Programming matters
Experiences of Python in scientific computing

Juha Jeronen
juha.jeronen@jyu.fi » 05/2019

A O o, juha.m.jeronen@gmail.com — o
one
A O A\ This presentation contains many weblinks
O 4 O J to further reading. Get the slides at:
A d https://github.com/Technologicat/python-3-scicomp-intro
) A0 ‘Z o > physsem2019 > physsem2019.pdf
m ¢
_ _ -
4.4.2019, Tampere University |

FYS-1556 Physics Seminar 2018-19 UNIVERSITY OF JYVASKYLA

My background
(IT,CS)) -

Y= | M) + =[(P, ES))
where
IT = information technology, CS = computer science

M = mathematics
P = physics, ES = engineering sciences

Software engineer 1999-2007, Jutel Oy

MSc 2008, University of Oulu, mathematics

PhD 2011, University of Jyvaskyla, information technology [thesis]
Postdoc researcher 2012—, mostly at JYU; at TUT 2017-2018

* Gave a Python course at TUT in 2018 [5 ECTS; material]

Research topic: axially moving materials (+ some energy harvesting)
Programming background before Python: C, C++, Perl, Java, MATLAB
Python as primary programming language since 2012 _

. [1] [2]) in Racket My GitHub.

Axially moving materials, in 3 minutes

0w | O%w | 2 0w | Otw
MG +2mVo g +(mVy —To) gz + Dgz =0
s Yo
y T T
p
__________________ xr ' h ’lU(QZ’,t)
§=0 / s
- I :
=0 z(&,t)=E+ Vot
» A solid, flowing through domain of interest —~ -~ 7
« Applications e.g. in: T e
* Process industry: paper, steel, textiles @A w0 laemAt O

e Rotating storage media: hard disks, optical disc drlves
* Newspaper printing, band saw blades, tape drives, .
My research topic: runnability of paper machines (stability analysis)
* Our books: Mechanics of moving materials (2014, SMIA vol. 207),
Stability of axially moving materials (to appear 2019, SMIA)

“Programming matters”?

Programming is codification of imperative knowledge (SICP 2e, Abelson & Sussman, 1996).
» Algorithms: how to solve (particular) problems

» Data structures: how to store data efficiently for different use cases

Usually machine-readable (executable), but not central to the idea.

Contrast pure mathematics, which is declarative knowledge — e.g. that something exists,

but (often) no constructive proof to actually compute it.

Paradigms (e.g. imperative, functional): ways to structure that knowledge.

Languages: tools to think in.

Programming languages are not equal; variation in paradigms supported, focus/target

audience, level of abstraction, type system, verbosity, feature set, ...

» A language that doesn't affect the way you think about programming,

Is not worth knowing. —Alan Perlis, Epigrams on Programming (1982)

» Haskell: pure functional, focus on category theory, high level, concise, statically typed with
parametric types (e.g. any “a” instead of int, double, ...) and automatic type inference.

« Lisp (family; see Racket for a modern Lisp): impure functional, language-oriented (extensible
language defined partly by the programmer), high level, concise, dynamically typed. Has
closures. The Scheme subfamily (including Racket) has continuations.

* Python: object-oriented, imperative, impure functional, focus on readability, high level,
concise, dynamically typed, duck-typed. Has closures.

» C, Fortran: imperative, procedural, respectively for systems programming and raw number
crunching, low level, verbose, statically typed (in a very rudimentary, hardware-oriented way)

« C++: imperative, object-oriented, low level, verbose, statically typed

* Prolog: declarative, logic-oriented, high level (embedded into Racket as Racklog)

Practical implications: human efficiency, maintainability, potential for automated analysis, ...

“Programming matters”?

 Implementing numerical solvers Is software engineering
« Computational research is at least 1/3 software engineering

» To be effective and efficient in such research, tools and practices
developed in the software industry are extremely valuable

* Problem: software is complex
e But humans can only work with a limited amount of complexity
 Solution: reduce visible complexity, building a tower of abstractions
 Efficiency? 80/20; also clock cycles cheap, human time expensive
e S0, push bits in Fortran, C, C++, Cython..., but write the 80% in an
appropriate high-level language — wide-spectrum programming

« A good language (for a given task) minimizes the impedance mismatch
between the language and the problem domain = shorter programs
» Less work to write, easier to maintain, easier to spot errors

e Similarly to how notation matters in mathematics (see also Leibniz)

A fairly long history:

