
366 Chapter 8 Statistical Physics

Problems 
LEVEL I
Section 8-1 Classical Statistics: A Review
8-1. (a) Calculate vrms for H2 at T = 300 K. (b) Calculate the temperature T for which vrms 
for H2 equals the escape speed of 11.2 km>s.
8-2. (a) The ionization energy for hydrogen atoms is 13.6 eV. At what temperature is 
the average kinetic energy of translation equal to 13.6 eV? (b) What is the average kinetic 
energy of translation of hydrogen atoms at T = 107 K, a typical temperature in the interior 
of the Sun?

Notes 
1. The statistical approach may also be used as an approxi-

mation in systems where the number of particles is not par-
ticularly large. For example, in Chapter 11 we will discuss 
briefly a statistical model of the atomic nucleus, a system 
containing only of the order of 100 particles.

2. Ludwig E. Boltzmann (1844–1906), Austrian physicist. 
His pioneering statistical interpretation of the second law of 
thermodynamics earned for him recognition as the founder of 
statistical mechanics. He explained theoretically the experi-
mental observations of Josef Stefan, whom he served as 
an assistant while in college, that the quantity of radiation 
increases with the fourth power of the temperature. He even-
tually succeeded Stefan in the chair of physics at Vienna. A 
strong proponent of the atomic theory of matter, his suicide 
was apparently motivated in part by opposition to his views 
by others.

3. To avoid having to repeat this rather long phrase fre-
quently, which will occur for E as well as v, we will hereafter 
use the expression “the number in dvx at vx” or simply “the 
number in dvx.”

4. Or refer to a table of integrals.
5. Historically, rotation about the z9 axis of the dumbbell 

was ruled out by assuming either that the atoms are points and 
the moment of inertia about this axis is therefore zero (not 
true) or that the atoms are hard smooth spheres, in which case 
rotation about this axis cannot be changed by collisions and 
therefore does not participate in the exchange of energy (also 
not true). Either of these assumptions also rules out the pos-
sibility of rotation of a monatomic molecule.

6. Satyendra Nath Bose (1894–1974), Indian physicist. 
Following publication of his paper on the statistics of indis-
tinguishable particles, which was translated into German 
for publication by Einstein himself, Bose spent two years in 
Europe, then returned to India to devote himself to teaching. 
Lacking a Ph.D., he was denied a professorship until a one-
sentence postcard from Einstein was received at Dacca Uni-
versity in his support.

7. Enrico Fermi (1901–1954), Italian-American physicist. 
An exceedingly prolific scientist and intrepid amateur tennis 
player whose work encompassed solid-state, nuclear, and par-
ticle physics, he is perhaps best known as the “father” of the 
nuclear reactor. He was awarded the Nobel Prize in Physics in 
1938 for his work in nuclear physics.

8. Paul A. M. Dirac (1902–1984), English physicist. His 
development of relativistic wave mechanics for spin-1

2 par-
ticles led to his prediction in 1930 of the existence of the 
positron. Its discovery by Anderson two years later resulted 
in Dirac’s being awarded (along with Schrödinger) the 1933 
Nobel Prize in Physics. From 1932 until his retirement he 
occupied the Lucasian Chair of Mathematics at Cambridge 
University, which had been held 250 years earlier by Newton 
and most recently by Stephen Hawking.

9. Heike Kamerlingh Onnes (1853–1926), Dutch physi-
cist. His success in liquefying helium enabled him to inves-
tigate the properties of other materials at liquid helium 
temperatures. This, in turn, led to his discovery of super-
conductivity in 1911. His work on the behavior of materials 
at low temperatures earned him the Nobel Prize in Physics 
in 1913.
10. J. C. McLennan, H. D. Smith, and J. O. Wilhelm, Philo-
sophical Magazine, 14, 161 (1932).
11. At very low temperatures liquid 4He does solidify at a 
pressure of about 25 atm, liquid 3He at about 30 atm.
12. Narrow channels that permit only the superfluid to pass 
are, of course, called superleaks.
13. These and many other properties are elegantly displayed 
in the film Liquid Helium II: The Superfluid. See the A. Leit-
ner entry in the General References above.
14. In the thermodynamic equilibrium state their sample, 
rubidium, is a solid metal at room temperature.
15. Einstein used the Boltzmann distribution in its discrete 

form fB1E2 = a


n = 0
 Ae-En>kT.
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8-3. The molar mass of oxygen gas 1O22 is about 32 g>mol and that of hydrogen gas 
1H22 about 2 g>mol. Compute (a) the rms speed of O2 and (b) the rms speed of H2 when 
the temperature is 0°C.
8-4. Show that the SI units of 13RT>M21>2 are m>s.
8-5. (a) Find the total kinetic energy of translation of 1 mole of N2 molecules at T = 273 K. 
(b) Would your answer be the same, greater, or less for 1 mole of He atoms at the same 
temperature? Justify your answer.
8-6. Use the Maxwell distribution of molecular speeds to calculate 8v29  for the mol-
ecules of a gas.
8-7. Neutrons in a nuclear reactor have a Maxwell speed distribution when they are in 
thermal equilibrium. Find 8v9  and vm for neutrons in thermal equilibrium at 300 K. Show 
that n(v) (Equation 8-8) has its maximum value at v = vm = 12kT>m21>2.
8-8. A container holds 128 identical molecules whose speeds are distributed as follows:

No. of molecules 4 12 20 24 20 16 12 8 6 4

Speed range (m>s) 0.0–1.0 1.0–2.0 2.0–3.0 3.0–4.0 4.0–5.0 5.0–6.0 6.0–7.0 7.0–8.0 8.0–9.0 9.0–10.0

Graph these data and indicate on the graph vm, 8v9 , and vrms.
8-9. Show that the most probable speed vm of the Maxwell distribution of speeds is given 
by Equation 8-9.
8-10. Compute the total translational kinetic energy of one liter of oxygen held at a pres-
sure of one atmosphere and a temperature of 20°C.
8-11. From the absorption spectrum it is determined that about one out of 106 hydrogen 
atoms in a certain star is in the first excited state, 10.2 eV above the ground state (other 
excited states can be neglected). What is the temperature of the star? (Take the ratio of 
statistical weights to be 4, as in Example 8-2.)
8-12. The first excited rotational energy state of the H2 molecule 1g2 = 32 is about 
4 * 10-3 eV above the lowest energy state 1g1 = 12. What is the ratio of the numbers of 
molecules in these two states at room temperature (300 K)?
8-13. A monatomic gas is confined to move in two dimensions so that the energy of an 
atom is Ek =

1
2 mv2

x +
1
2 mv2

y. What are CV, CP, and g for this gas? (CP, the heat capacity at 
constant pressure, is equal to CV + nR and g = CP>CV.)
8-14. Use the Dulong-Petit law that CV = 3R for solids to calculate the specific heat 
cv = CV>M in cal>g for (a) aluminum, M = 27.0 g>mol, (b) copper, M = 63.5 g>mol, 
and (c) lead, M = 207 g>mol, and compare your results with the values given in a hand-
book. (Include the handbook reference in your answer.)
8-15. Calculate the most probable kinetic energy Em from the Maxwell distribution of 
kinetic energies (Equation 8-13).
8-16. (a) Show that the speed distribution function can be written n1v2=

