

Programming matters
Experiences of Python in scientific computing

Juha Jeronen
juha.jeronen@jyu.fi ⇥ 05/2019

juha.m.jeronen@gmail.com → ∞

4.4.2019, Tampere University
FYS-1556 Physics Seminar 2018–19

⚠ This presentation contains many weblinks
 to further reading. Get the slides at:
 https://github.com/Technologicat/python-3-scicomp-intro
 ⊳ physsem2019 ⊳ physsem2019.pdf

My background

where
 IT = information technology, CS = computer science
 ...with some software engineering, too
 M = mathematics
 P = physics, ES = engineering sciences

● Software engineer 1999–2007, Jutel Oy
● MSc 2008, University of Oulu, mathematics
● PhD 2011, University of Jyväskylä, information technology [thesis]
● Postdoc researcher 2012–, mostly at JYU; at TUT 2017–2018

● Gave a Python course at TUT in 2018 [5 ECTS; material]

● Research topic: axially moving materials (+ some energy harvesting)
● Programming background before Python: C, C++, Perl, Java, MATLAB
● Python as primary programming language since 2012

● ...with some experiments ([1] [2]) in Racket My GitHub.

Axially moving materials, in 3 minutes

● A solid, flowing through domain of interest
● Applications e.g. in:

● Process industry: paper, steel, textiles
● Rotating storage media: hard disks, optical disc drives
● Newspaper printing, band saw blades, tape drives, …

● My research topic: runnability of paper machines (stability analysis)
● Our books: Mechanics of moving materials (2014, SMIA vol. 207),

 Stability of axially moving materials (to appear 2019, SMIA)

“Programming matters”?
● Programming is codification of imperative knowledge (SICP 2e, Abelson & Sussman, 1996).

● Algorithms: how to solve (particular) problems
● Data structures: how to store data efficiently for different use cases

● Usually machine-readable (executable), but not central to the idea.
● Contrast pure mathematics, which is declarative knowledge – e.g. that something exists,

but (often) no constructive proof to actually compute it.
● Paradigms (e.g. imperative, functional): ways to structure that knowledge.
● Languages: tools to think in.

● Programming languages are not equal; variation in paradigms supported, focus/target
audience, level of abstraction, type system, verbosity, feature set, …
● A language that doesn't affect the way you think about programming,

is not worth knowing. –Alan Perlis, Epigrams on Programming (1982)
● Haskell: pure functional, focus on category theory, high level, concise, statically typed with

parametric types (e.g. any “a” instead of int, double, …) and automatic type inference.
● Lisp (family; see Racket for a modern Lisp): impure functional, language-oriented (extensible

language defined partly by the programmer), high level, concise, dynamically typed. Has
closures. The Scheme subfamily (including Racket) has continuations.

● Python: object-oriented, imperative, impure functional, focus on readability, high level,
concise, dynamically typed, duck-typed. Has closures.

● C, Fortran: imperative, procedural, respectively for systems programming and raw number
crunching, low level, verbose, statically typed (in a very rudimentary, hardware-oriented way)

● C++: imperative, object-oriented, low level, verbose, statically typed
● Prolog: declarative, logic-oriented, high level (embedded into Racket as Racklog)

● Practical implications: human efficiency, maintainability, potential for automated analysis, …

“Programming matters”?
● Implementing numerical solvers is software engineering

● Computational research is at least 1/3 software engineering
...the other 2/3 divided between mathematics and writing papers

● To be effective and efficient in such research, tools and practices
developed in the software industry are extremely valuable

● Problem: software is complex
● But humans can only work with a limited amount of complexity
● Solution: reduce visible complexity, building a tower of abstractions

● Efficiency? 80/20; also clock cycles cheap, human time expensive
● So, push bits in Fortran, C, C++, Cython…, but write the 80% in an

appropriate high-level language → wide-spectrum programming

● A good language (for a given task) minimizes the impedance mismatch
between the language and the problem domain ⇒ shorter programs
● Less work to write, easier to maintain, easier to spot errors

...and much easier to read and understand 6 months later
● Similarly to how notation matters in mathematics (see also Leibniz)

Python?