« Python 1.0: 1991
« Python 2.0: 2000
e e « Python 3.0: 2008

‘O LEQ@ POB®D G EEE) B B X £ P € S| momeenoumensmgeostiiviensin dmerin B
Project explorer 5 @ Editor il it_ ® Outline B®
v=' fmuuminm | ©3- [stageroy x| moselpy x| snaersy x Fours 1
pycache
} B 00 stuff 232 def remove_all(elt, lst): # remove all occurrences of elt from lst, return a copy =B e anayzersy
) & doc 233 return [x for x in lst if x I= elt D O ot D .
)& forran 234 def remove_all_in(elt, lists): # remove elt from all lists, return a copy s ?w;m e
235 return [remove all(elt, lst) for lst in lists] N .
~ & pyan3 | = » @ get ast node_name
M ootmp 237 def C3_merge(lists): » e_exprs
~ & pyan - »
& 238 out =[]
» & _pycache. 239 while True: 14
B _init 240 self.logger.debug("MRO: C3 merge: out: %s, lists: %s" % (out, lists)) Help
241 heads = [head(lst) for st in lists if head(lst) is not None] [
szm-w 242 if not len(heads): source | Console v | Object &
node.py. 243 break Bl
B visgraph.py 244 tails = [tail(lst) for st in lists]
writers.py 245 self.logger.debug("MRO: C3 merge: heads: %s, tails: %s" % (heads, tails))
@ defines.dot 246 hd = C3_find_good head(heads, tails)
B defines.svg 247 self.logger.debug("MRO: C3 merge: chose head %s" % (hd)) help of bject by
B graphoprg 248 out. append (hd) : rassing Cot2h i ron o & ither o
B graph0.svg 249 lists = remove all in(hd, lists) the Editor or the Console.
D ucensemd iz? return out 4
B pyanpy Help can also be shown automatically
B pyantxt 252 mro = {} # result n after writing a left parenthesis next to an
D) README.md 253 try: object. You can activate this behavior in
B tem .m; il 254 memo = {} # caching/memoization Preferences > Help.
B tempgraphr | 255 def €3_linearize(node): i
B wm:[’;g" 52? self.l:g?eradt)ahug(“MRO: €3 linearizing %s* % (node)) m New to Spyder? Read our tutorial
seen.add (node
B temp.pdf
258 if node not in memo:
B tempsvg 259 # unknown class or no ancestors E
% uses.dot 260 if node not in self.class base nodes or not len(self.class base nodes[node]): =} |[veriable oporer [el |
uses:svg 261 memo[node] = [node] =} [
[visualize_pyan_architecture:sh 262 else: # known and has ancestors - R
» B testpyan3 263 lists [+ | Console /A % ‘
» 5 testpyan3 2 264 # linearization of parents...
[converterpy 265 for baseclass node in self.class base nodes[node]: Python 3.4.3 (default, Nov 17 2016, 01:08:31) 2
[elmerspline.py 266 if baseclass_node not in seen: Type "copyright”, "credits” or "license" for more
[hermite_element.py 267 lists.append(C3_linearize(baseclass_node)) information.
B iterutilpy 268 # ...and the parents themselves (in the order they appear in the ClassDef)
. 269 self.logger.debug("MRO: parents of %s: %s" % (node, self.class base nodes[node])) = ||IPython 6.2.1 -- An enhanced Interactive Python.
By 270 lists.append(self.class_base_nodes[node])
[mos 2par impif90 271 self.logger.debug("MRO: C3 merging %s" % (lists)) In [1]:
B mas.2pacimph 272 memo[node] = [node] + C3_merge(lists)
O mecaart - 273 self.logger.debug("MRO: C3 linearized %s, result %s" % (node, memo[node])) U
B 232;::::” 274 return memo[node]
ary 275 for node in self.class base nodes:
g"‘gﬁ"“’f"“’"ﬂ“ 276 self.logger.debug("MRO: analyzing class %s* % (node))
mgs 3par_impLh 277 seen = set() # break cycles (separately for each class we start from)
g s 3par 50 278 mrofnode] = €3 linearize(node) <
mgs_3par. inearizati X =
B modelpy |- 279 except LinearizationImpossible as e: . = History log | IPython console

Permissions: RW _ End-ofines: LF _ Encoding: UTF-8 Line: 1 Column: 1 Memory: 15 %

What & why for numerics

Clear, general-purpose, high-level, well-designed complete programming
solution

Easy to learn

Focus on clarity: often Python programs look clear, making it easier to return
to old code later

Open source; repeatability and transparency of science
Free of cost; no need for licenses

“Complete” includes numerics; a viable competitor for MATLAB

Suitable for wide-spectrum programming, especially numerics P

Why now?
Python 3 is a sufficiently stable platform to build science on

Rise and popularization of Python during the last 15 years

Python now part of the mainstream of programming: many libraries,
extensive help available on the internet (especially Stack Overflow)

IEEE Spectrum 2017: Python the most popular language worldwide

A

Where MATLAB Is good

* Quality-of-life features of a commercial product
 All-in-one
o Attempts to do some things automatically for the user,
e.g. just-in-time (JIT) compilation
« Community focused solely on numerics
« If an algorithm is not in MATLAB, it can likely be found in
MATLAB File Exchange
* Polished integrated development environment (IDE) for scientists
* Interactive plot editor
« Some things easier to do than in Python (e.g. 3D plotting)
« SimuLink: graphical block model simulator

A

Where Python is good

« Elegant language, in which it is easy to write clear code
« Control: does only what you explicitly tell it to
« Software ecosystem with dependency management (PyPl, pip)
* A huge number of libraries for anything a computer can do
» A sensibly sized numerics community, too
* Free of cost; no need for licenses
« Open; repeatability and transparency of science
* In practice, also the libraries are open source.
Sometimes a library already does 99% of what
you need...