4-1>21v>vm22
 v-1

m  e-1v>vm22, where vm is the most probable speed. Consider 1 mole of mol-
ecules and approximate dv by Dv = 0.01 vm. Find the number of molecules with speeds in 
dv at (b) v = 0, (c) v = vm, (d ) v = 2vm, and (e) v = 8vm.
8-17. Consider a sample containing hydrogen atoms at 300 K. (a) Compute the number of 
atoms in the first (n = 2) and second (n = 3) excited states compared to those in the ground 
state (n = 1). Include the effects of degeneracy in your calculations. (b) At what tempera-
ture would 1 percent of the atoms be in the n = 2 state? (c) At the temperature found in (b), 
what fraction of the atoms will be in the n = 3 state?
8-18. Consider a sample of non-interacting lithium atoms (Li, Z = 3) with the third (outer) 
electron in the 3p state in a uniform 4.0 T magnetic field. (a) Determine the fraction of the 
atom in the m1 = +1,  0, and 21 states at 300 K. (b) In the 3p S 2s transition, what will 
be the relative intensities of the three lines of the Zeeman effect?
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368 Chapter 8 Statistical Physics

Section 8-2 Quantum Statistics
8-19. Find the number density N>V  for electrons such that (a) e-a = 1 and (b) e-a = 10-6.
8-20. (a) Compute e-a from Equation 8-44 for O2 gas at standard conditions. (b) At what 
temperature is e-a = 1 for O2?
8-21. Given three containers all at the same temperature, one filled with a gas of classical 
molecules, one with a fermion gas, and one with a boson gas, which will have the highest 
pressure? Which will have the lowest pressure? Support your answer.
8-22. (a) For T = 5800 K, at what energy will the Bose-Einstein distribution function 
fBE1E2 equal one (for a = 0)? (b) Still with a = 0, to what value must the temperature 
change if fBE1E2 = 0.5 for the energy in part (a)?
8-23. A container at 300 K contains H2 gas at a pressure of one atmosphere. At this tem-
perature H2 obeys the Boltzmann distribution. To what temperature must the H2 gas be 
cooled before quantum effects become important and the use of the Boltzmann distribu-
tion is no longer appropriate? (Hint: Equate the de Broglie wavelength at the average 
energy to the average spacing between molecules, using the ideal gas law to compute the 
density.)

Section 8-3 The Bose-Einstein Condensation
8-24. Compute N0>N from Equation 8-52 for (a) T = 3Tc>4, (b) T =

1
2 Tc, (c) T = Tc>4, 

and (d ) T = Tc>8.
8-25. Show that N0  1>a for small values of a as asserted in the paragraph above 
 Equation 8-52.
8-26. Like 4He, the most common form of neon, 20Ne, is a rare gas and the 20Ne atoms 
have zero spin and so are bosons. But unlike helium, neon does not become superfluid at 
low temperatures. Show that this is to be expected by computing neon’s critical tempera-
ture and comparing it with the element’s freezing point of 24.5 K.

Section 8-4 The Photon Gas: An Application of 
Bose-Einstein Statistics
8-27. If the Sun were to become cooler (without changing its radius), the energy density 
at the surface would decrease according to Equation 8-56. Suppose the Sun’s temperature 
were to decrease by 5 percent. Compute the fractional change in the rate at which solar 
energy arrives at Earth. (Assume that the Sun’s surface is in equilibrium and radiates as a 
blackbody.)
8-28. Find the average energy of an oscillator at (a) T = 10hf>k, (b) T = hf>k, and
(c) T = 0.1hf>k, and compare your results with those from the equipartition theorem.
8-29. (a) Show that the rule of Dulong-Petit follows directly from Einstein’s specific heat 
formula (Equation 8-62) as T S q. (b) Show that CV S 0 as T S 0.
8-30. Using Figure 8-13, compute the (approximate) frequency of atomic oscillations in 
silicon and in aluminum at 200 K.
8-31. Use Equation 8-62 to calculate the value of CV for a solid at the Einstein tempera-
ture TE = hf>k.

Section 8-5 Properties of a Fermion Gas
8-32. Use Equation 8-69 to plot an accurate graph of nFD1E2 >V  for electrons whose 
Fermi energy is 4.8 eV from E = 4.5 eV to E = 5.1 eV at T = 300 K. Determine from the 
graph the number of electrons per unit volume just below the Fermi energy that can move 
to states just above the Fermi energy.
8-33. Consider a gas of electrons (fermions) and a gas of photons (bosons). Which has 
more states available at T = 1 K? Explain why.
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LEVEL II
8-34. The molar heat capacity data given in Table 8-2 are taken from AIP Handbook, 2d ed. 
(McGraw-Hill, New York, 1963). Plot the data for these solids all on one graph and sketch 
in the curves CV versus T. Estimate the Einstein temperature for each of the solids using 
the result of Problem 8-31.
8-35. Recalling that the Fermi-Dirac distribution function applies to all fermions, includ-
ing protons and neutrons, each of which have spin 1

2, consider a nucleus of 22Ne consist-
ing of 10 protons and 12 neutrons. Protons are distinguishable from neutrons, so two 
of each particle (spin up, spin down) can be put into each energy state. Assuming that 
the radius of the 22Ne nucleus is 3.1 * 10-15 m, estimate the Fermi energy and the aver-
age energy of the nucleus in 22Ne. Express your results in MeV. Do the results seem 
reasonable?
8-36. What is the ground-state energy of 10 non-interacting bosons in a one-dimensional 
box of length L?
8-37. Make a plot of fFD1E2 versus E for (a) T = 0.1TF and (b) T = 0.5TF, where 
TF = EF>k.
8-38. Compute the fraction of helium atoms in the superfluid state at (a) T = Tc>2 and 
(b) T = Tc>4.
8-39. The depth of the potential well for free electrons in a metal can be accurately 
determined by observing that the photoelectric work function is the energy necessary to 
remove an electron at the top of the occupied states from the metal; an electron in such 
a state has the Fermi energy. Assuming each atom provides one free electron to the gas, 
compute the depth of the well for the free electrons in gold. The work function for gold 
is 4.8 eV.

 Table 8-2 Heat capacities in cal>mol # K for Au, diamond, Al, and Be

T, K Au Diamond Al Be

20 0.77 0.00 0.05 0.003

50 3.41 0.005 0.91 0.04

70 4.39 0.016 1.85 0.12

100 5.12 0.059 3.12 0.43

150 5.62 0.24 4.43 1.36

200 5.84 0.56 5.16 2.41

250 5.96 0.99 5.56 3.30

300 6.07 1.46 5.82 3.93

400 6.18 2.45 6.13 4.77

500 6.28 3.24 6.42 5.26

600 6.40 3.85 6.72 5.59

800 6.65 4.66 7.31 6.07

1000 6.90 5.16 7.00 6.51
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8-40. An early method testing Maxwell’s theoretical prediction for the distribution of 
molecular speeds is shown in Figure 8-34. In 1925 Otto Stern used a beam of Bi2 mol-
ecules emitted from an oven at 850 K. The beam defined by slit S1 was admitted into the 
interior of a rotating drum via slit S2 in the drum wall. The identical bunches of molecules 
thus formed struck and adhered to a curved glass plate fixed to the interior drum wall, the 
fastest molecules striking near A, which was opposite S2, the slowest near B, and the oth-
ers in between depending on their speeds. The density of the molecular deposits along the 
glass plate was measured with a densitometer. The density (proportional to the number of 
molecules) plotted against distance along the glass plate (dependent on v) made possible 
determination of the speed distribution. If the drum is 10 cm in diameter and is rotating 
at 6250 rpm, (a) find the distance from A where molecules traveling at vm, 8v9 , and vrms 
will strike. (b) The plot in (a) must be corrected slightly in order to be compared with 
 Maxwell’s distribution equation. Why? (c) Would N2 molecules work as well as Bi2 mol-
ecules in this experiment? Why or why not?
8-41. The speed distribution of molecules in a container is the Maxwell distribution 
vm, 8v9 , and vrms. The number with speed v that hit the wall in a given time is pro-
portional to the speed v and to f1v2. Thus, if there is a very small hole in the wall (too 
small to have much effect on the distribution inside), the speed distribution of those that 
escape is F1v2  vf1v2  v3

 e-mv2>2kT. Show that the mean energy of those that escape 
is 2kT.

