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This talk is about estimation of a 
dynamical state with noisy observations

2

1. Monte Carlo integration & Importance sampling

2. Statistical modeling of dynamical systems

3. Particle filter algorithm

4. Application examples
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If you cannot integrate analytically, 
you can try Monte Carlo
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E(g(x)) =

Z
g(x)p(x)dx

Solution: Generate    random vector realisations

x

(i) ⇠ p(x)

and approximate

N

E(g(x)) ⇡
NX

i=1

g(x(i))

What if you cannot generate from          easily?p(x)
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Importance sampling is a more flexible way  
to form a particle set  
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E(g(x)) ⇡
NX

i=1

w̃(i)
g(x(i))

where x

(i) ⇠ ⇡ and w̃(i) = p(x(i))
N⇡(x(i))

E(g(x)) =

Z
g(x)p(x)dx =

Z
g(x)

p(x)

⇡(x)
⇡(x)dx

⇡ 1

N

NX

i=1

g(x(i))
p(x(i))

⇡(x(i))
, x

(i) ⇠ ⇡(x)
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Bayes rule: knowledge comes from 
prior information and measurements
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p(x|y) = p(y|x) p(x)
p(y)

state (unknown)

measurement (known)

p(x|y) / p(y|x) p(x)
“Posterior is prior times measurement likelihood.”

priorlikelihood
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Importance sampling can be used in 
Bayesian inference

6

x

(i) ⇠ p(x)

E(g(x)) ⇡
NX

i=1

w(i)g(x(i))

where

and w(i) =
w̃(i)

PN
i=1 w̃

(i)
w̃(i) = p(y|x(i)) normalized to

Generate random samples from prior, give more weight 
to samples that support the obtained measurement.
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State-space model describes dynamical 
systems with noisy measurements
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yk = hk(xk) + vk

xk = fk(xk�1) +wk�1

vk ⇠ Dv
k

measurement 
(observed)

process noisemeasurement noisestate

wk�1 ⇠ Dw
k

x0 x1 x2 x3

y0 y1 y2 y3

. . .

. . .
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Example: Almost-constant-velocity 
model with position measurements
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
pk

ṗk

�
=


pk�1 +�ṗk�1

ṗk�1

�
+wk�1

yk = pk + vk

ṗ

y

p
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Bayesian filter solves the filtering 
distribution
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p(xk | y1:k�1) =

Z
p(xk | xk�1) p(xk�1 | y1:k�1) dxk�1

p(xk | y1:k) / p(yk | xk) p(xk | y1:k�1)

Problem: Find state x given the noisy measurements y.

Solution: Use the recursion

p(xk|xk�1) p(yk|xk)p(x0)Given        ,                ,            , find               .p(xk|y1:k)
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Bayesian filtering smooths the 
estimated trajectory
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time
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Side note: state model can be a 
discretised continuous-time model
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dx = f(x, t) dt+ g(x, t) d�

Stochastic differential equation

Brownian motion 
random element

The source of randomness can be: 
• the ground truth is not known exactly 
• nature (quantum mechanics)
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Bayesian filter is generally untractable
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xk|k�1 = Fkxk�1|k�1

Pk|k�1 = FkPk�1|k�1F
T
k +Qk�1

Kk = Pk|k�1H
T (HPk|k�1H

T +R)�1

xk|k = xk|k�1 +Kk(yk �Hkxk|k�1)

Pk|k = (I �KkHk)Pk|k�1

Kalman filter: the analytic 
solution for linear-Gaussian 
case

Solution: Sequential Importance Sampling (SIR)

For almost any other model, one has to approximate.
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SIS gives a Monte Carlo approximation 
of the posterior of a dynamical system
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x

(i)
0 ⇠ p(x0) w(i)

0 = 1
N

for k = 1, 2, . . .

x

(i)
k ⇠ p(xk|x(i)

k�1)

w̃(i)
k = w(i)

k�1 · p(yk|x(i)
k ) w(i)

k =
w̃(i)

kPN
i=1 w̃

(i)
k

E(g(xk)) ⇡
NX

i=1

w(i)
k g(x(i)

k )

initialization

“guessing” new state

weighting & 
normalisation

point estimate
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SIS means “guessing” the trajectory 
and weighting based on measurement

14
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Resampling is needed, otherwise the weights 
degenerate (i.e. all but one go to zero)           algorithm 7.3
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let ⇧k be the distribution on 1:N with probabilities w(1:N)
k

draw j1, . . . , jN from ⇧k

replace x

(1:N)
k  x

(j1:N )
k and w(1:N)

k  1
N

x1 x2 x3 x4 x5 x6 x1x2
x3

x4 x5x6

function J=resamp(W)!
u=rand(length(W),1);!
[~,J]=histc(u,[0;cumsum(W(:))]);

categorical distribution

multinomial resampling
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Need not be done at every step, can be done e.g. when
1

PN
i=1(w

(i)
k )2

 0.1 ·N Sequential Importance Resampling (SIR)
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SIR gives a Monte Carlo approximation 
of the posterior of a dynamical system

x

(i)
0 ⇠ p(x0) w(i)

0 = 1
N

for k = 1, 2, . . .

x

(i)
k ⇠ p(xk|x(i)

k�1)

w̃(i)
k = w(i)

k�1 · p(yk|x(i)
k ) w(i)

k =
w̃(i)

kPN
i=1 w̃

(i)
k

E(g(xk)) ⇡
NX

i=1

w(i)
k g(x(i)

k )

initialise

“guess” new state

weight & 
normalise

point estimate

resampling only best guesses 
survive
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Common terminology
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particle filter ≜ SIR

particle ≜ one Monte Carlo sample of the current 
state / of the trajectory
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Example 1: Indoor location becomes more 
accurate by downweighting wall-collided 
particles
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Example 2: Aircraft localisation with 
altitude measurements
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https://www.youtube.com/watch?v=aUkBa1zMKv4

Demo by A. Svensson, Uppsala University, 2013.

https://www.youtube.com/watch?v=aUkBa1zMKv4
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Particle methods are flexible but 
computationally expensive

20

✦Very flexible: work with almost any model. 
✦Mathematically rigorous:          convergence proved. 

Good reference solution even for real-time stuff. 
✦Give full probability distributions, not only point 

estimates. 
✦Easy to code and often easy to understand.

N ! 1

– Computationally heavy for some models 
– Do not work with constant parameters 
– Curse of dimensionality
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Particle filter has lots of extensions 
and active research directions

• particle smoothers (estimate the whole trajectory) 

• Rao-Blackwellized particle filters (do some 
dimensions analytically, more efficiency) 

• Fighting particle degeneracy: 
– more efficient importance distributions 

– particle flow filters 

– …

21
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