A

“Python”

« Technically speaking, “Python” is a specification, like “C” or “Fortran”
« Several implementations: CPython, Jython, IronPython, PyPy
« CPython however de facto standard; for most == Python

* Python 3 vs. Python 2
e Python 3: current version (2019, v3.7.3)

 Also unofficially known as py3k, Python 3000
Python 2: legacy (2010, v2.7, support ends by 2020)

* Python 2.x ends at 2.7: Python 2.8 Un-release Schedule
Backwards incompatibilities; but devs promised not to do it again
Practically all projects have migrated to Python 3
This presentation: Python 3

A

Zen of Python, The

A guiding philosophy for the design of the Python language, as well as many Python programs.
Consists of 20 aphorisms, 19 of which have been written down:

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one— and preferably only one —obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than right now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea — let's do more of those!

—Tim Peters

Scientific Python

Welcome to the bazaar

@gthon

jupyter
v Numba
® TPIyl: ANAE?NDA‘

Tools

IPIyl: 9
. o = ANACONDA

http://ipython.org/ = jupyter https://www.anaconda.com/

« IPython: advanced command line "

« Jupyter: IPython's graphical cousin, based .
on a Mathematica-style notebook approach

spyder

https://github.com/spyder-ide

» Spyder: integrated development
environment (IDE)

* Anaconda: scientific Python distribution
* Perhaps the easiest way to install
Python and its scientific libraries.

spyder

The Scientific PYthon
Development EnviRonment
Preinstalled in Anaconda
Designed for scientists
MATLAB style IDE
Matplotlib integration
Debugger

Profiler

Static code analyzer

REPL (IPython/Jupyter

Fle Edit Search Source Run
Oes B = @

Project explorer

~ & splinit elmeriin

» & fortran
~ & pyan3
» B 00_tmp
- & pyan
» & _pycache_
B _init_py

2 main.py

[node.py
[3 visgraph.py
3 writers.py
[defines.dot
B definessvg
B grapho.png
B graphosvg
O ucensemd
3 pyan.py
B pyante
O reADME.md
B temp.dot
D temp.graphml
D temp.iog
temp.pdf
B tempsvg
[@ uses.dot
B uses:svg
[visualize_pyan_architecture.sh
» B testpyan3
) B testpyan3 2
B ey
[elmerspline.py
[hermite_element.py
[iterutil.py
mainpy
B memoize.py
D3 mas_2par. implf90
B mgs 2par_implh
O mags_2par.fo0
B mgs_2parh
[mgs_3par_impl.f90
B mos 3par implh
[mags_3par.fo0
[® mgs_3parh
@ model.py

Debug Consoles

> BB

® Editor-

Projects

¢

Tools View Help

Mo

» B BX £

Spyder IDE

~/Documents/magnetostriktiivinen/splinit_elmeriin - Spyder (Python 3.4)

€&) | momeljierocumentsimagnetostriktivinensplinit_elmeriin

elpy %

model.py %

analyzerpy %

def remove_all(elt, lst):

remove all occurrences of elt from lst,

return [x for x in lst if x 1= elt
def remove all_in(elt, lists):
return [remove all(elt, lst) for lst in lists]

def C3_merge(lists):

mro =

out = []
while True:

self.logger.debug("MRO: C3 merg

remove elt from all lists,

%s, lists: %s"

return a copy

return a copy

% (out, lists))

out:
heads = [head(lst) for lst in lists if head(lst) is mot None]

if not len(heads):
break

tails = [tail(lst) for lst in lists]

self.logger.debug("MRO: C3 merge: heads: %s, tails: %s"

hd = €3 find_good_head(heads, tails)
self.logger.debug("MRO: C3 merge: chose head %s” % (hd))

out.append (hd)

lists = remove_all_in(hd, lists)

return out

{} # result

try:

memo = {} # caching/memoization

def €3_linearize(node

self.logger.debug("MRO: C3 linearizing %s" % (node))

seen.add(node)
if node not in memo:
unknown class

if node not in self.class base nodes or not len(self.class base nodes[node]):

memo[node] =

lists = []

% (heads, tails))

or no ancestors

[node]
else: # known and has ancestors

linearization of parents.
for baseclass node in self.class_base nodes[node]:
if baseclass_node not in seen:

..

lists.append(C3_linearize(baseclass node))
.and the parents themselves (in the order they appear in the ClassDef)
self.logger.debug("MRO: parents of %s: %s"

% (node, self.class_base nodes(node]))
lists.append(self.class_base_nodes[nod

e])
self.logger.debug("MRO: C3 merging %s* % (lists))
memo[node] = [node] + C3_merge(lists)

self.logger.debug("MRO: C3 linearized %s

return memo[node]

for node in self.class_base nodes:

self.logger.debug("MRO:

mro[node]

analyzing class %s" % (node))
seen = set() # break cycles (separately for each class
= €3 _linearize(node)

except LinearizationImpossible as e:

, result %s" % (node, memo[node]))

we start from)

® Outline ®
~ @ analyzer.py
» get_module_name
» format_alias
» get_ast_node_name
» & sanitize_exprs
» @ s
X canmpnwsm
Help ®
Source | Console v| Object - @ &
" optiens |
Here you can get help of any object by
pressing Ctri+1 in front of it, either on
the Editor or the Console
Help can also be shown automatically
after writing a left parenthesis next to an
object. You can activate this behavior in
Preferences > Help.
New to Spyder? Read our tu
Variable explorer | Help
TPython console ®
[+ | console 14 % - N
Python 3.4.3 (default, Nov 17 2016, ©: :31) A

Type “copyright”,
information.