LEVEL III
8-42. This problem is related to the equipartition theorem. Consider a system in which the 
energy of a particle is given by E = Au2, where A is a constant and u is any coordinate or 
momentum that can vary from 2 to 1. (a) Write the probability of the particle having 
u in the range du and calculate the normalization constant C in terms of A. (b) Calculate 
the average energy 8E9 = 8Au29  and show that 8E9 =

1
2 kT .

8-43. Calculate the average value of the magnitude of vx from the Maxwell distribution.
8-44. Show that fFD1E2S fB1E2 for E W EF.
8-45. Carry out the integration indicated in Equation 8-43 to show that a is given by 
Equation 8-44.
8-46. Consider a system of N particles that has only two possible energy states, E1 = 0 
and E2 = . The distribution function is fi = Ce-Ei>kT. (a) What is C for this case?

Figure 8-34 [Problem 8-40.]
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(b) Compute the average energy 8E9  and show that 8E9 S 0 as T S 0 and 8E9 S >2 as
T S q. (c) Show that the heat capacity is

CV = Nka 

kT
b

2

 
e->kT

11 + e->kT22

(d ) Sketch CV versus T.
8-47. If the assumptions leading to the Bose-Einstein distribution are modified so that 
the number of particles is not assumed constant, the resulting distribution has ea = 1. 
This distribution can be applied to a “gas” of photons. Consider the photons to be in a 
cubic box of side L. The momentum components of a photon are quantized by the
standing-wave conditions kx = n1>L, ky = n2>L, ky = n2>L, and kz = n3>L,
where p = U1k2

x + k2
y + k2

z21>2 is the magnitude of the momentum. (a) Show that the 
energy of a photon can be written E = N1Uc>L2, where N2 = n2

1 + n2
2 + n2

3. (b) Assum-
ing two photons per space state because of the two possible polarizations, show that the 
number of states between N and N 1 dN is N2

 

 dN. (c) Find the density of states and show 
that the number of photons in the energy interval dE is

n1E2  dE =
81L>hc23

 E2
 

 dE

eE>kT - 1

(d) The energy density in dE is given by u1E2  dE = En1E2  dE>L3. Use this to obtain the 
Planck blackbody radiation formula for the energy density in d l, where l is the wave-
length:

u1l2 =
8hcl-5

ehc>lkT - 1
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Problems 
LEVEL I
Section 9-1 The Ionic Bond
9-1. The dissociation energy is sometimes expressed in kilocalories per mole. (a) Find 
the relation between electron volts per molecule and kilocalories per mole. (b) Find the 
dissociation energy of molecular NaCl in kilocalories per mole. (c) The dissociation 
energy of the Li2 molecule is 106 kJ>mole. Find the value in eV per molecule.

Notes 

1. The term orbital is frequently used in molecular phys-
ics and in chemistry to refer to the space part of the electron 
wave functions, that is, the quantum numbers n, /, and m/. In 
molecular physics the electrons of interest are usually the 
outermost (valence) ones of the constituent atoms, which 
become associated with the entire molecule rather than their 
original atoms, so we speak of “molecular orbitals” as well as 
“atomic orbitals.”

2. Molecules whose atoms are identical, such as H2, are some-
times called homopolar or homonuclear. Those whose atoms 
are not identical are called heteropolar or heteronuclear.

3. C60 and the other fullerenes are named after the philoso-
pher and engineer R. Buckminster Fuller, who invented the 
architectural geodesic dome structure. Such domes, as Fuller 
pointed out, can be considered as networks of pentagons and 
hexagons.

4. Leonhard Euler (1707–1783), Swiss mathematician. 
Arguably the most prolific mathematician of all time, he pub-
lished 866 papers during his lifetime and, despite having lost 
his sight in 1766 (in part due to his earlier observations of 
the Sun), he left so many manuscripts at his death that it took 
another 35 years to get them all published. He introduced the 
symbol e as the base of the natural logarithms and i as the 
square root of 21.

5. Johannes D. van der Waals (1837–1923), Dutch physi-
cist. Largely self-taught, he became interested in the fact that 
the ideal gas law derived from kinetic theory does not hold 
exactly for real gases. This led him to question the assump-
tion that no forces act between individual gas molecules 
except during collisions, which resulted in his development 
of an equation, the van der Waals equation, which more accu-
rately describes real gases. He was awarded the 1910 Nobel 
Prize in Physics for his work.

6. This result is derived in most introductory physics books. 
See, for example, P. A. Tipler and G. Mosca, Physics for Sci-
entists and Engineers, 6th ed., W. H. Freeman and Co., New 
York, 2008, page 671.

7. Terminology concerning the dipole-dipole forces is a bit 
confused. Some textbooks use van der Waals to describe all 
three types of dipole-dipole forces. We will follow the more 
common (and traditional) use, reserving van der Waals for 
the attractive force between induced dipoles only.

8. We use v (the Greek letter nu) here rather than n so as not 
to confuse the vibrational quantum number with the principal 
quantum number n for electronic energy levels.

9. The nitric oxide (NO) molecule is an exception due to its 
odd electron.
10. Also, the / S / - 1 group of lines are called the P 
branch and the / S / + 1 group the R branch.
11. Chandrasekhara V. Raman (1888–1970), Indian physi-
cist. Graduating from college at the age of 16, like Einstein 
he became a civil servant and worked at science in his spare 
time. He had predicted that visible light should be inelasti-
cally scattered even before Heisenberg predicted it and before 
Compton had found the effect for x rays. He was awarded the 
1930 Nobel Prize in Physics for his work, becoming the first 
Asian to be so recognized in the sciences.
12. There is also a Raman effect for the vibrational and elec-
tronic levels of molecules.
13. T. H. Maiman, “Stimulated Optical Radiation in Ruby,” 
Nature, 187, 493 (1960).
14. The correction essentially accounts for the fact that, due 
to the finite line width, the energy density u(    f    ) in the transi-
tion probability must include a narrow range of frequencies 
Df rather than just the single frequency f.
15. Recall that the energy per unit volume u(    f    ) times c is the 
intensity, for example, W>m2 in SI units.
16. A. Javan, W. B. Bennet, Jr., and D. R. Herriott, Physical 
Review Letters, 6, 106 (1961).
17. W. Ketterle et al., Science, 301, 1513 (2003).
18. To keep things in perspective, although the power of 
these pulsed lasers is extremely high, the duration of the 
pulses is very brief, so the total energy delivered in a single 
pulse is quite small, in the range of 5 J to 100 J.
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9-2. The dissociation energy of Cl2 is 2.48 eV. Consider the formation of an NaCl mol-
ecule by the reaction

Na +
1
2Cl2 S NaCl

Is this reaction endothermic (requiring energy) or exothermic (giving off energy)? How 
much energy per molecule is required or given off?
9-3. Using the data in Table 9-1, compute the net energy required to transfer an electron 
between the following pairs of atoms: Cs to F, Li to I, and Rb to Br.
9-4. Using the data in Tables 9-1 and 9-2, estimate the dissociation energy of the three 
ionically bonded molecules CsI, NaF, and LiI. Your results are probably all higher than 
those in Table 9-2. Explain why.
9-5. The equilibrium separation of the Rb 

+ and Cl 

- ions in RbCl is about 0.267 nm.
(a) Calculate the potential energy of attraction of the ions, assuming them to be point 
charges. (b) The ionization energy of rubidium is 4.18 eV, and the electron affinity of 
Cl is 3.62 eV. Find the dissociation energy, neglecting the energy of repulsion. (c) The 
measured dissociation energy is 4.37 eV. What is the energy due to repulsion of the ions?
9-6. Compute the Coulomb energy of the KBr molecule at the equilibrium separation. 
Use that result to compute the exclusion-principle repulsion at r0.
9-7. If the exclusion-principle repulsion in Problem 9-6 is given by Equation 9-2, com-
pute the coefficient A and the exponent n.
9-8. Compute the dissociation energy of molecular NaBr in kilocalories per mole.
9-9. Note in Table 9-2 that the equilibrium separation of the KBr and RbCl molecules is 
very nearly equal. Compute the exclusion-principle repulsion for these molecules.