A fairly long history:

● Python 1.0: 1991
● Python 2.0: 2000
● Python 3.0: 2008

See a family tree of languages.

https://www.python.org/

Python natalensis, Sir Andrew Smith, 1840. [Wikimedia commons]

Python 3:

What & why for numerics
● Clear, general-purpose, high-level, well-designed complete programming

solution

● Easy to learn

● Focus on clarity: often Python programs look clear, making it easier to return
to old code later

● Open source; repeatability and transparency of science

● Free of cost; no need for licenses

● “Complete” includes numerics; a viable competitor for MATLAB

● Suitable for wide-spectrum programming, especially numerics

https://www.python.org/

#!/usr/bin/env python3
-*- coding: utf-8 -*-

print(“Hello, world!”)

Why now?
● Python 3 is a sufficiently stable platform to build science on

● Rise and popularization of Python during the last 15 years

● Python now part of the mainstream of programming: many libraries,
extensive help available on the internet (especially Stack Overflow)

● IEEE Spectrum 2017: Python the most popular language worldwide

https://www.python.org/

#!/usr/bin/env python3
-*- coding: utf-8 -*-

f = lambda x: x**2
p = lambda x: x % 2 == 0
A = range(10)
B = [f(x) for x in A if not p(x)]
print(B)

Where MATLAB is good
● Quality-of-life features of a commercial product

● All-in-one
● Attempts to do some things automatically for the user,

e.g. just-in-time (JIT) compilation
● Community focused solely on numerics
● If an algorithm is not in MATLAB, it can likely be found in

MATLAB File Exchange
● Polished integrated development environment (IDE) for scientists
● Interactive plot editor
● Some things easier to do than in Python (e.g. 3D plotting)
● SimuLink: graphical block model simulator

vs.

Where Python is good
● Elegant language, in which it is easy to write clear code
● Control: does only what you explicitly tell it to
● Software ecosystem with dependency management (PyPI, pip)

● A huge number of libraries for anything a computer can do
● A sensibly sized numerics community, too

● Free of cost; no need for licenses
● Open; repeatability and transparency of science

● In practice, also the libraries are open source.
Sometimes a library already does 99% of what
you need...

vs.

“Python”
● Technically speaking, “Python” is a specification, like “C” or “Fortran”

● Several implementations: CPython, Jython, IronPython, PyPy
● CPython however de facto standard; for most == Python

● Python 3 vs. Python 2
● Python 3: current version (2019, v3.7.3)

● Also unofficially known as py3k, Python 3000
● Python 2: legacy (2010, v2.7, support ends by 2020)

● Python 2.x ends at 2.7: Python 2.8 Un-release Schedule
● Backwards incompatibilities; but devs promised not to do it again
● Practically all projects have migrated to Python 3
● This presentation: Python 3

https://www.python.org/

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import re
print(re.sub(r'^monty\s*', r'', 'monty python') + " 3")

Zen of Python, The

A guiding philosophy for the design of the Python language, as well as many Python programs.
Consists of 20 aphorisms, 19 of which have been written down:

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than right now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let's do more of those!

 –Tim Peters https://www.python.org/

import this

Scientific Python
Welcome to the bazaar

spyder

Tools

spyder

● IPython: advanced command line

● Jupyter: IPython's graphical cousin, based
on a Mathematica-style notebook approach

● Spyder: integrated development
environment (IDE)

● Anaconda: scientific Python distribution
● Perhaps the easiest way to install

Python and its scientific libraries.

http://ipython.org/
https://www.anaconda.com/

https://github.com/spyder-ide

Spyder IDE

https://github.com/spyder-ide

spyder
● The Scientific PYthon

Development EnviRonment
● Preinstalled in Anaconda
● Designed for scientists
● MATLAB style IDE
● Matplotlib integration
● Debugger
● Profiler
● Static code analyzer
● REPL (IPython/Jupyter)

read-eval-print-loop

● Mostly well balanced between scientific use oriented,
interactive, and software development oriented features.