“credits" or “license" for more

IPython 6.2.1 -- An enhanced Interactive Python.

In[

History log | 1python console

End-offines: LF

Encoding: UTF-8 line: 1 Column: 1 Memory: 15%

https://github.com/spyder-ide

Mostly well balanced between scientific use oriented,
interactive, and software development oriented features.

Cons: no automatic refactoring or version control GUI.

Libraries, accelerators

« Scientific Python consists of
a number of separate libraries
as usual with general-purpose
programming languages

« NumPy, SciPy, Matplotlib
the primary scientific libraries

« SymPy for symbolic computing

 Numba and Cython the most
important accelerators

e Other, more specific libraries
also available
« See my Python course
(lecture notes sec. 2;
slide sets 5-8)

NumPy

http://www.numpy.org/

e n-dimensional arrays

« MATLAB style API, but instead

of matrices, based on cartesian
tensors:

 Avector is a rank-1 tensor
A matrix is a rank-2 tensor

#!/usr/bin/env python3
-*- coding: utf-8 -*-

Import numpy as np
A = np.array([[1, 2],

[4, 9]], dtype=np.float64)
b = np.array([3, 7], dtype=np.float64)
X = np.linalg.solve(A, b)

SciPy
https://scipy.org/

 Advanced-user versions
of linear algebra routines

e Sparse matrices
 1/O for MATLAB .mat files
 Numerical integration (quad),

Initial value problems (ODE),
special functions

« Signal processing
e Some optimization solvers

e Cython interface to LAPACK,
for advanced users

Matplotlib

http://matplotlib.org/

« MATLAB-style plotting API

e Standard tool for publication-
guality numerical graphics
In Python

—w

Also made with Matplotlib

#!/usr/bin/env python3
-*- coding: utf-8 -*-

Import numpy as np

Import matplotlib.pyplot as plt
xX = np.linspace(0, 1, 101)

YY = np.sin(xx * np.pi)
plt.plot(xx, yy)
plt.savefig('sin_x.svg')

-

1.0 1

0.8 1

0.2 1

0.0 1

SymPy
http://www.sympy.org/

« Symbolic algebra, differentiation,
Integration

#!/usr/bin/env python3
-*- coding: utf-8 -*-

Import sympy as sy
X = sy.symbols('x’)
AM,Ag = sy.symbols('f,g', cls=sy.Function)

g=A() <
f = Af(Q)
D = SY. dlﬁ(f X) d0|t() ~« Python 3 allows Unicode variable names
sy.pprint(D) (with certain limitations).

d d

Input e.g. with a LaTeX input method

(f(g(x))) —(g(x))
dg(x) dx

Numba

http://numba.pydata.org/
e Just-in-time (JIT) compiler for Python
» Accelerate functions by compiling them
at runtime, when called for the first time.
e Supports a subset of Python; meant for
accelerating data-crunching loops.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

from numba import jit « Numba

from random import random

‘ Easy to use.

@jit(nopython=True) -
def monte_carlo_pi(nsamples):
acc=0
for i in range(nsamples):
X = random()
y = random()
if (x**2 +y**2) < 1.0:
acc+=1
return 4.0 * acc / nsamples

Cython

https://cython.org/

« Combine the power of Python and C

* For implementing accelerated code,
extends Python with a dialect of C
that looks almost like Python

« A superset of Python; allows mixing in
Python wherever speed is not the
primary concern

« Easy to call to/from Python; compiles
into Python extension modules that
transparently interface with

@ ython

regular Python programs def ddot(double [::1] a, double [::1] b):
_ _ cdef unsigned int k
« Alanguage; detailed usage requires at cdef unsigned int n = a.shape[0]
least a full lecture. cdef double out = 0.0

* The other common use case of Cython ' _
IS to create Python bindings for existing for k in rangegn).
C libraries. For that use, see also CFFI out += a[k] * b[k]
and ctypes. For interfacing to Fortran
instead of C, see F2PY. return out

Im(s) [1074]

What can we do with Python?