Section 9-2 The Covalent Bond
9-10. Hydrogen can bond covalently with many atoms besides those listed in Tables 9-3 
and 9-5, including sulfur, tellurium, phosphorus, and antimony. What would you expect 
to be the chemical formula of the resulting molecules? (Hint: Use the table of electron 
configurations in Appendix C.)
9-11. What kind of bonding mechanism would you expect for (a) the KCl molecule,
(b) the O2 molecule, and (c) the CH4 molecule?
9-12. The equilibrium separation of the atoms in the HF molecule is 0.0917 nm, and its 
measured electric dipole moment is 6.40 * 10-30 C # m. What percentage of the bonding 
is ionic?
9-13. The equilibrium separation of CsF is 0.2345 nm. If its bonding is 70 percent ionic, 
what should its measured electric dipole moment be?
9-14. Ionic bonding in the BaO molecule involves the transfer of two electrons from 
the Ba atom. If the equilibrium separation is 0.193 nm and the measured electric dipole 
moment is 26.7 * 10-30 C # m, to what extent is the bond actually ionic?

Section 9-3 Other Bonding Mechanisms
9-15. Find three other elements with the same subshell electron configuration in the two 
outermost orbits as carbon. Would you expect the same kind of hybrid bonding for these 
elements as for carbon? Support your answer.
9-16. The dipole moment p of the water molecule, illustrated in Figure 9-19, is actu-
ally the vector sum of two equal dipoles p1 and p2 directed from the oxygen atom to 
each of the hydrogen atoms. The measured value of the angle between the two hydro-
gen atoms is 104.5°, the O–H bond length is 0.0956 nm, and the magnitude of p is 
6.46 * 10-30 C # m. Compute the fraction of the electron charge that is transferred from 
each hydrogen to the oxygen.
9-17. The polarizability of Ne is 1.1 * 10-37 m # C2>N. (a) At what separation would the 
dipole-dipole energy between a molecule of H2O and an atom of Ne in the atmosphere 
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be sufficient to withstand collision with an N2 molecule moving with the average kinetic 
energy for T = 300 K? (b) At what separation does this energy occur for a typically 
bonded molecule? (c) On the basis of these results, do you expect H2OiNe bonds to be 
very likely? Explain your answer.
9-18. The hydrogen bonds linking the two helical strands of the DNA have bond strengths 
of about 0.3 eV, or approximately 15 percent of the strengths of the ionic/covalent bonds 
along the strands. (a) What is the wavelength of a photon with sufficient energy to break 
this bond? (b) In what part of the spectrum does this wavelength lie? (c) Since a sig-
nificant intensity exists at this wavelength in the environment, why haven’t all the DNA 
hydrogen bonds long since broken?
9-19. Would you expect the following molecules to be polar or nonpolar? Explain your 
answer in each case. (a) NaCl; (b) O2.

Section 9-4 Molecular Spectra
9-20. The characteristic rotational energy E0r for the N2 molecules is 2.48 * 10-4 eV. 
From this, find the separation distance of the nitrogen atoms in N2.
9-21. For the O2 molecule, the separation of the atoms is 0.121 nm. Calculate the charac-
teristic rotational energy E0r = U2>2I in eV.
9-22. The CO molecule undergoes a transition from the v = 1 vibrational state to the
v = 0 state. (a) What is the wavelength of the emitted photon? (b) At what temperature 
would 1 percent of the CO molecules be in the v = 1 vibrational state?
9-23. Using data from Table 9-8, (a) compute the vibrational energy of the LiH mol-
ecule in its lowest vibrational state. (b) Compute the reduced mass of LiH. (c) Determine 
the force constant for LiH. (d ) From those results, compute an estimate of the LiH bond 
length and compare your result with the value in the table.
9-24. Calculate the reduced mass in unified mass units for (a) H2, (b) N2, (c) CO, and
(d ) HCl.
9-25. The characteristic rotational energy E0r = U2>2I for KCl is 1.43 * 10-5 eV.
(a) Find the reduced mass for the KCl molecule. (b) Find the separation distance of the
K 

+ and Cl 

- ions.
9-26. Use the data from Table 9-8 to find the force constant for (a) the H35Cl and (b) the 
K79Br molecules.
9-27. The vibration frequency of the NO molecule is 5.63 * 1013 Hz. Compute the force 
constant for NO.
9-28. The equilibrium separation of HBr is 0.141 nm. Treating the Br atom as fixed, com-
pute the four lowest rotational energies of the HBr molecule and show them in a carefully 
sketched energy-level diagram.
9-29. The vibrational spectrum of Li2 consists of a series of equally spaced lines in the 
microwave region 1.05 * 1013 Hz apart. Compute the equilibrium separation for Li2.
9-30. Compute the difference in the rotational energy E0r for K35Cl and K37Cl.
9-31. What type of bonding mechanism would you expect for (a) NaF, (b) KBr, (c) N2, 
and (d ) Ne?
9-32. For NaCl compute (a) the energy in eV necessary to excite the first rotational state 
and (b) the wavelength and frequency of the photon emitted in the transition back to the 
ground state. (Assume that the molecule is in the electronic and vibrational ground states.)

Section 9-5 Absorption, Stimulated Emission, and Scattering
9-33. The five lowest levels of a certain monatomic gas have the values E1 = 0, 
E2 = 3.80 eV, E3 = 4.30 eV, E4 = 7.2 eV, and E5 = 7.5 eV. (a) If the temperature is 
high enough that all levels are occupied and the gas is illuminated with light of wave-
length 2400 nm, what transitions can occur? (b) Which of those found in part (a) will still 
occur if the temperature is so low that only the state E1 is occupied? (c) Repeat (a) and (b) 

TIPLER_09_373-426hr1.indd   423 11/2/11   11:10 AM



424 Chapter 9 Molecular Structure and Spectra

for light of 250 nm wavelength. (d ) What wavelength of the incident light would stimulate 
emission from state E4?
9-34. A hydrogen discharge tube is operated at about 300 K in the laboratory in order to 
produce the Balmer series. Compute the ratio of the probability for spontaneous emission 
of the Ha line to that for stimulated emission.
9-35. Determine the ratio of the number of molecules in the v = 1 state to the number in 
the v = 0 state for a sample of O2 molecules at 273 K. Repeat the calculation for 77 K. 
(Ignore rotational motion.)
9-36. The nuclei in the F2 molecule are separated by 0.14 nm. (a) Compute the energy 
separations and sketch an energy-level diagram for the lowest four rotational levels with 
v = 0. (b) What are the wavelengths of possible transitions between these levels?

