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Preface

The fundamental physical and mathematical concepts which underlie
the path integral approach to quantum mechanics were first developed
by R.P. Feynman in the course of his graduate studies at Princeton,
although more fully developed ideas, such as those described in this
volume, were not worked out until a few years later. These early in-
quiries were involved with the problem of the infinite self-energy of the
electron. In working on that problem, a “least-action” principle using
half advanced and half retarded potentials was discovered. The princi-
ple could deal successfully with the infinity arising in the application of
classical electrodynamics.
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The problem then became one of applying this action principle to
quantum mechanics in such a way that classical mechanics could arise
naturally as a special case of quantum mechanics when A was allowed
to go to zero.

Feynman searched for any ideas which might have been previously
worked out in connecting quantum-mechanical behavior with such clas-
sical ideas as the lagrangian or, in particular, Hamilton’s principle func-
tion S, the indefinite integral of the lagrangian. During some conversa-
tions with a visiting European physicist, Feynman learned of a paper in
which Dirac had suggested that the exponential function of i€ times the
lagrangian was analogous to a transformation function for the quantum-
mechanical wave function in that the wave function at one moment could
be related to the wave function at the next moment (a time interval ¢
later) by multiplying with such an exponential function.

The question that then arose was what Dirac had meant by the
phrase “analogous to,” and Feynman determined to find out whether
or not it would be possible to substitute the phrase “equal to.” A brief
analysis showed that indeed this exponential function could be used in
this manner directly.

Further analysis then led to the use of the exponent of the time
integral of the lagrangian, S (in this volume referred to as the action),
as the transformation function for finite time intervals. However, in the
application of this function it is necessary to carry out integrals over all
space variables at every instant of time.

In preparing an article’ describing this idea, the idea of “integral
over all paths” was developed as a way of both describing and evalu-
ating the required integrations over space coordinates. By this time a
number of mathematical devices had been developed for applying the
path integral technique and a number of special applications had been
worked out, although the primary direction of work at this time was
toward quantum electrodynamics. Actually, the path integral did not
then provide, nor has it since provided, a truly satisfactory method of
avoiding the divergence difficulties of quantum electrodynamics, but it
has been found to be most useful in solving other problems in that field.
In particular, it provides an expression for quantum-electrodynamic laws
in a form that makes their relativistic invariance obvious. In addition,
useful applications to other problems of quantum mechanics have been
found.

The most dramatic early application of the path integral method to
an intractable quantum-mechanical problem followed shortly after the

IR.P. Feynman, Space-Time Approach to Non-relativistic Quantum Mechanics,
Rev. Mod. Phys., vol. 20, pp. 367—-387, 1948.
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discovery of the Lamb shift and the subsequent theoretical difficulties
in explaining this shift without obviously artificial means of getting rid
of divergent integrals. The path integral approach provided one way of
handling these awkward infinities in a logical and consistent manner.

The path integral approach was used as a technique for teaching
quantum mechanics for a few years at the California Institute of Tech-
nology. It was during this period that A.R. Hibbs, a student of Feyn-
man’s, began to develop a set of notes suitable for converting a lecture
course on the path integral approach to quantum mechanics into a book
on the same subject.

Over the succeeding years, as the book itself was elaborated, other
subjects were brought into both the lectures of Dr. Feynman and the
book; examples are statistical mechanics and the variational principle.
At the same time, Dr. Feynman’s approach to teaching the subject of
quantum mechanics evolved somewhat away from the initial path in-
tegral approach. At the present time, it appears that the operator
technique is both deeper and more powerful for the solution of more
general quantum-mechanical problems. Nevertheless, the path integral
approach provides an intuitive appreciation of quantum-mechanical be-
havior which is extremely valuable in gaining an intuitive appreciation
of quantum-mechanical laws. For this reason, in those fields of quantum
mechanics where the path integral approach turns out to be particularly
useful, most of which are described in this book, the physics student is
provided with an excellent grasp of basic quantum-mechanical princi-
ples which will permit him to be more effective in solving problems in
broader areas of theoretical physics.

R.P. Feynman
A.R. Hibbs



Preface to Emended Edition

In the forty years since the first publication of Quantum Mechanics and
Path Integrals, the physics and the mathematics introduced here has
grown both rich and deep. Nevertheless this founding book — full of
the verve and insight of Feynman — remains the best source for learning
about the field. Unfortunately, the 1965 edition was flawed by extensive
typographical errors as well as numerous infelicities and inconsistencies.
This edition corrects more than 879 errors, and many more equations
are recast to make them easier to understand and interpret. Notation is
made uniform throughout the book, and grammatical errors have been
corrected. On the other hand, the book is stamped with the rough and
tumble spirit of a creative mind facing a great challenge. The objective
throughout has been to retain that spirit by correcting, but not polish-
ing. This edition does not attempt to add new topics to the book or to
bring the treatment up to date. However, some comments are added in
an appendix of notes. (The existence of a relevant comment is signaled
in the text through the symbol°.) Equation numbers are the same here
as in the 1965 edition, except that equations (10.63) and (10.64) are
swapped.

I thank Edwin Tayor for encouragement and Daniel Keren, Jozef
Hanc, and especially Tim Hatamian for bringing errors to my attention.
A research status leave from Oberlin College made this project possible.

I can well remember the day thirty years ago when I opened the
pages of Feynman-Hibbs, and for the first time saw quantum mechanics
as a living piece of nature rather than as a flood of arcane algorithms
that, while lovely and mysterious and satisfying, ultimately defy under-
standing or intuition. It is my hope and my belief that this emended
edition will open similar doors for generations to come.

Daniel F. Styer
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The Fundamental Concepts
of Quantum Mechanics



1-1 PROBABILITY IN QUANTUM MECHANICS!