● Cons: no automatic refactoring or version control GUI.

● Scientific Python consists of
a number of separate libraries
as usual with general-purpose
programming languages

● NumPy, SciPy, Matplotlib
the primary scientific libraries

● SymPy for symbolic computing

● Numba and Cython the most
important accelerators

● Other, more specific libraries
also available
● See my Python course

(lecture notes sec. 2;
 slide sets 5–8)

Libraries, accelerators

NumPy

● n-dimensional arrays

● MATLAB style API, but instead
of matrices, based on cartesian
tensors:

● A vector is a rank-1 tensor
● A matrix is a rank-2 tensor

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import numpy as np
A = np.array([[1, 2],
 [4, 9]], dtype=np.float64)
b = np.array([3, 7], dtype=np.float64)
x = np.linalg.solve(A, b)

http://www.numpy.org/

SciPy

● Advanced-user versions
of linear algebra routines

● Sparse matrices

● I/O for MATLAB .mat files

● Numerical integration (quad),
initial value problems (ODE),
special functions

● Signal processing

● Some optimization solvers

● Cython interface to LAPACK,
for advanced users

https://scipy.org/

Matplotlib

● MATLAB-style plotting API

● Standard tool for publication-
quality numerical graphics
in Python

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
xx = np.linspace(0, 1, 101)
yy = np.sin(xx * np.pi)
plt.plot(xx, yy)
plt.savefig('sin_x.svg')

Also made with Matplotlib

http://matplotlib.org/

SymPy

● Symbolic algebra, differentiation,
integration

http://www.sympy.org/

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import sympy as sy
x = sy.symbols('x')
λf,λg = sy.symbols('f,g', cls=sy.Function)
g = λg(x)
f = λf(g)
D = sy.diff(f, x).doit()
sy.pprint(D)

 d d
─────(f(g(x))) ──(g(x))⋅

dg(x) dx

● Python 3 allows Unicode variable names
(with certain limitations).

Input e.g. with a LaTeX input method

Numba
● Just-in-time (JIT) compiler for Python
● Accelerate functions by compiling them

at runtime, when called for the first time.
● Supports a subset of Python; meant for

accelerating data-crunching loops.

http://numba.pydata.org/

#!/usr/bin/env python3
-*- coding: utf-8 -*-

from numba import jit
from random import random

@jit(nopython=True)
def monte_carlo_pi(nsamples):
 acc = 0
 for i in range(nsamples):
 x = random()
 y = random()
 if (x**2 + y**2) < 1.0:
 acc += 1
 return 4.0 * acc / nsamples

Easy to use.

Cython

● Combine the power of Python and C
● For implementing accelerated code,

extends Python with a dialect of C
that looks almost like Python

● A superset of Python; allows mixing in
Python wherever speed is not the
primary concern

● Easy to call to/from Python; compiles
into Python extension modules that
transparently interface with
regular Python programs

● A language; detailed usage requires at
least a full lecture.

● The other common use case of Cython
is to create Python bindings for existing
C libraries. For that use, see also CFFI
and ctypes. For interfacing to Fortran
instead of C, see F2PY.

https://cython.org/

def ddot(double [::1] a, double [::1] b):
 cdef unsigned int k
 cdef unsigned int n = a.shape[0]
 cdef double out = 0.0

 for k in range(n):
 out += a[k] * b[k]

 return out

Compiles into
a C for loop,
since static types
are declared and
no Python objects
are accessed.

(The memoryview is treated specially.)