Section 9-6 Lasers and Masers
9-37. A pulse from a ruby laser has an average power of 10 MW and lasts 1.5 ns. (a) What 
is the total energy of the pulse? (b) How many photons are emitted in this pulse?
9-38. A helium-neon laser emits light of wavelength 632.8 nm and has a power output of 
4 mW. How many photons are emitted per second by this laser?
9-39. A laser beam is aimed at the Moon from a distance 3.84 * 108 m away. The 
angular spread of the beam is given by the diffraction formula (Rayleigh’s criterion), 
sin  = 1.22l>D, where D is the diameter of the laser tube or rod. (a) Calculate the size 
of the beam on the Moon for D = 10 cm and l = 600 nm. (b) Repeat the calculation if the 
laser beam is projected toward the Moon through a 1.0-m-diameter telescope.
9-40. A particular atom has two energy levels with a transition wavelength of 420 nm. 
At 297 K there are 2.5 * 1021 atoms in the lower state. (a) How many atoms are in the 
upper state? (b) Suppose that 1.8 * 1021 of the atoms in the lower state are pumped to the 
upper state. How much energy could this system release in a single laser pulse?

LEVEL II
9-41. (a) Calculate the electrostatic potential energy of Na 

+ and Cl 

- ions at their equilib-
rium separation distance of 0.24 nm, assuming the ions to be point charges. (b) What is 
the energy of repulsion at this separation? (c) Assume that the energy of repulsion is given 
by Equation 9-2. From Figure 9-2b, this energy equals ke2>r at about r = 0.14 nm. Use 
this and your answer to part (b) to calculate n and A. (Although this calculation is not very 
accurate, the energy of repulsion does vary much more rapidly with r than does the energy 
of attraction.)
9-42. The angular width of a ruby laser beam is determined by Rayleigh’s criterion 
(see Problem 9-39). For this laser the diameter of the ruby rod is 1.0 cm and l = 694.3 nm. 
(a) What is the diameter of the spot projected by the ruby laser at a distance of 1.0 km?
(b) If the laser is emitting 1018 photons>s, what is the power deposited per square centime-
ter on the target at 1.0 km?
9-43. The equilibrium separation of the K 

+ and Cl 

- ions in KCl is about 0.267 nm.
(a) Calculate the potential energy of attraction of the ions assuming them to be point 
charges at this separation. (b) The ionization energy of potassium is 4.34 eV and the elec-
tron affinity of chlorine is 3.61 eV. Find the dissociation energy for KCl, neglecting any 
energy of repulsion (see Figure 9-2a). (c) The measured dissociation energy is 4.40 eV. 
What is the energy due to repulsion of the ions at the equilibrium separation?
9-44. Use the equilibrium separation for the K 

+ and Cl 

- ions given in Problem 9-43 and 
the reduced mass of KCl to calculate the characteristic rotational energy E0r of KCl.
9-45. In this problem, you are to find how the van der Waals force between a polar and a 
nonpolar molecule depends on the distance between the molecules. Let the dipole moment 
of the polar molecule be in the x direction and the nonpolar molecule be a distance x away. 
(a) How does the electric field due to an electric dipole depend on the distance x? (b) Use 
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the facts that the potential energy of an electric dipole of moment p in an electric field E is 
U = -p # E and that the induced dipole moment of the nonpolar molecule is proportional 
to E to find how the potential energy of interaction of the two molecules depends on sepa-
ration distance. (c) Using Fx = -dU>dx, find the x dependence of the force between the 
two molecules.
9-46. The force constant of the covalent bond in the H2 molecule is 580 N>m. Determine 
the energies of the lowest four vibrational levels of the H2, HD, and D2 molecules. Com-
pute the wavelengths of photons emitted in transitions between adjacent states for each of 
these molecules.
9-47. The microwave spectrum of CO has lines at 0.86 mm, 1.29 mm, and 2.59 mm. 
(a) Compute the photon energies and carefully sketch the energy-level diagram that corre-
sponds. What molecular motion produces these lines? (b) Compute the equilibrium sepa-
ration (bond length) of CO.
9-48. Carefully draw a potential energy curve for a diatomic molecule (like Figure 9-2b) 
and indicate the mean values of r for two vibrational levels. Show that because of the 
asymmetry of the curve, rav increases with increasing vibrational energy and therefore 
solids expand when heated.
9-49. A sample of HCl is illuminated with light of wavelength 435.8 nm. (a) Compute the 
wavelengths of the four lines in the rotational Raman spectrum that are closest to that of 
the incident light. (b) Compare the difference in their frequencies with the corresponding 
lines in Figure 9-30.
9-50. Use data from Table 9-8 to compute the first excited vibrational and the first excited 
rotational states of (a) the Li2 and (b) the K79Br molecules.
9-51. Calculate the effective force constant for HCl from its reduced mass and the funda-
mental vibrational frequency obtained from Figure 9-30.
9-52. Notice in Figure 9-33d that the level E2 in Cr3+ is a doublet, the pair of states being 
separated by only 0.0036 eV. (a) Assume that all of the Cr3+ ions in a certain laser are in 
the three states E1 and E2 (doublet) and compute the relative populations of these levels. 
(b) If only the lower state of the E2 doublet can produce laser light but both levels must be 
pumped together, determine the pumping power necessary for laser action to occur. The 
density of states (degeneracy) of level E1 is 4 and for each of the E2 levels is 2.
9-53. The central frequency for the absorption band of HCl shown in Figure 9-30 is at 
f = 8.66 * 1013 Hz, and the absorption peaks are separated by about Df = 6 * 106 Hz. 
Using this information, find (a) the lowest (zero-point) vibrational energy for HCl, (b) the 
moment of inertia of HCl, and (c) the equilibrium separation of the atoms.

LEVEL III
9-54. The potential energy between two atoms in a molecule can often be described rather 
well by the Lenard-Jones potential, which can be written

U1r2 = U0 c aa
r
b

12

- 2aa
r
b

6

d

where U0 and a are constants. (a) Find the interatomic separation r0 in terms of a for 
which the potential energy is minimum. (b) Find the corresponding value of Umin. (c) Use 
Figure 9-8b to obtain numerical values for r0 and U0 for the H2 molecule. Express your 
answer in nanometers and electron volts. (d ) Make a plot of the potential energy U(r) ver-
sus the internuclear separation r for the H2 molecule. Plot each term separately, together 
with the total U(r).
9-55. (a) Find the exclusion-principle repulsion for NaCl. (b) Use Equation 9-2 to find A 
and n.
9-56. Show that the H 

+iH 

- system cannot be ionically bonded. (Hint: Show that U(r) 
has no negative minimum.)
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9-57. (a) Calculate the fractional difference Dm>m for the reduced masses of the H35Cl 
and H37Cl molecules. (b) Show that the mixture of isotopes in HCl leads to a fractional 
difference in the frequency of a transition from one rotational state to another given by 
Df>f = -Dm>m. (c) Compute Df>f  and compare your result with Figure 9-30.
9-58. For a molecule such as CO, which has a permanent electric dipole moment, radia-
tive transitions obeying the selection rule D/ = {1 between two rotational energy levels 
of the same vibrational energy state are allowed; that is, the selection rule Dn = {1 does 
not hold. (a) Find the moment of inertia of CO for which r0 = 0.113 nm, and calculate the 
characteristic rotational energy E0r in electron volts. (b) Make an energy-level diagram for 
the rotational levels for / = 0 to / = 5 for some vibrational level. Label the energies in 
electron volts, starting with E = 0 for / = 0. (c) Indicate on your diagram transitions that 
obey D/ = -1 and calculate the energy of the photons emitted. (d ) Find the wavelength 
of the photon emitted for each transition in (c). In what region of the electromagnetic 
spectrum are these photons?
9-59. An H2 in its ground electronic, vibrational, and rotational state absorbs a photon 
of frequency 1.356 * 1014 Hz, undergoing a transition to the v = 1, / = 1 state while 
remaining in the electronic ground state. It then undergoes a transition to the v = 0, 
/ = 2 state, emitting a photon of frequency 1.246 * 1014 Hz. (a) Compute the moment 
of inertia of the H2 molecule about an axis through the center of mass. (b) Determine the 
vibrational frequency and r0 for H2 and compare these with the values in Table 9-8.
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General References 
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McGraw-Hill, New York, 2005.