From about the beginning of the twentieth century experimental physics
amassed an impressive array of strange phenomena which demonstrated
the inadequacy of classical physics. The attempts to discover a theoret-
ical structure for the new phenomena led at first to a confusion in which
it appeared that light, and electrons, behaved sometimes like waves and
sometimes like particles. This apparent inconsistency was completely
resolved in 1926 and 1927 in the theory called quantum mechanics. The
new theory asserts that there are experiments for which the exact out-
come is fundamentally unpredictable and that in these cases one has to
be satisfied with computing probabilities of various outcomes. But far
more fundamental was the discovery that in nature the laws of com-
bining probabilities were not those of the classical probability theory of
Laplace. The quantum-mechanical laws of the physical world approach
very closely the laws of Laplace as the size of the objects involved in the
experiments increases. Therefore, the laws of probabilities which are
conventionally applied are quite satisfactory in analyzing the behavior
of the roulette wheel but not the behavior of a single electron or a single
photon of light.

A Conceptual Experiment. The concept of probability is not
altered in quantum mechanics. When we say the probability of a certain
outcome of an experiment is p, we mean the conventional thing, i.e., that
if the experiment is repeated many times, one expects that the fraction
of those which give the outcome in question is roughly p. We shall not be
at all concerned with analyzing or defining this concept in more detail;
for no departure from the concept used in classical statistics is required.

What is changed, and changed radically, is the method of calculating
probabilities. The effect of this change is greatest when dealing with
objects of atomic dimensions. For this reason we shall illustrate the
laws of quantum mechanics by describing the results to be expected in
some conceptual experiments dealing with a single electron.

Our imaginary experiment is illustrated in Fig. 1-1. At A we have
a source of electrons S. The electrons at S all have the same energy

IMuch of the material appearing in this chapter was originally presented as a
lecture by R.P. Feynman and published as “The Concept of Probability in Quan-
tum Mechanics” in the Second Berkeley Symposium on Mathematical Statistics and
Probability, University of California Press, Berkeley, Calif., pp. 533-541, 1951.
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A C B

Fig. 1-1 The experimental arrangement. Electrons emitted at A make their way to
the detector at screen B, but a screen C with two holes is interposed. The detector
registers a count for each electron which arrives; the fraction which arrives when the
detector is placed at a distance = from the center of the screen is measured and plotted
against z, as in Fig. 1-2.

but come out in all directions to impinge on a screen C. The screen C
has two holes, 1 and 2, through which the electrons may pass. Finally,
behind the screen C at plane B we have a detector of electrons which
may be placed at various distances & from the center of the screen.®

If the detector is extremely sensitive (as a Geiger counter is) it will
be discovered that the current arriving at x is not continuous, but cor-
responds to a rain of particles. If the intensity of the source S is very
low, the detector will record pulses representing the arrival of individual
particles, separated by gaps in time during which nothing arrives. This
is the reason we say electrons are particles. If we had detectors simul-
taneously all over the screen B, with a very weak source S, only one
detector would respond, then after a little time, another would record
the arrival of an electron, etc. There would never be a half response
of the detector; either an entire electron would arrive or nothing would
happen. And two detectors would never respond simultaneously (except
for the coincidence that the source emitted two electrons within the re-
solving time of the detectors — a coincidence whose probability can be
decreased by further decrease of the source intensity). In other words,
the detector of Fig. 1-1 records the passage of a single corpuscular entity
traveling from S to the point z.

This particular experiment has never been done in just this way.°
In the following description we are stating what the results would be
according to the laws which fit every experiment of this type which has
ever been performed. Some experiments which directly illustrate the



4 1 The fundamental concepts of quantum mechanics

conclusions we are reaching here have been done, but such experiments
are usually more complicated. We prefer, for pedagogical reasons, to
select experiments which are simplest in principle and disregard the
difficulties of actually doing them.

Incidentally, if one prefers, one could just as well use light instead
of electrons in this experiment. The same points would be illustrated.
The source S could be a source of monochromatic light and the sensitive
detector a photoelectric cell or, better, a photomultiplier which would
record pulses, each being the arrival of a single photon.

What we shall measure for various positions z of the detector is the
mean number of pulses per second. In other words, we shall determine
experimentally the (relative) probability P that the electron passes from
S to z, as a function of z.

The graph of this probability as a function of z is the complicated
curve illustrated qualitatively in Fig. 1-2a. It has several maxima and
minima, and there are locations near the center of the screen at which
electrons hardly ever arrive. It is the problem of physics to discover the
laws governing the structure of this curve.

We might suppose (since the electrons behave as particles) that

I. Each electron which passes from S to z must go through
either hole 1 or hole 2.

Hz)

(a) (b) () )

Fig. 1-2 Results of the experiment. Probability of arrival of electrons at x plotted
against the position z of the detector. The result of the experiment of Fig. 1-1 is plotted
here at (a). If hole 2 is closed, so the electrons can go through just hole 1, the result
is (b). For just hole 2 open, the result is (¢). If we imagine that each electron goes
through one hole or the other, we expect the curve (d) = (b) + (¢) when both holes are
open. This is considerably different from what we actually get, (a).
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Fig. 1-3 An analogous experiment in wave interference. The complicated curve P(z)
in Fig. 1-2a is the same as the intensity I(z) of waves which would arrive at x starting
from S and coming through the holes. At some points  the wavelets from holes 1 and
2 interfere destructively (e.g., a crest from hole 1 arrives at the same time as a trough
from hole 2); at others, constructively. This produces the complicated minima and
maxima of the curve I(z).

As a consequence of I we expect that

II. The chance of arrival at z is the sum of two parts: P,
the chance of arrival coming through hole 1, plus Ps, the
chance of arrival coming through hole 2.