MATLAB-style numerics:

Stability exponents of an axially travelling viscoelastic Kelvin—Voigt panel

subjected to a potential flow
After discretization of the PDE, this is a quadratic eigenvalue problem
After reduction to a generalized linear eigenvalue problem (via the

companion form technique), solved using scipy.linalg.eig
a=10% 3=18.315,y=7.90569-10~* 7 a= 104,3 = 187315, y= 7.790569

-1.00

5> - === Im(s) -== Im(s)
— Re(s) PN , . Re® N—os
0.50

-

1
I
I I
I 1
I]
I 1
I 1
1
1
d 1
I /
1
T
1
1
1
1
1
1
1
/
A
\
\
1
1
\ /
\ /
1]
w7/
no s
I,
1
\
N
\
Re(s) [107°]

I I I I 1 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 -0.60 -0.55 -0.50 —-0.45 -0.40
c—1[107] c—1 [10°]

Stability of axially moving materials (to appear 2019, SMIA)

) [1071]

Re(s

 In-plane deformation of an axially moving viscoelastic Kelvin—Voigt sheet

What can we do with Python?

« MATLAB-style nhumerics:

« Computed using a custom 2D C1 FEM code implemented in Python
« Actually recommended FEM codes for Python: FEnICS Project, SfePy

0.5

0.4

0.3F

0.2F

0.1F

0.8.

‘(U _Unn)quo‘

0.003

0.00254

0.00162

0.0007

1-0.00022

1-0.00114

— -0.0016

0.2 0.3

0.4

0.5

0.5

0.4F

0.3F

0.2

0.1f

0.%.

‘(U_Unn)quo ‘

0 0.1 0.2 0.3 0.4 0.5

10.1016/j.jjsolstr.2015.10.027

0.014

0.0109

0.00778

0.00467

0.00156

1-0.00156

4-0.00467

1-0.00778

1-0.0109

-0.014

What can we do with Python?

 Symbolic mathematics:
import sympy as sy

def hermite(k):

""" Derive C**k continuous Hermite interpolation polynomials for the interval [0, 1].

order =2*k + 1
*A,X = sy.symbols(‘a0:{},x".format(order + 1))

w = sum(a*x**i for i,a in enumerate(A)) # as a symbolic expression

Aw = lambda x0: w.subs({x: x0}) # as a Python function; subs: symbolic substitution

wp = [sy.diff(w, x, i) for i in range(1, 1 + k)] # diff: symbolic differentiation

Awp = [(lambda expr: lambda x0: expr.subs({x: x0}))(expr) for expr in wp] # why two lambdas: lecture notes sec. 5.8

zero, one = sy.S.Zero, sy.S.0One

w0, wl = sy.symbols('w0, wl')

egs = [Aw(zero) - w0, Aw(one) - wl] # eqgs. in form LHS = 0; see sympy.solve
dofs = [wO0, w1l]

for i, f in enumerate(Awp, start=1):
d0_name = 'w{}0".format(i * 'p') # p = 'prime’, to denote differentiation
d1l_name ="'w{}1".format(i * 'p’)
do, d1 = sy.symbols('{}, {}.format(d0_name, d1_name))
eqgs.extend([f(zero) - dO, f(one) - d1])
dofs.extend([dO, d1])

coeffs = sy.solve(egs, A)
solution = sy.collect(sy.expand(w.subs(coeffs)), dofs)

N = [solution.coeff(dof) for dof in dofs] # result: shape functions

return tuple(zip(dofs, N)) # pairs (dof, shape function)

hermite(0) # linear interpolation
((WO! -X + 1)! (Wll X))

hermite(1) # beam element
((wO, 2*x**3 - 3*x**2 + 1),
(W1, -2*x**3 + 3*x**2),
(wp0, X**3 - 2*x**2 + X),
(wpl, x**3 - x**2))

hermite(2) # 2™ derivative also continuous
(WO, -6*x**5 + 15*x**4 - 10*x**3 + 1),

(W1, 6*x**5 - 15*x**4 + 10*x**3),

(wp0, -3*x**5 + 8*x**4 - 6*x**3 + X),

(WP, -3*X**5 + T*x**4 - 4*x**3),

(WppO, -x**5/2 + 3*x**4/2 - 3*x**3/2 + x**2/2),
(wppl, x**5/2 - x**4 + x**3/2))

What can we do with Python?

 Implement and package algorithms:
* pydgq: ODE system solver using dG(q), time-discontinuous Galerkin

with a Lobatto (a.k.a. hierarchical) basis.
Lorenz system: p =28, 0=10, B=2.66667, x0=0, yo =2, zo0 =20

import numpy as np

from pydgg.solver.kernel_interface import PythonKernel
from pydgg.solver.galerkin import init

from pydgqg.solver.types import DTYPE

from pydgg.solver.odesolve import ivp

class LorenzKernel(PythonKernel):
def _ init_ (self, p, o, B):
super().__init_ (n=3)
self.p = [float(x) for x in p, 0, (]

def callback(self, t):
(p, g, B), (x,y, z) = self.p, self.w
self.outl:] = (o*(y - x), X*(p-2) -y, X*y - B*z)

w0 = np.array([0, 2, 20], dtype=DTYPE)
rhs = LorenzKernel(p=28, 0=10, =8/3)
init(g=2, method='dG’, nt_vis=11, rule=None)
ww, tt = ivp(integrator='dG', interp=11, wO=wO0, dt=0.1, nt=3500, rhs=rhs, maxit=10)

Full example on GitHub.