Blatt, F., Modern Physics, McGraw-Hill, New York, 1992.
Eisberg, R., and R. Resnick, Quantum Physics of Atoms, 

 Molecules, Solids, Nuclei, and Particles, 2d ed., Wiley, 
New York, 1985.

Fermi, E., Molecules, Crystals, and Quantum Statistics (trans. 
M. Ferro-Luzzi), W. A. Benjamin, New York, 1966.

Holden, A., The Nature of Solids, Columbia University Press, 
1968. An excellent nonmathematical treatment of the 
properties of solids.

Kittel, C., Introduction to Solid State Physics, 8th ed., Wiley, 
New York, 2005.

Shockley, W., Electrons and Holes in Semiconductors, Van 
Nostrand, Princeton, NJ, 1950.

Notes 
1. The constant n is often called the Born exponent.
2. Carbon also has a fourth solid form, charcoal, which has no 

well-defined crystalline structure.
3. Notice that this view of the metal fits the definition of 

a plasma set forth in the opening paragraph of the chapter. 
Though not usually thought of in that way, metals are indeed 
low-temperature plasmas.

4. Felix Bloch (1905–1983), Swiss-American physicist. 
He devised a method for measuring atomic magnetic fields 
in liquids and solids that led to the development of nuclear 
magnetic resonance (NMR) spelctroscopy and earned for him 
a share (with E. M. Purcell) of the 1952 Nobel Prize in Phys-
ics. He was the first director-general of CERN, the European 
Organization for Nuclear Research.

5. The graph of the energy bands and gaps of Figure 10-19b 
results from a simplified version of the conditional equation 
connecting k, k9, and a in which b S 0 and U0 S . In that limit 
the lattice spacing is a rather than a 1 b, as in Figure 10-18.

6. This mixing, called hybridization, was discussed in 
 Section 9-2.

7. See, for example, Section 25-5 in P. Tipler and G. Mosca, 
Physics for Scientists and Engineers, 6th ed. (W. H. Freeman 
and Co., New York, 2008.)

8. The fact that the radius of the bound electron is sev-
eral times the equilibrium spacing of the atoms helps justify 
our tacit assumption that the fifth electron “sees” a uniform 
dielectric constant in the crystal.

9. Klaus von Klitzing (b. 1943), German physicist. He 
received the 1985 Nobel Prize in Physics for this discovery.
10. Daniel C. Tsui (b. 1939), Chinese-American physicist. 
He received the 1998 Nobel Prize in Physics with H. L. 
Stormer and R. B. Laughlin for their discovery.

11. William B. Shockley (1910–1989), John Bardeen (1908–
1991), and Walter H. Brattain (1902–1987), American physi-
cists. Shockley discovered that doped germanium crystals were 
excellent rectifiers and subsequently the three Bell Laboratories 
colleagues discovered that two such “solid-state rectifiers” com-
bined would amplify current. The discovery of this device, the 
transistor, earned them the 1956 Nobel Prize in Physics.
12. Actually, the field decreases exponentially across the sur-
face, reaching zero at a depth of about 10 nm.
13. Isotopes are atoms with the same atomic number Z but 
different atomic mass numbers A. Isotopes will be discussed 
in Chapter 11.
14. John Bardeen (1908–1991), Leon N. Cooper (b. 1930), 
and J. Robert Schrieffer (b. 1931), American physicists. 
Developed at the University of Illinois, the BCS theory 
earned the collaborators the 1972 Nobel Prize in Physics and 
Bardeen became the only person thus far to win two physics 
Nobel Prizes (see note 11).
15. This may make it seem like the Cooper pair is a boson 
and superconductivity another example of Bose-Einstein 
condensation (see Section 8-3); however, the large size of 
the  Cooper pair (see Example 10-13) means that many pairs 
overlap and that the symmetry of the pair with respect to an 
exchange of electrons must also take into account exchanges 
involving electrons in different pairs. The result is that the 
Cooper pair is neither a pure boson nor a pure fermion.
16. Brian D. Josephson (b. 1940), Welsh physicist. For this dis-
covery, made while he was still a graduate student, he shared 
the 1973 Nobel Prize in Physics with L. Esaki and I. Giaever. 
Bardeen had strongly opposed Josephson’s tunneling prediction 
until experiments, led by those of Giaever (also done while he 
was a graduate student), confirmed tunneling by Cooper pairs.

Problems 
LEVEL I
Section 10-1 The Structure of Solids
10-1. Find the value of n in Equation 10-6 that gives the measured dissociation
energy of 741 kJ>mol for LiCl, which has the same structure as NaCl and for which
r0 = 0.257 nm.
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10-2. Calculate the distance r0 between the K+ and Cl- ions in KCl, assuming that each 
ion occupies a cubic volume of side r0. The molar mass of KCl is 74.55 g>mol and its 
density is 1.984 g>cm3.
10-3. The distance between the Li+ and Cl- ions in LiCl is 0.257 nm. Use this and the 
molecular mass of LiCl (42.4 g>mol) to compute the density of LiCl.
10-4. The crystal structure of KCl is the same as that of NaCl. (a) Calculate the electro-
static potential energy of attraction of KCl, assuming that r0 is 0.314 nm. (b) Assuming 
that n = 9 in Equation 10-6, calculate the dissociation energy in eV per ion pair and in 
kcal/mol. (c) The measured dissociation energy is 165.5 kcal>mol. Use this to determine 
n in Equation 10-6.
10-5. The observed dissociation energy of solid LiBr is 788 kJ>mol. Compute the cohe-
sive energy of LiBr and compare the result with the value in Table 10-1. (Ionization ener-
gies for Li and Br are in Table 9-1.)
10-6. The density of NaCl (an fcc crystal) is 2.16 g>cm3. Find the distance between ions 
that are nearest neighbors.
10-7. The separation of nearest-neighbor ions in the KCl crystal (an fcc structure) is 
0.315 nm. Use this information to determine the density of KCL.
10-8. Using the data for ionic and metallic crystals from Table 10-1, (a) graph cohesive 
energy versus melting point and put the best straight line through the points. (b) Deter-
mine the cohesive energies of cobalt, silver, and sodium, whose melting temperatures are 
1495°C, 962°C, and 98°C, respectively. (The measured values are cobalt 4.43 eV, silver 
2.97 eV, and sodium 1.13 eV.)
10-9. Figure 10-56 shows a one-dimensional ionic lattice consisting of doubly charged 
positive ions and twice as many singly charged negative ions. Compute the Madelung 
constant for this “crystal” to within 1 percent.

Figure 10-56  Problem 10-9.