We may find out if this is true by direct experiment. Each of the
component probabilities is easy to determine. We simply close hole 2
and measure the chance of arrival at x with only hole 1 open. This
gives the chance P; of arrival at x for electrons coming through hole 1.
The result is given in Fig. 1-2b. Similarly, by closing hole 1 we find the
chance P of arrival through hole 2 (Fig. 1-2¢).

The sum of these (Fig. 1-2d) clearly is not the same as curve (a).
Hence experiment tells us definitely that P # P+ Ps, or that assertion II
is false.

The Probability Amplitude. The chance of arrival at = with
both holes open is not the sum of the chance with just hole 1 open plus
the chance with just hole 2 open.

Actually, the complicated curve P(x) is familiar, inasmuch as it is
exactly the intensity of distribution in the interference pattern to be
expected if waves starting from S pass through the two holes and im-
pinge on the screen B (Fig. 1-3). The easiest way to represent wave
amplitudes is by complex numbers. We can state the correct law for
P(z) mathematically by saying that P(z) is the absolute square of a
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certain complex quantity (if electron spin is taken into account, it is a
hypercomplex quantity) ¢(z) which we call the probability amplitude of
arrival at z. Furthermore, ¢(z) is the sum of two contributions: ¢1(z),
the amplitude for arrival at = through hole 1, plus ¢o(z), the amplitude
for arrival at x through hole 2. In other words,

ITI. There are complex numbers ¢; and ¢ such that

P =g’ (1.1)
¢ = @1+ P2 (1.2)
and

P=|p?  P=lgaf (1.3)

In later chapters we shall discuss in detail the actual calculation of ¢;
and ¢o. Here we say only that ¢;, for example, may be calculated as
a solution of a wave equation representing waves spreading from the
source to hole 1 and from hole 1 to . This reflects the wave properties
of electrons (or in the case of light, photons).

To summarize: We compute the intensity (i.e., the absolute square
of the amplitude) of waves which would arrive in the apparatus at z and
then interpret this intensity as the probability that a particle will arrive
at x.

Logical Difficulties. What is remarkable is that this dual use of
wave and particle ideas does not lead to contradictions. This is so only
if great care is taken as to what kind of statements one is permitted to
make about the experimental situation.

To discuss this point in more detail, consider first the situation which
arises from the observation that our new law III of composition of prob-
abilities implies, in general, that it is not true that P = P; + P5. We
must conclude that when both holes are open, it is not true that the
particle goes through one hole or the other. For if it had to go through
one or the other, we could classify all the arrivals at  into two disjoint
classes, namely, those arriving through hole 1 and those arriving through
hole 2; and the frequency P of arrival at £ would surely be the sum of
the frequency P, of particles coming through hole 1 and the frequency
P, of those coming through hole 2.

To extricate ourselves from the logical difficulties introduced by this
startling conclusion, we might try various artifices. We might say, for
example, that perhaps the electron travels in a complex trajectory go-
ing through hole 1, then back through hole 2 and finally out through
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hole 1 in some complicated manner. Or perhaps the electron spreads
out somehow and passes partly through both holes so as to eventually
produce the interference result III. Or perhaps the chance P; that the
electron passes through hole 1 has not been determined correctly inas-
much as closing hole 2 might have influenced the motion near hole 1.
any such classical mechanisms have been tried to explain the result.
hen light photons are used (in which case the same law III applies),
the two interfering paths 1 and 2 can be made to be many centimeters
apart (in space), so that the two alternative trajectories must almost
certainly be independent. That the actual situation is more profound
than might at first be supposed is shown by the following experiment.

The Effect of Observation. We have concluded on logical grounds
that since P # P; + Ps, it is not true that the electron passes through
either hole 1 or hole 2. But it is easy to design an experiment to test
our conclusion directly. We have merely to have a source of light behind
the holes and watch to see through which hole the electron passes (see
Fig. 1-4). For electrons scatter light, so that if light is scattered behind
hole 1, we may conclude that an electron passed through hole 1; and if
it is scattered behind hole 2; the electron has passed through hole 2.

The result of this experiment is to show unequivocally that the elec-
tron does pass through either hole 1 or hole 2! That is, for every electron
which arrives at the screen B (assuming the light is strong enough that
we do not miss seeing it) light is scattered either behind hole 1 or behind
hole 2, and never (if the source S is very weak) at both places. (A more
delicate experiment could even show that the charge passing through
the holes passes through either one or the other and is in all cases the
complete charge of one electron and not a fraction of it.)

Fig. 1-4 A modification of the
experiment of Fig. 1-1. Here
we place a lamp L behind the
screen C and look for light scat-
tered by the electrons passing
through hole 1 or hole 2. With a
strong lamp every electron is in-
deed found to pass by one or the
other hole. But now the proba-
bility of arrival at x is no longer
given by the curve of Fig. 1-2q,
but is instead given by Fig. 1-24d.
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It now appears that we have come to a paradox. For suppose that
we combine the two experiments. We watch to see through which hole
the electron passes and at the same time measure the chance that the
electron arrives at . Then for each electron which arrives at z we can
say experimentally whether it came through hole 1 or hole 2. First
we may verify that P; is given by the curve in Fig. 1-2b, because if
we select, of the electrons which arrive at z, only those which appear
to come through hole 1 (by scattering light there), we find they are,
indeed, distributed very nearly as in curve (b). (This result is obtained
whether hole 2 is open or closed, so we have verified that there is no
subtle influence of closing hole 2 on the motion near hole 1.) If we
select the electrons scattering light at hole 2, we get (very nearly) Ps of
Fig. 1-2¢. But now each electron appears at either 1 or 2 and we can
separate our electrons into disjoint classes. So, if we take both together,
we must get the distribution P = P; + P; illustrated in Fig. 1-2d. And
experimentally we do! Somehow now the distribution does not show the
interference effects III of curve (a)!

