FYS-1550 Fysiikan seminaari, 2017-18 torstaisin klo 12:15 alkaen salissa SG312 FYS-1556 Physics seminar, 2017-18 Thursdays starting at 12:15 in SG312 Tapio.Rantala@tut.fi / 040-543–3506 s. 2017 ------- 35 31.08. TR - Tapio Rantala: ”Computational materials physics” (E/E) 36 07.09. MK - Vadim Makarov: ”Building quantum internet, and how laser damage threatens it” (E/E) VENUE: SA207/S4 — Abstract below 37 14.09. ER - Esa Räsänen: "The physics of drumming: From fractals to superdiffusion" 38 21.09. Op - Henna Silvennoinen: ”CERN Open Data in Teaching and Education / CERNin avoin data opetus- ja koulutuskäytössä” (/E) 39 28.09. Op - Emmi Turppa: "SniffPhone: Detecting cancer from breath" (F/E) 40 05.10. Op - Cliona Shakespeare: ”Summer job at Surface Science” (E/E) 41 12.10. Op - Ossi Tuominen: "A look at modern optics" (/E) 43 26.10. TR - Tapio Ala-Nissilä: ”Multiscale Modelling of Graphene from Nano to Micron Scales” (E/E) — Abstract below 44 02.11. Kirjasto: Opiskelun ja tutkimuksen menetelmiä ja työkaluja (F/F) HUOM! SALI A119 ! ! ! ! 45 09.11. TR - Leena Ukkonen: ”Ihmiskehon sisäiset langattomat implanttijärjestelmät” 46 16.11. JN - Jouko Nieminen: ”Grafeenin kaltaiset materiaalit energian konversiossa ja varastoinnissa” 47 23.11. TR - Karoliina Honkala: ”Fysiikan työkaluilla kemian kimppuun: katalyysiä tietokoneella” (F/F) 48 30.11. TR - Ville Veino: "Todennäköisyystulkinnat finanssimarkkinoilla" (F/F) 49 07.12. JM - Mikko Aromaa: ”Using physicist’s toolbox in everyday consumer product development” 09.12. TR - Nobel-iltapäivä (http://www.tut.fi/~trantala/popular/Nobel) (F/F) k. 2018 ------- 2 11.01. Op - Petri Kaurola: "Computational study of lateral diffusion of transmembrane proteins in curved lipid bilayers" (E/E) 3 18.01. TR - Hannu-Matti Järvinen: "Concurrency in programming" 4 25.01. TR - Henri Riihimäki: "Topological data analysis in materials discovery" (/E) 5 01.02. Op - Marjukka Joutsenlahti: "Luistelun fysiikkaa" (F/F) 6 08.02. TR - Arto Aho: "Materials for Advanced Solar Cells" 7 15.02. JT - Mohammad Bitarafan: "On-chip buckled-dome optical microcavities" 8 22.02. TR - Soile Nymark: "Our amazing visual system – from single photons to image perception" 10 08.03. TR - Ville Polojärvi: "Ways to improve the efficiency of solar cells and more" 11 15.03. TR - Jorma Mäntynen: "Maailman lentoliikenteen kehitysnäkymiä" (F/F) 12 22.03. FM - Paavo Heikkilä: "Aeorosolit ja päästömittaukset" (F/F) 13 29.03. *** PÄÄSIÄISTAUKO / EASTER BREAK *** 14 05.04. TR - Tuomas Virtanen: "Making computers to recognize sounds” 15 12.04. TR - Reijo Karvinen: "Lasinkarkaisuprosessin haasteet – Theoretical challengies in glass tempering process" (F/) 16 19.04. TR - Antti Karttunen: "Predicting crystal structures of materials with evolutionary algorithms" (/E) 17 26.04. TR - Sampsa Pursiainen: "Inverse Imaging Problems" Languages indicated in parenthesis (talk/slides) - - - - - 7.9.17 in SA207/S4 Vadim Makarov: ”Building quantum internet, and how laser damage threatens it” Quantum hacking lab http://www.vad1.com/lab/ at the University of Waterloo, Canada The history of cryptography is a history of failures. Stronger ciphers replaced broken ones, to be in turn broken again. Quantum cryptography is offering a hope to end this replacement cycle, for its security premises on the laws of quantum physics and not on limitations of human ingenuity and computing. But, can our nascent quantum technology implement quantum cryptography securely? The talk introduces today's quantum cryptography techniques and shows how long-distance quantum communication networks are being built all over the world, over optical fiber and satellites. We then consider the security of their implementation. In theory, quantum cryptography protocols are unbreakable. In practice, the actual equipment has imperfections and differs from the theoretical model. The imperfections can be incorporated into the theoretical security model as long as they are known and accurately pre-characterised. However, can an eavesdropper working from the optical communication channel create a brand new imperfection on-demand inside the installed and pre-characterised secure equipment? Laser damage to fiber-optic and free-space components offers such possibility, and such an attack has been demonstrated in my lab [1]. It is currently an open question how we can reliably protect the secure equipment from this attack. [1] V. Makarov et al., Phys. Rev. A 94, 030302 (2016). Speaker: Dr. Vadim Makarov, head of the Quantum hacking lab, is an expert in implementation security of quantum cryptography. - - - - - 26.10.17 Tapio Ala-Nissilä: ”Multiscale Modelling of Graphene from Nano to Micron Scales” Aalto University and Loughborough University (UK) Over the last few years novel two-dimensional materials and nanoscopically thin heteroepitaxial overlayers have attracted intense attention due to their unusual properties and important technological applications. Many physical properties of these systems such as thermal conductivity and electrical transport are intimately coupled to the large scale mechanical and structural properties of the materials. However, modeling such properties is a formidable challenge due to a wide span of length and time scales involved. In this talk, I will review recent significant progress in structural multi-scale modeling of two dimensional materials and thin heteroepitaxial overlayers [1], and graphene in particular [2], based to a large extent on the Phase Field Crystal (PFC) model combined with standard microscopic modeling methods (classical Molecular Dynamics and Quantum Density Functional Theory). The PFC framework allows one to reach diffusive time scales for structural relaxation of the materials at the atomic scale, which facilitates quantitative characterisation of domain walls, dislocations, grain boundaries, and strain-driven self-organisation up to almost micron length scales. This allows one to study e.g. thermal conduction and electrical transport in realistic multi-grain systems [3]. References: 1. K. R. Elder et al,. Phys. Rev. Lett. vol. 108, 226102 (2012); Phys. Rev. B vol. 88, 075423 (2013); J. Chem. Phys. 144, 174703 (2016). 2. P. Hirvonen et al., Phys. Rev. B 94, 035414 (2016). 3. Z. Fan et al., Phys. Rev. B vol. 95, 144309 (2017); Nano Lett. 7b172 (2017); K. Azizi et al., Carbon 125, 384 (2017). - - - - -