+ +− − +− − +− −

a

Section 10-2 Classical Theory of Conduction
10-10. (a) Given a mean free path l = 0.4 nm and a mean speed 8v9 = 1.17 * 105 m>s 
for the current flow in copper at a temperature of 300 K, calculate the classical value for 
the resistivity r of copper. (b) The classical model suggests that the mean free path is tem-
perature independent and that 8v9  depends on temperature. From this model, what would 
r be at 100 K?
10-11. Find (a) the current density and (b) the drift velocity if there is a current of 1 mA 
in a No. 14 copper wire. (The diameter of No. 14 wire, which is often used in household 
wiring, is 0.064 in = 0.163 cm.)
10-12. A measure of the density of the free-electron gas in a metal is the distance rs, 
which is defined as the radius of the sphere whose volume equals the volume per conduc-
tion electron. (a) Show that rs = 13>4pna2, where na is the free-electron number density. 
(b) Calculate rs for copper in nanometers.
10-13. Calculate the number density of free electrons in (a) Ag (r = 10.5 g>cm3) and 
(b) Au (r = 19.3 g>cm3), assuming one free electron per atom, and compare your results 
with the values listed in Table 10-3.
10-14. Calculate the number density of free electrons for (a) Mg (r = 1.74 g>cm3) and 
(b) Zn (r = 7.1 g>cm3), assuming two free electrons per atom, and compare your results 
with the values listed in Table 10-3.
10-15. (a) Using l = 0.37 nm and 8v9 = 1.08 * 105 m>s at T = 300 K, calculate s and r
for copper from Equations 10-13. Using the same value of l, find s and r at (b) T = 200 K 
and (c) T = 100 K.
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Section 10-3 Free-Electron Gas in Metals
10-16. Find the average energy of the electrons at T = 0 K in (a) copper (EF = 7.06 eV) 
and (b) Li (EF = 4.77 eV).
10-17. Calculate the Fermi energy for magnesium in a long, very thin wire.
10-18. Compute (a) the Fermi energy and (b) the Fermi temperature for silver and for 
iron and compare your results with the corresponding values in Table 10-3.
10-19. Show that for T = 300 K, about 0.1 percent of the free electrons in metallic silver 
have an energy greater than EF.

Section 10-4 Quantum Theory of Conduction
10-20. What is the Fermi speed, that is, the speed of a conduction electron whose energy 
is equal to the Fermi energy EF, for (a) Na, (b) Au, and (c) Sn? (See Table 10-3.)
10-21. The resistivities of Na, Au, and Sn at T = 273 K are 4.2 mV # cm, 2.04 mV # cm,
and 10.6 mV # cm, respectively. Use these values and the Fermi speeds calculated 
in Problem 10-20 to find the mean free paths l for the conduction electrons in these
elements.
10-22. At what temperature is the heat capacity due to the electron gas in copper equal to 
10 percent of that due to lattice vibrations?
10-23. Use Equation 10-29 with a = p2>4 to calculate the average energy of an electron 
in copper at T = 300 K. Compare your result with the average energy at T = 0 and the clas-
sical result of 13>22kT .
10-24. Compute the maximum fractional contribution to the heat capacity of solid iron 
that can be made by the electrons.

Section 10-5 Magnetism in Solids
10-25. The magnetic polarization P of any material is defined as P = 1r+ - r-2 >r. 
Compute the high-temperature polarization of a paramagnetic solid at T = 200 K in a 
magnetic field of 2.0 T.
10-26. Show that the magnetic susceptibility x is a dimensionless quantity.

Section 10-6 Band Theory of Solids
10-27. (a) The energy gap between the valence band and the conduction band in silicon is 
1.14 eV at room temperature. What is the wavelength of a photon that will excite an elec-
tron from the top of the valence band to the bottom of the conduction band? Do the same 
calculation for (b) germanium, for which the energy gap is 0.72 eV, and (c) for diamond, 
for which the energy gap is 7.0 eV.
10-28. (a) The energy-band gap in germanium is 0.72 eV. What wavelength range of 
visible light will be transmitted by a germanium crystal? (Think about it carefully!) 
(b) Now consider a crystal of an insulator whose energy-band gap is 3.6 eV. What wave-
length range of visible light will this crystal transmit? (c) Justify each of your answers to
(a) and (b).
10-29. A photon of wavelength 3.35 mm has just enough energy to raise an electron from 
the valence band to the conduction band in a lead sulfide crystal. (a) Find the energy gap 
between these bands in lead sulfide. (b) Find the temperature T for which kT equals this 
energy gap.
10-30. Consider a small silicon crystal measuring 100 nm on each side. (a) Compute the 
total number N of silicon atoms in the crystal. (The density of silicon is 2.33 g>cm3.) (b) If 
the conduction band in silicon is 13 eV wide and recalling that there are 4N states in this 
band, compute an approximate value for the energy spacing between adjacent conduction-
band states for the crystal.
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Section 10-7 Impurity Semiconductors
10-31. Arsenic has five valence electrons. If arsenic is used as a dopant in silicon, com-
pute (a) the ionization energy and (b) the orbit radius of the fifth arsenic electron. The 
effective mass for electrons in silicon is 0.2 me. (c) What is the ratio of the ionization 
energy of the fifth electron to the energy gap in silicon?
10-32. Gallium has three valence electrons. If gallium is used to dope germanium, com-
pute (a) the ionization energy of the hole and (b) the orbit radius of the hole. The effective 
mass of holes in germanium is 0.34 me.
10-33. What type of semiconductor is obtained if silicon is doped with (a) aluminum and 
(b) phosphorus? (See Appendix C for the electron configurations of these elements.)
10-34. The donor energy levels in an n-type semiconductor are 0.01 eV below the con-
duction band. Find the temperature for which kT = 0.01 eV.
10-35. A strip of tin is 10 mm wide and 0.2 mm thick. When a current of 20 A is estab-
lished in the strip and a uniform magnetic field of 0.25 T is oriented perpendicular to the 
plane of the strip, a Hall voltage of 2.20 mV is measured across the width of the strip. 
Compute (a) the density of charge carriers in tin and (b) the average number of charge 
 carriers contributed by each tin atom. The density of tin is 5.75 * 103 kg>m3 and its 
molecular mass is 118.7.

Section 10-8 Semiconductor Junctions and Devices
10-36. For a temperature of 300 K, use Equation 10-49 to find the bias voltage Vb for 
which the exponential term has the value (a) 10 and (b) 0.1.
10-37. For what value of bias voltage Vb does the exponential in Equation 10-49 have the 
value (a) 5 and (b) 0.5 for T = 200 K?
10-38. Compute the fractional change in the current through a pn junction diode when the 
forward bias is changed from 10.1 V to 10.2 V.
10-39. For T = 300 K, use Equation 10-49 to find the bias voltage Vb for which the expo-
nential term had the value (a) 10 and (b) 0.1.
10-40. When light of wavelength no larger than 484 nm illuminates a CdS solar cell, the 
cell produces electric current. Determine the energy gap in CdS.

Section 10-9 Superconductivity
10-41. Three naturally occurring isotopes of lead are 206Pb, 207Pb, and 208Pb. Using the 
value of a from Table 10-7 and the isotopic masses from Appendix A, compute the criti-
cal temperatures of these isotopes.
10-42. Compute (a) the superconducting energy gap for indium and (b) the wavelength of 
a photon that could just break up a Cooper pair in indium at T = 0 K.
10-43. (a) Use Equation 10-56 to calculate the superconducting energy gap for tin and 
compare your result with the measured value of 6 * 1024 eV. (b) Use the measured value 
to calculate the wavelength of a photon having sufficient energy to break up a Cooper pair 
in tin at T = 0 K.
10-44. Use the BCS curve in Figure 10-53 to estimate the energy gaps in (a) tin,
(b) niobium, (c) aluminum, and (d ) zinc, all at T = 0.5Tc.
10-45. Expressing the temperature T as a fraction of the critical temperature Tc, according to 
BCS theory at what temperature is (a) Bc(T ) = 0.1Bc(0), (b) Bc(T ) = 0.5Bc(0), (c) Bc(T ) = 
0.9Bc(0)?