What has been changed? When we watch the electrons to see through
which hole they pass, we obtain the result P = P; + P,. When we do
not watch, we get a different result,

P=|¢1+ ¢ # P+ P

Just by watching the electrons, we have changed the chance that
they arrive at . How is this possible? The answer is that, to watch
them, we used light and the light in collision with the electrons may
be expected to alter its motion, or, more exactly, to alter its chance of
arrival at z.

On the other hand, can we not use weaker light and thus expect a
weaker effect? A negligible disturbance certainly cannot be presumed
to produce the finite change in distribution from (a) to (d). But weak
light does not mean a weaker disturbance. Light comes in photons of
energy hv, where v is the frequency, or of momentum h/\, where A is
the wavelength. Weakening the light just means using fewer photons, so
that we may miss seeing an electron. But when we do see one, it means
a complete photon was scattered and a finite momentum of order h/A
is given to the electron.

The electrons that we miss seeing are distributed according to the
interference law (a), while those we do see and which therefore have
scattered a photon arrive at z with the probability P = P; + P, in (d).
The net distribution in this case is therefore the weighed mean of (a) and
(d). In strong light, when nearly all electrons scatter light, it is nearly
(d); and in weak light, when few scatter, it becomes more like (a).
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It might still be suggested that since the momentum carried by the
light is h/), weaker effects could be produced by using light of a longer
wavelength A\. But there is a limit to this. If light of too long a wave-
length is used, we shall not be able to tell whether it was scattered from
behind hole 1 or hole 2; for the source of light of wavelength A\ cannot
be located in space with precision greater than order A.

We thus see that any physical agency designed to determine through
which hole the electron passes must produce, lest we have a paradox,
enough disturbance to alter the distribution from (a) to (d).

It was first noticed by Heisenberg, and stated in his uncertainty
principle, that the consistency of the then-new mechanics required a
limitation to the subtlety to which experiments could be performed.
In our case the principle says that an attempt to design apparatus to
determine through which hole the electron passed, and delicate enough
so as not to deflect the electron sufficiently to destroy the interference
pattern, must fail. It is clear that the consistency of quantum mechanics
requires that it must be a general statement involving all the agencies of
the physical world which might be used to determine through which hole
an electron passes. The world cannot be half quantum-mechanical, half
classical. No exception to the uncertainty principle has been discovered.

THE UNCERTAINTY PRINCIPLE

We shall state the uncertainty principle as follows: Any determination
of the alternative taken by a process capable of following more than one
alternative destroys the interference between alternatives. Heisenberg’s
original statement of the uncertainty principle was not given in the form
we have used here. We shall interrupt our argument for a few paragraphs
to discuss Heisenberg’s original statement.

In classical physics a particle can be described as moving along a def-
inite trajectory and having, for example, a precise position and velocity
at any particular time. Such a picture would not lead to the odd results
that we have seen are characteristic of quantum mechanics. Heisenberg’s
uncertainty principle gives the limits of accuracy of such classical ideas.
For example, the idea that a particle has both a definite position and a
definite momentum has its limitations. A real system (i.e., one obeying
quantum mechanics) looked upon from a classical view appears to be
one in which the position or momentum is not definite, but is uncertain.
The uncertainty in position can be reduced by careful measurement, and
(by applying different techniques) the uncertainty in momentum can be
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reduced by careful measurement. But, as Heisenberg stated in his prin-
ciple, both cannot be accurately known simultaneously; the product of
the uncertainties of momentum and position involved in any experiment
cannot be smaller than a number with the order of magnitude of .
(Here h = h/27 = 1.055 x 10727 erg-sec, where h is Planck’s constant.)
That such a result is required by physical cohsistency in the situation
we have been discussing can be shown by considering still another way
of trying to determine through which hole the electron passes.

Example. Notice that if an electron is deflected in passing through
one of the holes, its vertical component of momentum is changed. Fur-
thermore, an electron arriving at the detector at x after passing through
hole 1 is deflected by a different amount, and thus suffers a different
change in momentum, than an electron arriving at z via hole 2. Sup-
pose that the screen at C is not rigidly supported, but is free to move
up and down (Fig. 1-5). Any change in the vertical component of the
momentum of an electron upon passing through a hole will be accompa-
nied by an equal and opposite change in the momentum of the screen.
This change in momentum can be measured by measuring the velocity
of the screen before and after the passage of an electron. Call dp the dif-
ference in momentum change between electrons passing through hole 1
and hole 2. Then an unambiguous determination of the hole used by a
particular electron requires a momentum determintation of the screen
to an accuracy of better than Jp.

,
—
—_— -

Fig. 1-5 Another modification of the experiment of Fig. 1-1. The screen C is left free to move
vertically. If the electron passes hole 2 and arrives at the detector (at x = 0, for example), it is
deflected upward and the screen C will recoil downward. The hole through which the electron
passes can be determined for each passage by starting with the screen at rest and measuring
whether it is recoiling up or down afterward. According to Heisenberg’s uncertainty principle,
however, such precise momentum measurements on screen C are inconsistent with accurate
knowledge of its vertical position, so we could not be sure that the center line of the holes is
correctly set. Instead of P(z) of Fig. 1-2a, we get this smeared a little in the vertical direction,
so it looks like Fig. 1-2d.
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If the experiment is set up in such a way that the momentum of
screen C can be measured to the required accuracy, then, since we can
determine the hole passed through, we must find that the resulting dis-
tribution of electrons is that of curve (d) of Fig. 1-2. The interference
pattern of curve (a) must be lost. How can this happen? To under-
stand, note that the construction of a distribution curve in the plane B
requires an accurate knowledge of the vertical position of the two holes
in screen C. Thus we must measure not only the momentum of screen
C but also its position. If the interference pattern of curve (a) is to be
established, the vertical position of C must be known to an accuracy of
better than d/2, where d is the spacing between maxima of the curve
(a). For suppose the vertical position of C is not known to this accuracy;
then the vertical position of every point in Fig. 1-2a cannot be specified
with an accuracy greater than d/2 since the zero point of the vertical
scale must be lined up with some nominal zero point on C. Then the
value of P at any particular height £ must be obtained by averaging over
all values within a distance d/2 of z. Clearly, the interference pattern
will be smeared out by this averaging process. The resulting curve will
look like Fig. 1-2d.

