -SiO ₂
Matte/metal base system	Cu-Fe-Ni-S-O
ZrO2 and oxides of V	CaO-MgO-Al ₂ O ₃ -SiO ₂ -ZrO ₂
B ₂ O ₃ and Li ₂ O	Li ₂ O-Na ₂ O-B ₂ O ₃ -SiO ₂ Na ₂ O-CaO-Fe-O-MgO-Al ₂ O ₃ -B ₂ O ₃ -SiO ₂
MnO	CaO-Fe-O-MgO-MnO-Al ₂ O ₃ -SiO ₂
Cr-O	CaO-Cr-Fe-O-MgO-Al ₂ O ₃ -SiO ₂
NiO	CaO-Fe-O-MgO-NiO-Al ₂ O ₃ -SiO ₂
Trace anion database	Dilute solution of S ² , OH, CO ₃ ² , SO ₄ ² , PO ₄ ³ , F in parts of oxide base liquid

Outotec

Examples: (II) Refractory wear in copper smelting

 An essential part of furnace integrity is control of the refractory wear

February 4,

- Wear is complex phenomenon of mechanical erosion and chemical factors, depending on the type of the smelting vessel and the stage of processing
- Figure shows the crucial phase equilibria of refractory wear in a copper smelting or converting furnace
- Appearance of molten phases indicates dissolution of the autogeneous (protective) layer from the refractory lining

Examples: (III) Solubility of CuCl in strong brine

Aqueous systems

- can be approximated as ideal solutions at very low concentrations only, <<1 mol/kg H₂O
- the Pitzer model has gained popularity and databases are available
- a large number of electrolytes have been modelled in the literature
- the calculated solubility of cupric chloride in water at 25-100 °C
- Boundary conditions of a novel Cu-process by OT

Outotec

9 February 4, Outotec Research Oy

Computational Fluid Dynamics

A very useful tool for studying mass, heat and momentum transfer in metallurgical/chemical processes

- High & low temperature phenomena
- Large (true) geometrical scales
- Real physical properties of phases
- Intensive chemical reactions (coming, submodels upon request)

(VI) Performance of construction materials in demanding conditions

Failure analysis

New manufacturing methods

 Trouble shooting – SEM, EDS/WDS, XPS

Outotec Research Oy

20 February 4, 2008

Examples: (I) stream lines and the combustion zone of a flash smelting furnace

February 4, Outotec Research Oy

(II) Influence of a cross sectional baffle on the wall pressure distribution and flow field in a Zn-roaster heat recovery boiler

February 4,

Outotec Research Oy

Conclusions

- High educational level necessary
- Strong basic knowledge in physics & chemistry and their applications in industrial challenges needed
- International and multinational working environment - engineering subsidiaries in Sweden & Germany, sales offices in 18 countries
- Good language and presentation skills preferred

22 February 4, Outotec Research Oy

(III) Gas flow distribution in the zones of a belt sintering furnace (FeCr-production – feed preparation for smelting)

Outotec