What can we do with Python?

 Implement and package algorithms:
« wisqm: weighted least squares meshless interpolator and differentiator

import numpy as np f(x,y)
from scipy.spatial import cKDTree as KDTree
import wisgm

n, k, fit_order = 1000, 6, 2

f = lambda x: np.sin(np.pi*x[:, O]) * np.cos(np.pi*x[:, 1]) # silly test data
X = np.random.random((n, 2)) # no mesh topology!

F =1(x)

tree = KDTree(data=x) # Wikipedia: k-d tree

_, li=tree.query(x, 1 + nk)

hoods = np.array(ii[:, 1:], dtype=np.int32)

kk = k * np.ones((npoints,), dtype=np.int32)

fit_orders = fit_order * np.ones((npoints,), dtype=np.int32)

knowns_bitmask = wisgm.b2_F * np.ones((npoints,), dtype=np.int64)

wms = wisgm.WEIGHT _UNIFORM * np.ones((npoints,), dtype=np.int32)

solver = wisgm.ExpertSolver(dimension=2, nk=Kkk,
order=fit_orders, knowns=knowns_bitmask, .
weighting_method=wms, algorithm=wilsgm.ALGO_BASIC, ,
do_sens=False, max_iter=10, ntasks=8, debug=False)

ndofs = wisgm.number_of dofs(dimension=2, order=fit_order)

fi = np.empty((npoints, ndofs), dtype=np.float64)

fi[:, 0] = F # fi[i, O] = function value at X]i, :]

solver.prepare(xi=x, xk=x[hoods])

solver.solve(fk=filhoods, 0], fi=fi, sens=None) Full example on GitHub.

x 0.4

1.0

What can we do with Python?

 Create a SymPy to Fortran compiler:
« mm-codegen: Create material models for EImer in SymPy
 The compiler is < 2000 SLOC - including comments and docstrings!

(m HsiHs2Hp (m H sl H{s2}{p

O Model The Elmer plugin

defs[keyify(k)] = simplify(v) if s else v A, p = sy.symbols("A, p")
Bs = sy.symbols("Bx, By, Bz") W_mech = sy.S("1/2") * A * 11**2 + p* 12 # lin. elasticity s1 generated code tt ¢
€s = sy.symbols("exx, eyy, €2z, eyz, €zX, exy") = i
es = tuple(symutil.make_ function(name, *s) 0, na, N, ny = 1, 11, 1, 1 REAL(KIND=dp) function I6(Bx, By, Bz, exx, exy, eyy, eyz, ezx, ezz)

use types Generated from the model.

for name in ("exx", "eyy", "ezz", "eyz", "ezx", "exy")) . *as, = sy.symbols("a{:d}:{:d}".format(i0, i0+na)) # al, .., all implicit none
Is = tuple(symutil.make_function(name, *args) *Bs, = sy.symbols("B{:d}:{:d}".format(i0, i0+np)) 16 = BX™2%(eXX**2 + exy™2 + ezx**2) + 2*Bx*(By*(exxtexy + exy‘eyy + &
for name, args in (("I1", €s), *ys, = sy.symbols("y{:d}:{:d}".format(iO, i0+ny)) eyz*ezx) + Bz*(exx*ezx + exy*eyz + ezx*ezz)) + By** 2*(exy™2 + &
(12", es), 14_terms = sum(ai * 14**i for i, ai in enumerate(as, start=i0)) eyy**2 + eyz**2) + 2*By*Bz*(exy*ezx + eyy*eyz + eyz*ezz) + Bz**2* &
("I14", Bs), 15_terms = sum(Bi * I5**i for i, Bi in enumerate(Ps, start=i0)) (€22 + ezx**2 + ezz**2)
("I5", Bs + es), 16_terms = sum(yi * 16**i for i, yi in enumerate(ys, start=i0)) end function
("16", Bs + es))) W_magn = 14_terms + I15_terms + 16_terms

¥ = symutil. make_function("y", *Is) # Helmholtz f.e.d.

let(y, Y_mech + ¢_magn) s2 generated code t

B = sy.Matrix(Bs) # magnetic flux density REAL(KIND=d . "
- N : X . =dp) function 16_public(Bx, By, Bz, epsxx, epsxy, epsyy, epsyz, &
€ ‘_sym““.'I“’O'.gt—to—ma‘(ss) igau_chy strain. « Separate the functional dependency chains epszx, epszz)
Fl_l Zyr;;uﬁg.v:)ggf_[to_mat(es) eviatoric strain from the actual definitions (important later, in s1). use types
16151, B =18 implicit none Generated from the s1 code.
£_vol = sy.factor(sy.S("1/3") * e.trace()) + Can use SymPy for symbolic computation. 4 REAL(KIND=dp) exx_
e_def =g - €_vol * sy.eye(3) « Definitions, instructions; actual math automatic.