The interference pattern in the original experiment is the sign of
wave-like behavior of the electron. The pattern is the same for any wave
motion, so we may use the well-known result from the theory of light
interference that the relation between the separation a of the holes, the
distance [ between screen C and plane B, the wavelength A of the light,
and d is

a A
T=7 (1.4)

as shown in Fig 1.6. In Chap. 3 (at Eq. 3.10) we shall find that the wave-
length of the electron wave is intimately connected with the momentum
of the electron by the relation

p=nh/A (1.5)

If p is the total momentum of an electron (and we assume all the elec-
trons have the same total momentum), then for [ > a,

p a

et Pl 1.6
U (16)
as shown in Fig. 1-7. It follows that

d n (1.7)

" op
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Fig. 1-6 Two beams of light, starting in phase at holes 1 and 2, will interfere constructively
when they reach the screen B if they take the same time to travel from C to B. This means
that a maximum in the interference pattern for light beams passing through two holes will
occur at the center of the screen. As we move down the screen, the next maximum will occur
at a distance d, which is far enough from the center that, in traveling to this point, the beam
from hole 1 will have traveled exactly one wavelength X farther than the beam from hole 2.

v

=

¥

B

Fig. 1-7 The deflection of an electron in passing through a hole in the screen C involves
a change in momentum &p. This change amounts to the addition of a small component of
momentum in a direction approximately perpendicular to the original momentum vector. The
change in energy is completely negligible. For small deflection angles, the total momentum
vector keeps the same magnitude (approximately). Then the deflection angle is represented to a
very good approximation by |dp|/|p|. If two electrons, one starting from hole 1 with momentum
p1 and the other starting from hole 2 with momentum pa, reach the same point on the screen B,
then the angles through which they were deflected must differ by approximately a/I. Since we
cannot say through which hole an electron has come, the uncertainty in the vertical component
of momentum which the electron receives on passing through the screen C must be equivalent
to this uncertainty in deflection angle. This gives the relation |p1 — p2]/|p| = |ép|/|P| = a/l.
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Since experimentally we find that the interference pattern has been lost,
it must be that the uncertainty dz in the measurement of the position
of C is larger than d/2. Thus

5z 6p > g (1.8)
which agrees (in order of magnitude) with the usual statement of the
uncertainty principle.

A similar analysis can be applied to the previous measuring device
where the scattering of light was used to determine through which hole
the electron passed. Such an analysis produces the same lower limit for
the uncertainties of measurement.

The uncertainty principle is not “proved” by considering a few such
experiments. It is only illustrated. The evidence for it is of two kinds.
First, no one has yet found any experimental way to defeat the limita-
tions in measurements which it implies. Second, the laws of quantum
mechanics seem to require it if their consistency is to be maintained,
and the predictions of these laws have been confirmed again and again
with great precision.

INTERFERING ALTERNATIVES

Two Kinds of Alternatives. From a physical standpoint the two
routes are independent alternatives, yet the implications that the prob-
ability is the sum P; + P, is false. This means that either the premise or
the reasoning which leads to such a conclusion must be false. Since our
habits of thought are very strong, many physicists find that it is much
more convenient to deny the premise than to deny the reasoning. To
avoid the logical inconsistencies into which it is so easy to stumble, they
take the following view: When no attempt is made to determine through
which hole the electron passes, one cannot say it must pass through one
hole or the other. Only in a situation where apparatus is operating to
determine through which hole the electron goes is it permissible to say
that it passes through one or the other. When you watch, you find that
it goes through either one hole or the other hole; but if you are not
looking, you cannot say that it goes either one way or the other! Nature
demands that we walk a logical tightrope if we wish to describe her.

Contrary to that way of thinking, we shall in this book follow the
suggestion made in Sec. 1-1 and deny the reasoning; i.e., we shall not
compute probabilities by adding probabilities for all alternatives. In
order to make definite the new rules for combining probabilities, it will
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be convenient to define two meanings for the word “alternative.” The
first of these meanings carries with it the concept of exclusion. Thus
holes 1 and 2 are ezclusive alternatives if one of them is closed or if
some apparatus that can unambiguously determine which hole is used
is operating. The other meaning of the word “alternative” carries with
it a concept of combination or interference. (The term interference has
the same meaning here as it has in optics, i.e., either constructive or
destructive interference.) Thus we shall say that holes 1 and 2 present
interfering alternatives to the electron when (1) both holes are open and
(2) no attempt is made to determine through which hole the electron
passes. When the alternatives are of this interfering type, the laws of
probability must be changed to the form given in Egs. (1.1) and (1.2).

The concept of interfering alternatives is fundamental to all of quan-
tum mechanics. In some situations we may have both kinds of alter-
natives present. Suppose we ask, in the two-hole experiment, for the
probability that the electron arrives at some point, say, within 1 cm of
the center of the screen. We mean by this the probability that if there
were counters arranged all over the screen (so one or another would go
off when the electron arrived), the counter which went off was within
1 cm of z = 0. Here the various possibilities are that the electron arrives
at some counter via some hole. The holes represent interfering alterna-
tives, but the counters represent exclusive alternatives. Thus we first
add @1 + ¢ for a fixed z, square that, and then sum those resultant
probabilities over x from —0.5 to +0.5 cm.