LEVEL II
10-46. Approximating atoms in an fcc crystal as hard spheres of radius r with a being the 
length of each side of the unit cube, what fraction of the volume of the cube (and hence the 
crystal) is occupied by atoms?
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10-47. Estimate the fraction of free electrons in copper that are in excited states above the 
Fermi energy at (a) room temperature of 300 K and (b) 1000 K.
10-48. A one-dimensional model of an ionic crystal consists of a line of alternating posi-
tive and negative ions with distance r0 between adjacent ions. (a) Show that the potential 
energy of attraction of one ion in the line is

V = -  
2ke2

r0
 a1 -

1

2
+

1

3
-

1

4
+

1

5
- g b

(b) Using the result that

ln11 + x2 = x -
x2

2
+

x3

3
-

x4

4
+ g

show that the Madelung constant for this one-dimensional model is a = 2 ln 2 = 1.386.
10-49. Estimate the Fermi energy of zinc from its electronic molar heat capacity of 
13.74 * 10-4 J>mol # K2T .
10-50. The density of the electron states in a metal can be written g1E2 = AE

1
2,

where A is a constant and E is measured from the bottom of the conduction band.
(a) Show that the total number of states is 12>32A1EF23>2. (b) About what fraction of 
the conduction electrons is within kT of the Fermi energy? (c) Evaluate this fraction for 
copper at T = 300 K.
10-51. High-purity germanium (HPGe) crystals are used as detectors for x rays and 
gamma rays. On interacting with the crystal, incoming photons produce electron-hole 
pairs, exciting many electrons across the 0.72 eV energy gap into the conduction band. 
The decay of the radioisotope 60Co results in the emission of two gamma rays with ener-
gies 1.17 MeV and 1.33 MeV (see Chapter 11). (a) Compute the numbers of electrons 
N1 and N2 excited across the energy gap by each of the two gamma rays. (b) The numbers 

N1 and N2 are subject to statistical fluctuations of {2N1 and {2N2. Compute the frac-
tional uncertainties in N1 and N2. (c) Compute the corresponding fractional uncertainties 
in the energies of the two gamma rays. This is a measure of the energy resolution of the 
HPGe crystal.
10-52. A doped n-type silicon sample with 1016 electrons per cubic centimeter in the con-
duction band has a resistivity of 5 * 1023 V # m at 300 K. Find the mean free path of the 
electrons, using 0.2 me for the effective mass of the electron. Compare your result with the 
mean free path of electrons in copper at 300 K.
10-53. Crystallographers and materials scientists use the density of a metallic sample to 
infer its likely crystal structure. The density of copper (Cu) is 8.96 g>cm3 and its atomic 
radius is 0.128 nm. Is the copper crystal more likely to be face-centered cubic or body-
centered cubic? (See Figure 10-57.)

Figure 10-57  Problem 10-53.
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 Problems 491

10-54. A “good” silicon diode has a current-voltage characteristic given by

I = I01eeVb>kT - 12
Let kT = 0.025 eV (room temperature) and the saturation current I0 = 1 nA. (a) Show that 
for small reverse-bias voltages, the resistance is 25 MV. (Hint: Do a Taylor expansion of 
the exponential function, or use your calculator and enter small values for Vb.) (b) Find 
the dc resistance for a reverse bias of 0.5 V. (c) Find the dc resistance for a 0.5 V forward 
bias. What is the current in this case? (d) Calculate the ac resistance dV>dI for a 0.5 V 
forward bias.
10-55. The relative binding of the extra electron in the arsenic atom that replaces an atom 
in silicon or germanium can be understood from a calculation of the first Bohr orbit of this 
electron in these materials. Four of arsenic’s outer electrons form covalent bonds, so the 
fifth electron “sees” a singularly charged center of attraction. This model is a modified 
hydrogen atom. In the Bohr model of the hydrogen atom, the electron moves in free space 
at a radius a0 given by

a0 =
0 h2

pme e2

When an electron moves in a crystal, we can approximate the effect of the other atoms by 
replacing 0 with k0 and me with an effective mass for the electron. For silicon k is 12 
and the effective mass is about 0.2me, and for germanium k is 16 and the effective mass is 
about 0.1me. Estimate the Bohr radii for the outer electron as it orbits the impurity arsenic 
atom in silicon and germanium.
10-56. InSb is a semiconductor. The energy gap Eg between its valence and conduction 
bands is 0.23 eV, and its dielectric constant k = 18. In the InSb crystal the electron’s 
effective mass m* = 0.015me. (a) Compute the ionization energy for an electron donor in 
InSb. (b) What is the radius of the ground-state orbit? (c) At approximately what donor 
concentration will the orbits of adjacent donor atoms begin to overlap?
10-57. The mean free path of an electron in a metal depends on both the lattice oscillations of 
the metal ions and those of any impurity ions according to 1>l = 1>lm + 1>li . The resis-
tivity of pure copper is increased by about 1.2 * 1028 V # m by the addition of 1 percent (by 
number of atoms) of a certain impurity dispersed evenly throughout the metal. (a) Estimate li 
from this information. (b) The impurity atoms are “seen” by the electrons to have an effective 
diameter d. Estimate the scattering cross section d 2 from Equation 10-12, where d = 2r.

Level III
10-58. When arsenic is used to dope silicon, the fifth arsenic electron and the As+ ion 
act like a hydrogen atom system, except that the potential function V(r) and the electron 
mass must be modified as described in Section 10-7 to account for the crystal lattice. With 
these modifications, (a) solve the Schrödinger equation, using the solution in Chapter 7 as 
a guide. (b) Obtain Equation 10-43, and (c) sketch a properly scaled energy-level diagram 
for the fifth electron for n = 1 through 5.
10-59. The quantity k is the force constant for a “spring” consisting of a line of alternat-
ing positive and negative ions. If these ions are displaced slightly from their equilibrium 
separation r0, they will vibrate with a frequency

f =
1

2pAK
m

(a) Use the values of a, n, and r0 for NaCl and the reduced mass for the NaCl molecule to 
calculate this frequency. (b) Calculate the wavelength of electromagnetic radiation corre-
sponding to this frequency, and compare your result with the characteristic strong infrared 
absorption bands in the region of about l = 61 mm that are observed for NaCl.
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10-60. Consider a model for a metal in which the lattice of positive ions forms a container 
for a classical electron gas with n electrons per unit volume. In equilibrium, the average 
electron velocity is zero, but the application of an electric field produces an acceleration 
of the electrons. If we use a relaxation time t to account for the electron-lattice collisions, 
then we have the equation

m 
dv

dt
+

m
t

 v = -eE

(a) Solve the equation for the drift velocity in the direction of the applied electric field. 
(b) Verify that Ohm’s law is valid, and find the resistivity as a function of n, e, m, and the 
relaxation time t.
10-61. Imagine a cubic crystal like NaCl, with a negative charge at the center of a Car-
tesian coordinate system with scale units equal to the interatomic distance. (a) Show that 
an ion at a position r units along the x axis, s units along the y axis, and t units along the
z axis has a charge of e(21)r # (21)s # (21)t = e(21)r 1 s 1 t, where e is the electron charge. 
(b) Using Equation 10-2 as a guide, calculate the Madelung constant for a cube 2 units on 
a side. Do the same for cubes of sides 4, 6, 8, 10, 12, 16, and 20 units. (You will probably 
want to use a computer spreadsheet to write a program to do the calculations for the larger 
cubes.) Are your answers approaching the value a = 1.7476?
10-62. (a) Show that for a paramagnetic solid with electron energies given by Equation 
10-33, the magnetization per unit volume M is given by

M = mr tanh1mB>kT2
(b) For mB V kT show that the susceptibility is given by Equation 10-35.

TIPLER_10_427-492hr.indd   492 10/24/11   11:20 AM