exx_ = exx(epsxx, epsyy, epszz)

for _, (r,) in symutil.voigt_mat_idx(): exy_ = exy(epsxy)

let(e[r, c], e_def[r, c], s=False) « Still looks like a program, but somewhat close eyy =
. , yy_ = eyy(epsxx, epsyy, epszz)
for key, val in ((I1, sAtraSe()), to the math (in the original Fortran spirit). eyz_ = eyz(epsyz)
etk | (12, (e.T * €).trace())): ezx_ = ezx(epszx)
et(key, va . . R
for kéy i’,al in) (4. BT*B) « Python 3 allows Unicode variable names. ezz_= ezz(epsxx, epsyy, epszz)
(5 BT*e*B), « For easily entering them, latex-inpuit. 'eel;g‘;g:“it‘io'g(sx' By, Bz, exx_, exy_, eyy_, eyz_, ezx_, ezz)
(16, B.T *e *e * B)):
let(key, val[0,0]) # unwrap the scalar « potentialmodelbase.py, polymodel.py [minor edits]
Jeronen, Rasilo, Kataja — A new material model for magnetostrictive materials in the open-source Elmer FEM software Jeronen, Rasilo, Kataja — A new material model for magnetostrictive materials in the open-source Elmer FEM software

See original presentation slides, Jeronen, Xlll Finnish Mechanics Days, 2018.

Feature highlight: Lexical closures

« Afeature of many high-level languages, with numerous applications. Has a long
tradition in the Lisp family.
» Requires first-class functions. Not supported by Fortran or C. Supported by e.g.
C++ 11, Java 8, Python, Racket and Clojure.
e Python example:
Calling make_adder causes the nested function

def make_adder(inc): definition of adder to run, creating a new closure
def adder(x): iInstance.
return x + inc Here inc is a free variable (no local definition; not global).
return adder We can then return the closure instance to the caller.
f = make_adder(inc=3) The closure property is that an instance permanently
g = make_adder(inc=17) retains access to the inc that was passed in by the caller
print(f(2))_ 45 of make adder when that closure instance was created.

print(g(25)) # 42 (The name closure means that a surrounding, non-global

scope closes over the free variables of the inner scope.)

« Eliminate boilerplate. Define local helper functions locally, in a nested def.
In the inner definition, list as parameters only those that actually vary.

« Separate public interface from implementation compactly, without exposing internal
details (example later).

« Change how existing functions behave; see Python's decorators [1] [2]

« Create an object system (in Python, don't do that — it already has onel).

« Create a continuation system. (See a simple explanation of continuations.)

Advanced: Syntactic macros

Scheme code is not meant to be written by humans, [but] ... automatically by macros.
—Michele Simionato

« Syntactic macros are an advanced feature almost unique to the Lisp family. Exceptions: Julia, R.

 What: Syntactic macros transform the AST, by running arbitrary code on it, at compile time.
Contrast C preprocessor macros, which perform only text substitution.

Contrast C++ generics: Lisp itself as metalanguage (no separate templating mini-language).
StackOverflow. Understanding macros. Perl perspective. Macros and washing machines.
Paul Graham (1993): Programming bottom-up; Metaprogramming; Extensible programming.
Lisp isn't a language, it's a building material. —Alan Kay (of Smalltalk fame; on Lisp, [1] [2])

 Why: Design patterns: a symptom of being unable to extract an abstraction (Paul Graham).

 E.g. with [1] or assert [2] in Python, which encode particular design patterns.

« Syntactic macros allow the programmer to create such constructs:
« with in Clojure.
» Delayed evaluation in Racket.

« Just like in mathematics [1] [2]: code is for humans, so notation matters.

« Macros are an important feature that make Lisp feel more like a fluid than a solid.

» Democratization of language design? On the other hand, herd of cats (according to some,
with machine guns), no BDFL. No process to pick, polish and promote the best abstractions;
thus, “lowest common denominator” often used. The Lisp Curse [1] [2].

Advanced: Syntactic macros

« The nuclear option: only create a macro if the job is not suitable for a run-of-the-mill function!

Extract design patterns that cannot be extracted as functions.
» Although Racket is eager, macro arguments avoid immediate evaluation; highly useful [1][2].
» Macros replacing design patterns is what “programs writing programs” means in Lisp;

it's not about “source code generation” a la Cython (which takes Cython and writes C).

 It's also robust, unlike source filters in many languages.
Add syntactic forms the original designer of the language might not approve. [1]
Create a DSL (domain-specific language) to fit the language to your domain; shorter code.
DRY out repetition in a set of similar macros, by macro-writing macros. (Example.)
Programmatically create lookup tables at compile time. [1]

 Limitations:

Second-class; cannot pass a macro as an argument: expanded away at compile time!
Local: a macro call cannot rewrite any forms surrounding it (due to Lisp's prefix notation)
Macros cannot change the lexical conventions (use of parentheses, prefix notation, ...)

 If you want to do that, you could modify or extend the reader [1] [2].

Macros don't compose. In a multi-layered macro library, each layer needs to know about

all of the previous layers. This build-up of complexity limits what can be achieved in practice.
Still, Racket itself is built mostly from macros; very few primitives in a fully expanded program!