What can we do with Python?
● MATLAB-style numerics:

● Stability exponents of an axially travelling viscoelastic Kelvin–Voigt panel
subjected to a potential flow

● After discretization of the PDE, this is a quadratic eigenvalue problem
● After reduction to a generalized linear eigenvalue problem (via the

companion form technique), solved using scipy.linalg.eig

0.0 0.2 0.4 0.6 0.8 1.0

c 1 [10 5]

2

1

0

1

2

Im
(s
)
[1
0

4
]

2

1

0

1

2

R
e
(s
)
[1
0

5
]

= 104, = 18.315, =7.90569 10 4

Im(s)

Re(s)

0.60 0.55 0.50 0.45 0.40

c 1 [100]

2

1

0

1

2

Im
(s
)
[1
0
0
]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

R
e
(s
)
[1
0

1
]

= 104, = 18.315, =7.90569

Im(s)

Re(s)

Stability of axially moving materials (to appear 2019, SMIA)

What can we do with Python?
● MATLAB-style numerics:

● In-plane deformation of an axially moving viscoelastic Kelvin–Voigt sheet
● Computed using a custom 2D C1 FEM code implemented in Python

● Actually recommended FEM codes for Python: FEniCS Project, SfePy

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5
(u−ulin)/u0

-0.0016

-0.00114

-0.00022

0.0007

0.00162

0.00254

0.003

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5
(v−vlin)/u0

-0.014

-0.0109

-0.00778

-0.00467

-0.00156

0.00156

0.00467

0.00778

0.0109

0.014

10.1016/j.ijsolstr.2015.10.027

What can we do with Python?
● Symbolic mathematics:

import sympy as sy

def hermite(k):
 """Derive C**k continuous Hermite interpolation polynomials for the interval [0, 1]."""
 order = 2*k + 1
 *A,x = sy.symbols('a0:{},x'.format(order + 1))

 w = sum(a*x**i for i,a in enumerate(A)) # as a symbolic expression
 λw = lambda x0: w.subs({x: x0}) # as a Python function; subs: symbolic substitution
 wp = [sy.diff(w, x, i) for i in range(1, 1 + k)] # diff: symbolic differentiation
 λwp = [(lambda expr: lambda x0: expr.subs({x: x0}))(expr) for expr in wp] # why two lambdas: lecture notes sec. 5.8

 zero, one = sy.S.Zero, sy.S.One
 w0, w1 = sy.symbols('w0, w1')
 eqs = [λw(zero) - w0, λw(one) - w1] # eqs. in form LHS = 0; see sympy.solve
 dofs = [w0, w1]

 for i, f in enumerate(λwp, start=1):
 d0_name = 'w{}0'.format(i * 'p') # p = 'prime', to denote differentiation
 d1_name = 'w{}1'.format(i * 'p')
 d0, d1 = sy.symbols('{}, {}'.format(d0_name, d1_name))
 eqs.extend([f(zero) - d0, f(one) - d1])
 dofs.extend([d0, d1])

 coeffs = sy.solve(eqs, A)
 solution = sy.collect(sy.expand(w.subs(coeffs)), dofs)

 N = [solution.coeff(dof) for dof in dofs] # result: shape functions

 return tuple(zip(dofs, N)) # pairs (dof, shape function)

hermite(0) # linear interpolation
((w0, -x + 1), (w1, x))

hermite(1) # beam element
((w0, 2*x**3 - 3*x**2 + 1),
 (w1, -2*x**3 + 3*x**2),
 (wp0, x**3 - 2*x**2 + x),
 (wp1, x**3 - x**2))

hermite(2) # 2nd derivative also continuous
((w0, -6*x**5 + 15*x**4 - 10*x**3 + 1),
 (w1, 6*x**5 - 15*x**4 + 10*x**3),
 (wp0, -3*x**5 + 8*x**4 - 6*x**3 + x),
 (wp1, -3*x**5 + 7*x**4 - 4*x**3),
 (wpp0, -x**5/2 + 3*x**4/2 - 3*x**3/2 + x**2/2),
 (wpp1, x**5/2 - x**4 + x**3/2))

What can we do with Python?
● Implement and package algorithms:
● pydgq: ODE system solver using dG(q), time-discontinuous Galerkin

with a Lobatto (a.k.a. hierarchical) basis.