It is not hard, with a little experience, to tell which kind of alter-
native is involved. For example, suppose that information about the
alternatives is available (or could be made available without altering the
result), but this information is not used. Nevertheless, in this case a
sum of probabilities (in the ordinary sense) must be carried out over ez-
clusive alternatives. These exclusive alternatives are those which could
have been separately identified by the information.

Some Illustrations. When alternatives cannot possibly be resolved
by any experiment, they always interfere. A striking illustration of this
is the scattering of two nuclei at 90°, say, in the center-of-gravity system,
as illustrated in Fig. 1-8. Suppose the nucleus starting at A is an alpha
particle and the one starting at B is some other nucleus. Ask for the
probability that the nucleus starting from A is scattered to position 1 and
that from B to 2. The amplitude is, say, ¢(1,2; A, B). The probability of
this is p = |¢(1,2; A, B)|2. Suppose we do not distinguish what kind of
nucleus arrives at 1, that is, whether it is from A or from B. If it is the
nucleus from B, the amplitude is ¢(2, 1; A, B) (which equals ¢(1,2; A, B),
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Fig. 1-8 Scattering of one nucleus
rl-] 1 by another in the center-of-gravity
system. The scattering of two iden-
tical nuclei shows striking interfer-
ence effects. There are two interfer-
ing alternatives here. The particle
which arrives at 1, say, could have
started either from A or from B. If
the original nuclei were not identi-
cal, tests of identity at 1 could de-
termine which alternative had ac-
tually been taken, so they are ex-
clusive alternatives and the special
interference effects do not arise in

Lr| 2 this case.

4

S

because we have taken a 90° angle). The chance that some nucleus ar-
rives at 1 and the other at 2 is

|6(1,2;A,B)” + [¢(2, 1;A,B)|* = 2p (1.9)

We have added the probabilities. The cases “A to 1 and B to 2”7 and
“A to 2 and B to 1”7 are exclusive alternatives because we could, if we
wished, determine the character of the nucleus at 1 without disturbing
the previous scattering process.

But what would happen if both A and B released alpha particles?
Then no experiment can distinguish which is which, and we cannot
know whether the nucleus arriving at 1 started from A or B. We have
interfering alternatives, and the probability is

6(1,2;A,B) + ¢(2,1;A,B)[* = 4p (1.10)

This interesting result is readily verified experimentally.

If electrons scatter electrons, the result is different in two ways. First,
the electron has a quality we call spin, and a given electron may be
in one of the two states called spin up and spin down. The spin is
not changed to first approximation for scattering at low energy. The
spin carries a magnetic moment. At low velocities the main forces are
electrical, owing to charge, and the magnetic influences make only a
small correction, which we neglect. So if the electron from A has spin
up and the electron from B has spin down, we could later tell which
arrived at 1 by measuring its spin. If up, it is from A; if down, from B.
The scattering probability is then

6(1,2;A,B)” + |6(2,1; A, B)|* = 2p (1.11)

in this case.
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If, however, electrons at both A and B start with spin up, we cannot
later tell which is which and we would expect

|6(1,2;A,B) + ¢(2,1;A,B)|* = 4p (1.12)

Actually this is wrong and, remarkably, electrons obey a different rule.
The amplitude for an event in which the identity of a pair of electrons
is reversed contributes 180° out of phase. That is, the case of both spin
up gives

6(1,2;A,B) — 6(2, 1A, B)? (1.13)
In our case of 90° scattering ¢(1,2;A,B) = ¢(2,1; A, B), so this is zero.

Fermions and Bosons. This rule of the 180° phase shift for al-
ternatives involving exchange in identity of electrons is very odd, and
its ultimate reason in nature is still only imperfectly understood. Other
particles besides electrons obey it. Such particles are called fermions,
and are said to obey Fermi, or antisymmetric, statistics. Electrons, pro-
tons, neutrons, neutrinos, and u mesons are fermions. So are composites
of an odd number of these such as a nitrogen atom, which contains seven
electrons, seven protons, and seven neutrons. This 180° rule was first
stated by Pauli and is the full quantum-mechanical basis of his exclusion
principle, which controls the character of the chemists’ periodic table.

Particles for which interchange does not alter the phase are called
bosons and are said to obey Bose, or symmetrical, statistics. Examples
of bosons are photons, 7 mesons, and composites containing an even
number of Fermi particles such as an alpha particle, which is two pro-
tons and two neutrons. All particles are either one or the other, bosons
or fermions. These interference properties can have profound and mys-
terious effects. For example, liquid helium made of atoms of atomic
mass 4 (bosons) at temperatures of one or two degrees Kelvin can flow
without any resistance through small tubes, whereas the liquid made of
atoms of mass 3 (fermions) does not have this property.

The concept of identity of particles is far more complete and definite
in quantum mechanics than it is in classical mechanics. Classically, two
particles which seem identical could be nearly identical, or identical for
all practical purposes, in the sense that they may be so closely equal that
present experimental techniques cannot detect any difference. However,
the door is left open for some future technique to establish the differ-
ence. In quantum mechanics, however, the situation is different. We can
give a direct test to determine whether or not particles are completely
indistinguishable.
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If the particles in the experiment diagramed in Fig. 1-8, starting from
A and B, were only approximately identical, then improvements in exper-
imental techniques would enable us to determine by close scrutiny of the
particle arriving at 1, for example, whether it came from A or B. In this
situation the alternatives of the two initial positions must be exclusive,
and there must be no interference between the amplitudes describing
these alternatives. Now the important point is that this act of scrutiny
would take place after the scattering had taken place. This means that
the observation could not possibly affect the scattering process, and this
in turn implies that we would expect no interference between the ampli-
tudes describing the alternatives (that it is either the particle from A or
the particle from B which arrives at 1). In this case we must conclude
from the uncertainty principle that there is no way, even in principle,
to ever distinguish between these possibilities. That is, when a particle
arrives at 1, it is completely impossible by any test whatsoever, now or
in the future, to determine whether the particle started from A or B. In
this more rigorous sense of identity, all electrons are identical, as are all
protons, etc.