« Examples in Racket: Non-deterministic evaluation, automatic currying,
Python-inspired syntactic forms, simple infix math, User-programmable infix operators,
Algebraic Data Types (ADTSs) in Typed Racket.

« MacroPy: Syntactic macros for Python.

What can we build with MacroPy?

Let constructs like those in the Lisp family and Haskell.

Bind names for the duration of one expression. Use cases:

* Break an expression into easily readable chunks, without
polluting the surrounding scope with temporaries.

* Explicitly indicate which definitions are needed only locally.

from unpythonic.syntax import macros, let, letseq, letrec

let[((x, 17), # parallel binding, i.e. bindings don't see each other

(y, 23)) in
print(x, y)]

letseq[((x, 1), # sequential binding, i.e. Scheme/Racket let*
(y, x+1)) in
print(x, y)]

mutually recursive binding, sequentially evaluated

t = letrec[((is_even, lambda x: (x == 0) or is_odd(x - 1)),
(is_odd, lambda x: (x '=0) and is_even(x - 1))) in
Is_even(42)]

Automatic tail call optimization (TCO):
from unpythonic.syntax import macros, tco

with tco:
Is_even = lambda x: (x == 0) or is_odd(x - 1)
is_odd = lambda x: (x '=0) and is_even(x - 1)
assert is_even(10000) is True

with tco:
def is_even(x):
if x==0:
return True
return is_odd(x - 1)
def is_odd(x):
if x1=0:
return is_even(x - 1)
return False
assert is_even(10000) is True

Macros on this and the next slide are available in unpythonic,
and they mostly work together. See documentation.

What can we build with MacroPy?

Continuations (call-with-current-continuation a.k.a. call/cc):

from unpythonic.syntax import macros, continuations, call_cc

with continuations:
stack =[]
def amb(lIst, cc): # McCarthy's amb operator
if not Ist:
return fail()
first, *rest = tuple(Ist)
if rest:
ourcc = cc
stack.append(lambda: amb(rest, cc=ourcc))
return first
def fail():
if stack:
f = stack.pop()
return f()

def pt(): # Pythagorean triples
z = call_cc[amb(range(1, 21))]
y = call_cc[amb(range(1, z+1)))]
x = call_cc[amb(range(1, y+1))]
if Xx*x + y*y I= z*z:
return fail()
return x, y, z
t=pt()
while t:
print(t)
t =fail() # ...outside the dynamic extent of pt()!

Automatic currying:

from unpythonic.syntax import macros, curry
from unpythonic import foldr, composerc, cons, nil

with curry:
def add3(a, b, c¢):
returna+b+c
assert add3(1)(2)(3) ==

see John Hughes: Why FP Matters

my_map = lambda f: foldr(composerc(cons, f), nil)
double = lambda x: 2 * x

print(my_map(double, (1, 2, 3)))

Call-by-need functions:
from unpythonic.syntax import macros, lazify

with lazify:
def g(a, b):
return a # b is never used
def f(a, b):
return g(2*a, 3*b)
assert f(21, 1/0) == 42

...this Is starting to look like a custom language?

Packaging a language: Dialects

« Pydialect implements a dialect system, in pure Python, based on import hooks [1] [2].
* Motivation: Language semantics and surface syntax encode patterns at a very high level.

» Disclaimer: Very much outside the vision for the official Python language.
 PEP 511 was rejected for the specific reason it could be seen as officially blessing
the creation of dialects.
« The native habitat of this idea is Racket (Solve problems. Make languages.).

from __lang__ import lispython

def fact(n):
def f(k, acc):
if k ==1:
return acc
f(k - 1, k*acc)
f(n, acc=1)
assert fact(4) == 24
fact(5000) Tail call optimization

t = letrec[((is_even, lambda x: (x == 0) or is_odd(x - 1)),
(is_odd, lambda x: (x '=0) and is_even(x - 1))) in
Is_even(10000)]

assert tis True

g = lambda x: [local[y << 2*x],

y +1] : : o
assert g(10) == 21 A\ This code is not Python; it's Lispython.

Literature

Mark Lutz: Learning Python, 5th ed., O'Reilly, 2013.
« Standard “bible” of the trade, very comprehensive.
A couple of minor versions behind the latest Python.

Luciano Ramalho: Fluent Python: Clear, Concise and Effective
Programming, O'Reilly, 2015.
» Python 3 for programmers coming from other languages.
Focuses on features that are easily missed, if the reader
IS used to thinking in another programming language.

Zed A. Shaw: Learn Python 3 the Hard Way, Addison—\Wesley, 2017.
* For newcomers to programming.
« Hard way because There is no royal road to geometry. —Euclid

Internet!
» Especially Stack Overflow.
* For a self-contained introduction to Python in scientific computing:
« Python 3 for scientific computing, my course held at TUT, 2018;
covers also background in CS/IT; see esp. slides and exercises.
e Scipy Lecture Notes, a community-maintained course with
a tight focus on the scientific computing parts only.

The finish line

y S
'

Thank you for your attention!