import numpy as np
from pydgq.solver.kernel_interface import PythonKernel
from pydgq.solver.galerkin import init
from pydgq.solver.types import DTYPE
from pydgq.solver.odesolve import ivp

class LorenzKernel(PythonKernel):
 def __init__(self, ρ, σ, β):
 super().__init__(n=3)
 self.p = [float(x) for x in ρ, σ, β]

 def callback(self, t):
 (ρ, σ, β), (x, y, z) = self.p, self.w
 self.out[:] = (σ*(y - x), x*(ρ - z) - y, x*y - β*z)

w0 = np.array([0, 2, 20], dtype=DTYPE)
rhs = LorenzKernel(ρ=28, σ=10, β=8/3)
init(q=2, method='dG', nt_vis=11, rule=None)
ww, tt = ivp(integrator='dG', interp=11, w0=w0, dt=0.1, nt=3500, rhs=rhs, maxit=10)

Full example on GitHub.

What can we do with Python?
● Implement and package algorithms:
● wlsqm: weighted least squares meshless interpolator and differentiator

import numpy as np
from scipy.spatial import cKDTree as KDTree
import wlsqm

n, k, fit_order = 1000, 6, 2
f = lambda x: np.sin(np.pi*x[:, 0]) * np.cos(np.pi*x[:, 1]) # silly test data
x = np.random.random((n, 2)) # no mesh topology!
F = f(x)

tree = KDTree(data=x) # Wikipedia: k-d tree
_, ii = tree.query(x, 1 + nk)
hoods = np.array(ii[:, 1:], dtype=np.int32)
kk = k * np.ones((npoints,), dtype=np.int32)
fit_orders = fit_order * np.ones((npoints,), dtype=np.int32)
knowns_bitmask = wlsqm.b2_F * np.ones((npoints,), dtype=np.int64)
wms = wlsqm.WEIGHT_UNIFORM * np.ones((npoints,), dtype=np.int32)
solver = wlsqm.ExpertSolver(dimension=2, nk=kk,
 order=fit_orders, knowns=knowns_bitmask,
 weighting_method=wms, algorithm=wlsqm.ALGO_BASIC,
 do_sens=False, max_iter=10, ntasks=8, debug=False)
ndofs = wlsqm.number_of_dofs(dimension=2, order=fit_order)
fi = np.empty((npoints, ndofs), dtype=np.float64)
fi[:, 0] = F # fi[i, 0] = function value at x[i, :]
solver.prepare(xi=x, xk=x[hoods])
solver.solve(fk=fi[hoods, 0], fi=fi, sens=None) Full example on GitHub.

What can we do with Python?
● Create a SymPy to Fortran compiler:
● mm-codegen: Create material models for Elmer in SymPy

● The compiler is < 2000 SLOC – including comments and docstrings!

See original presentation slides, Jeronen, XIII Finnish Mechanics Days, 2018.

Feature highlight: Lexical closures
● A feature of many high-level languages, with numerous applications. Has a long

tradition in the Lisp family.
● Requires first-class functions. Not supported by Fortran or C. Supported by e.g.

C++ 11, Java 8, Python, Racket and Clojure.
● Python example:

def make_adder(inc):
 def adder(x):
 return x + inc
 return adder

f = make_adder(inc=3)
g = make_adder(inc=17)
print(f(2)) # 5
print(g(25)) # 42

● Eliminate boilerplate. Define local helper functions locally, in a nested def.
In the inner definition, list as parameters only those that actually vary.

● Separate public interface from implementation compactly, without exposing internal
details (example later).

● Change how existing functions behave; see Python's decorators [1] [2]
● Create an object system (in Python, don't do that – it already has one!).
● Create a continuation system. (See a simple explanation of continuations.)

Calling make_adder causes the nested function
definition of adder to run, creating a new closure
instance.
Here inc is a free variable (no local definition; not global).
We can then return the closure instance to the caller.

The closure property is that an instance permanently
retains access to the inc that was passed in by the caller
of make_adder when that closure instance was created.

(The name closure means that a surrounding, non-global
scope closes over the free variables of the inner scope.)

Advanced: Syntactic macros
Scheme code is not meant to be written by humans, [but] … automatically by macros.

–Michele Simionato

● Syntactic macros are an advanced feature almost unique to the Lisp family. Exceptions: Julia, R.