As a second example we consider the scattering of neutrons from
a crystal. When neutrons of wavelength somewhat shorter than the
atomic spacing are scattered from the atoms in a crystal, we get very
strong interference effects. The neutrons emerge only in certain discrete
directions determined by the Bragg law of reflection, just as for X-rays.
The interfering alternatives which enter this example are the alternative
possibilities that it is one, or another, atom which does the scattering of
a particular neutron. (The amplitude to scatter neutrons from any atom
is so small that we need not consider alternatives in which a neutron is
scattered by two or more atoms.) The waves of amplitude describing the
motion of a neutron which start from these atoms interfere constructively
only in certain definite directions.

Now there is an interesting complication which enters this appar-
ently simple picture. Neutrons, like electrons, carry a spin, which can
be analyzed in two states, spin up and spin down. Suppose the scat-
tering material is composed of an atomic species which has a similar
spin property, such as carbon-13. In this case an experiment will reveal
two apparently different types of scattering. It is found that besides
the scattering in discrete directions, as described in the preceding para-
graph, there is a diffuse scattering in all directions. Why should this
be?

A clue to the source of these two types of scattering is provided by
the following observation. Suppose all the neutrons which enter the ex-
periment are prepared with spin up. If the spin direction of the emerging
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neutrons is analyzed, it will be found that some are up and some are
down; those which still have spin up are scattered only at the discrete
Bragg angles, while those whose spin has been changed to down come
out scattered diffusely in all directions!

Now in order that a neutron flip its spin from up to down, the law
of conservation of angular momentum requires that the spin of the scat-
tering nucleus change from down to up. Therefore, in principle, the
particular nucleus which was responsible for scattering that particular
neutron could be determined. We could, in principle, note down before
the experiment the spin state of all the scattering nuclei in the crystal.
Then, after the neutron is scattered, we could reinvestigate the crystal
and see which nucleus had changed its spin from down to up. If no
crystal nucleus underwent such a change in spin, then neither did the
neutron, and we cannot tell from which nucleus the neutron actually
scattered. In this case the alternatives interfere and the Bragg law of
scattering results.

If, on the other hand, one crystal nucleus is found to have changed
spin, then we know that this nucleus did the scattering. There are no
interfering alternatives. The spherical waves of amplitude which emerge
from this particular nucleus describe the motion of the scattered neu-
tron, and only the waves emerging from this nucleus enter into that
description. In this case there is equal likelihood to find the scattered
neutron coming out in any direction.

The concept of searching through all the nuclei in a crystal to find
which one has changed its spin state is surely a needle-in-the-haystack
type of activity, but nature is not concerned with the practical difficul-
ties of experimentation. The important fact is that in principle it is
possible without producing any disturbance of the scattered neutron to
determine (in the latter case where the spin states change) which crys-
tal nucleus actually did the scattering. The existence of this possibility
means that even if we do not actually carry out this determination, we
are nevertheless dealing with exclusive (and thus noninterfering) alter-
natives.

On the other hand, the fact that we get interference between alter-
natives in the situation where the spin of the neutron was not changed
means that it is impossible, even in principle, to ever discover which par-
ticular crystal nucleus did the scattering — impossible, at least, without
disturbing the situation during or before the scattering.
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SUMMARY OF PROBABILITY CONCEPTS

Alternatives and the Uncertainty Principle. The purpose of
this introductory chapter has been to explain the meaning of a probabil-
ity amplitude and its importance in quantum mechanics and to discuss
the rules for manipulation of these amplitudes. Thus we have stated
that there is a quantity called a probability amplitude associated with
every method whereby an event in nature can take place. For exam-
ple, an electron going from source S (Fig. 1-1) to a detector at x has
one amplitude for completing this course while passing through hole 1
of the screen at C and another amplitude for passing through hole 2.
Further, we can associate an amplitude with the overall event by adding
together the amplitudes of each alternative method. Thus, for example,
the overall amplitude for arrival at z is given in Eq. (1.2) as

¢ = ¢1+ ¢2 (1.14)

Next, we interpret the absolute square of the overall amplitude as
the probability that the event will happen. For example, the probability
that an electron reaches the detector is

P =61 + 6o (1.15)

If we interrupt the course of the event before its conclusion with an
observation of the state of the particles involved in the event, we disturb
the construction of the overall amplitude. Thus if we observe the system
of particles to be in one particular state, we exclude the possibility that
it can be in any other state, and the amplitudes associated with the
excluded states can no longer be added in as alternatives in comput-
ing the overall amplitude. For example, if we determine with the help
of some sort of measuring equipment that the electron passes through
hole 1, the amplitude for arrival at the detector is just ¢;. Further, it
does not matter if we actually observe and record the outcome of the
measurement or not, so long as the measurement equipment is working.
Obviously, we could observe the outcome at any time we wished. The
operation of the measuring equipment is sufficient to disturb the system
and its probability amplitude.

This latter fact is the basis of the Heisenberg uncertainty principle,
which states that there is a natural limit to the subtlety of any experi-
ment or the refinement of any measurement.
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The Structure of the Amplitude. The amplitude for an event is
the sum of the amplitudes for the various alternative ways that the event
can occur. This permits the amplitude to be analyzed in many different
ways depending on the different classes into which the alternatives can
be divided. The most detailed analysis results from considering that a
particle going from a to b, for example, in a given time interval, can
be considered to have done this by going in a certain motion (position
vs. time) or path in space and time. We shall therefore associate an
amplitude with each possible motion. The total amplitude will be the
sum of a contribution from each of the paths.