● What: Syntactic macros transform the AST, by running arbitrary code on it, at compile time.
● Contrast C preprocessor macros, which perform only text substitution.
● Contrast C++ generics: Lisp itself as metalanguage (no separate templating mini-language).
● StackOverflow. Understanding macros. Perl perspective. Macros and washing machines.
● Paul Graham (1993): Programming bottom-up; Metaprogramming; Extensible programming.
● Lisp isn't a language, it's a building material. –Alan Kay (of Smalltalk fame; on Lisp, [1] [2])

● Why: Design patterns: a symptom of being unable to extract an abstraction (Paul Graham).
● E.g. with [1] or assert [2] in Python, which encode particular design patterns.
● Syntactic macros allow the programmer to create such constructs:

● with in Clojure.
● Delayed evaluation in Racket.

● Just like in mathematics [1] [2]: code is for humans, so notation matters.
● Macros are an important feature that make Lisp feel more like a fluid than a solid.
● Democratization of language design? On the other hand, herd of cats (according to some,

with machine guns), no BDFL. No process to pick, polish and promote the best abstractions;
thus, “lowest common denominator” often used. The Lisp Curse [1] [2].

abstract syntax tree

Advanced: Syntactic macros
● The nuclear option: only create a macro if the job is not suitable for a run-of-the-mill function!

● Extract design patterns that cannot be extracted as functions.
● Although Racket is eager, macro arguments avoid immediate evaluation; highly useful [1][2].
● Macros replacing design patterns is what “programs writing programs” means in Lisp;

it's not about “source code generation” à la Cython (which takes Cython and writes C).
● It's also robust, unlike source filters in many languages.

● Add syntactic forms the original designer of the language might not approve. [1]
● Create a DSL (domain-specific language) to fit the language to your domain; shorter code.
● DRY out repetition in a set of similar macros, by macro-writing macros. (Example.)
● Programmatically create lookup tables at compile time. [1]

● Limitations:
● Second-class; cannot pass a macro as an argument: expanded away at compile time!
● Local: a macro call cannot rewrite any forms surrounding it (due to Lisp's prefix notation)
● Macros cannot change the lexical conventions (use of parentheses, prefix notation, …)

● If you want to do that, you could modify or extend the reader [1] [2].
● Macros don't compose. In a multi-layered macro library, each layer needs to know about

all of the previous layers. This build-up of complexity limits what can be achieved in practice.
● Still, Racket itself is built mostly from macros; very few primitives in a fully expanded program!

● Examples in Racket: Non-deterministic evaluation, automatic currying,
Python-inspired syntactic forms, simple infix math, User-programmable infix operators,
Algebraic Data Types (ADTs) in Typed Racket.

● MacroPy: Syntactic macros for Python.

What can we build with MacroPy?

Let constructs like those in the Lisp family and Haskell.

Bind names for the duration of one expression. Use cases:
● Break an expression into easily readable chunks, without

polluting the surrounding scope with temporaries.
● Explicitly indicate which definitions are needed only locally.

from unpythonic.syntax import macros, let, letseq, letrec

let[((x, 17), # parallel binding, i.e. bindings don't see each other
 (y, 23)) in
 print(x, y)]

letseq[((x, 1), # sequential binding, i.e. Scheme/Racket let*
 (y, x+1)) in
 print(x, y)]

mutually recursive binding, sequentially evaluated
t = letrec[((is_even, lambda x: (x == 0) or is_odd(x - 1)),
 (is_odd, lambda x: (x != 0) and is_even(x - 1))) in
 is_even(42)]

Automatic tail call optimization (TCO):

from unpythonic.syntax import macros, tco

with tco:
 is_even = lambda x: (x == 0) or is_odd(x - 1)
 is_odd = lambda x: (x != 0) and is_even(x - 1)
 assert is_even(10000) is True

with tco:
 def is_even(x):
 if x == 0:
 return True
 return is_odd(x - 1)
 def is_odd(x):
 if x != 0:
 return is_even(x - 1)
 return False
 assert is_even(10000) is True

Macros on this and the next slide are available in unpythonic,
and they mostly work together. See documentation.

What can we build with MacroPy?
Automatic currying:

from unpythonic.syntax import macros, curry
from unpythonic import foldr, composerc, cons, nil

with curry:
 def add3(a, b, c):
 return a + b + c
 assert add3(1)(2)(3) == 6

 # see John Hughes: Why FP Matters
 my_map = lambda f: foldr(composerc(cons, f), nil)
 double = lambda x: 2 * x
 print(my_map(double, (1, 2, 3)))

Call-by-need functions:

from unpythonic.syntax import macros, lazify

with lazify:
 def g(a, b):
 return a # b is never used
 def f(a, b):
 return g(2*a, 3*b)
 assert f(21, 1/0) == 42

…this is starting to look like a custom language?

Continuations (call-with-current-continuation a.k.a. call/cc):

from unpythonic.syntax import macros, continuations, call_cc
with continuations:
 stack = []
 def amb(lst, cc): # McCarthy's amb operator
 if not lst:
 return fail()
 first, *rest = tuple(lst)
 if rest:
 ourcc = cc
 stack.append(lambda: amb(rest, cc=ourcc))
 return first
 def fail():
 if stack:
 f = stack.pop()
 return f()

 def pt(): # Pythagorean triples
 z = call_cc[amb(range(1, 21))]
 y = call_cc[amb(range(1, z+1)))]
 x = call_cc[amb(range(1, y+1))]
 if x*x + y*y != z*z:
 return fail()
 return x, y, z
 t = pt()
 while t:
 print(t)
 t = fail() # ...outside the dynamic extent of pt()!

Packaging a language: Dialects
● Pydialect implements a dialect system, in pure Python, based on import hooks [1] [2].

● Motivation: Language semantics and surface syntax encode patterns at a very high level.

● Disclaimer: Very much outside the vision for the official Python language.
● PEP 511 was rejected for the specific reason it could be seen as officially blessing

the creation of dialects.
● The native habitat of this idea is Racket (Solve problems. Make languages.).

from __lang__ import lispython

def fact(n):
 def f(k, acc):
 if k == 1:
 return acc
 f(k - 1, k*acc)
 f(n, acc=1)
assert fact(4) == 24
fact(5000)

t = letrec[((is_even, lambda x: (x == 0) or is_odd(x - 1)),
 (is_odd, lambda x: (x != 0) and is_even(x - 1))) in
 is_even(10000)]
assert t is True

g = lambda x: [local[y << 2*x],
 y + 1]
assert g(10) == 21

__lang__ is a magic module that doesn't actually exist.
Importing a dialect from it triggers the dialect processor
when the program is run with pydialect instead of

bare Python. Dialects may define new surface syntax
and/or change semantics.

Implicit return in tail position

Tail call optimization; O(1) call stack depth with tail calls,
so tail calls can be used for

recursion-based looping,
like in Scheme
and in Racket.

⚠ This code is not Python; it's Lispython.

Public interface
Implementation

Literature
● Mark Lutz: Learning Python, 5th ed., O'Reilly, 2013.

● Standard “bible” of the trade, very comprehensive.
● A couple of minor versions behind the latest Python.

● Luciano Ramalho: Fluent Python: Clear, Concise and Effective
Programming, O'Reilly, 2015.

● Python 3 for programmers coming from other languages.
Focuses on features that are easily missed, if the reader
is used to thinking in another programming language.

● Zed A. Shaw: Learn Python 3 the Hard Way, Addison–Wesley, 2017.
● For newcomers to programming.
● Hard way because There is no royal road to geometry. –Euclid

● Internet!
● Especially Stack Overflow.
● For a self-contained introduction to Python in scientific computing:

● Python 3 for scientific computing, my course held at TUT, 2018;
covers also background in CS/IT; see esp. slides and exercises.

● Scipy Lecture Notes, a community-maintained course with
a tight focus on the scientific computing parts only.

The finish line

Thank you for your attention!