This idea can be made more clear by a further consideration of our
experiment with the two holes. Suppose we put a couple of extra screens
between the source and the holes. Call these screens E and D. In each of
them we drill a few holes which we call E1, Es, ...and Dy, Do, ... (Fig. 1-
9). For simplicity, we shall assume the electrons are constrained to move
in the zy plane. Then there are several alternative paths which an
electron may take in going from the source to either hole in screen C. It
could go from the source to Eq, and then D3, and then the hole 1; or it
could go from the source to Es, then Di, and finally to the hole 1; etc.
Each of these paths has its own amplitude. The complete amplitude is
the sum of all of them.

B

Fig. 1-9 When several holes are drilled in the screens E and D placed between the
source at screen A and the final position at screen B, several alternative routes are
available for each electron. For each of these routes there is an amplitude. The result
of any experiment in which all of the holes are open requires the addition of all these
amplitudes, one for each possible path.
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E D C B

Fig. 1-10 More and more holes are cut in the screens at yg and yp. Eventually, the
screens are completely riddled with holes, and the electron has a continuous range of
positions, up and down along each screen, at which it can pass through the position
of the screen. In this case the sum of alternatives becomes a double integral over the
continuous variables zg and zp describing the alternative heights at which the electron
passes the position of the screens at yg and yp.

Next, suppose we continue to drill holes in the screens E and D until
there is nothing left of the screens. The path of an electron must now be
specified by the height zp at which the electron passes the position yg at
the nonexistent screen E, together with the height x p, at the position yp
as in Fig. 1-10. To each pair of heights there corresponds an amplitude.
The principle of superposition still applies, and we must take the sum
(or by now, the integral) of these amplitudes over all possible values of
g and Tp.

Clearly, the next thing to do is to place more and more screens
between the source and hole 1 and in each screen drill so many holes that
there is nothing left. Throughout this process we continue to refine the
definition of the path of the electron, until finally we arrive at the sensible
idea that a path is merely height as a particular function of distance, or
z(y). We also continue to apply the principle of superposition, until we
arrive at the integral over all paths of the amplitude for each path.

Now we can make a still finer specification of the motion. Not only
can we think of the particular path z(y) in space, but we can specify the
time at which it passes each point in space.® That is, a path will (in our
two-dimensional case) be given if the two functions z(t), y(t) are given.
Thus we have the idea of an amplitude to take a certain path z(¢), y(?).
The total amplitude to arrive is the sum or integral of this amplitude
over all possible paths. The problem of defining this concept of a sum
or integral over all paths in a mathematically more precise way will be
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taken up in Chap. 2.

Chapter 2 also contains the formula for the amplitude for any given
path. Once this is given, the laws of nonrelativistic quantum mechanics
are completely stated, and all that remains is a demonstration of the
application of these laws in a number of interesting special cases.

SOME REMAINING THOUGHTS

We shall find that in quantum mechanics, the amplitudes ¢ are solu-
tions of a completely deterministic equation (the Schrédinger equation).
Knowledge of ¢ at ¢ = 0 implies its knowledge at all subsequent times.
The interpretation of |¢|> as the probability of an event is an indeter-
ministic interpretation. It implies that the result of an experiment is
not exactly predictable. It is very remarkable that this interpretation
does not lead to any inconsistencies. That this is true has been amply
demonstrated by analyses of many particular situations by Heisenberg,
Bohr, Born, von Neumann, and many other physicists. In spite of all
these analyses the fact that no inconsistency can arise is not thoroughly
obvious. For this reason quantum mechanics appears as a difficult and
somewhat mysterious subject to a beginner. The mystery gradually de-
creases as more examples are tried out, but one never quite loses the
feeling that there is something peculiar about the subject.

There are a few interpretational problems on which work may still be
done. They are very difficult to state until they are completely worked
out. One is to show that the probability interpretation of ¢ is the only
consistent interpretation of this quantity. We and our measuring in-
struments are part of nature and so are, in principle, described by an
amplitude functions satisfying a deterministic equation. Why can we
only predict the probability that a given experiment will lead to a def-
inite result? From what does the uncertainty arise? Almost without
doubt it arises from the need to amplify the effects of single atomic
events to such a level that they may be readily observed by large sys-
tems. The details of this have been analyzed only on the assumption
that |¢|? is a probability, and the consistency of this assumption has
been shown. It would be an interesting problem to show that no other
consistent interpretation can be made.®

Other problems which may be further analyzed are those dealing
with the theory of knowledge. For example, there seems to be a lack
of symmetry in time in our knowledge. Our knowledge of the past is
qualitatively different from that of the future. In what way is only the
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probability of a future event accessible to us, whereas the certainty of
a past event can often apparently be asserted? These matters again
have been analyzed to a great extent. Possibly a little more can be
said to clarify the situation, however. Obviously, we are again involved
in the consequences of the large size of ourselves and of our measur-
ing equipment. The usual separation of observer and observed which is
now needed in analyzing measurements in quantum mechanics should
not really be necessary, or at least should be even more thoroughly
analyzed. What seems to be needed is the statistical mechanics of am-
plifying apparatus.©

The analyses of such problems are, of course, in the nature of philo-
sophical questions. They are not necessary for the further development
of physics. We know we have a consistent interpretation of ¢ and, almost
without doubt, the only consistent one. The problem of today seems to
be the discovery of the laws governing the behavior of ¢ for phenomena
involving nuclei and mesons. The interpretation of ¢ is interesting. But
the much more intriguing question is: What new modifications of our
thinking will be required to permit us to analyze phenomena occurring
within nuclear dimensions?

THE PURPOSE OF THIS BOOK

So far, we have given the form the quantum-mechanical laws must take,
i.e., that a probability amplitude exists, and we have outlined one pos-
sible scheme for calculating this amplitude. There are other ways to
formulate this. In a more usual approach to quantum mechanics the
amplitude is calculated by solving a kind of wave equation. For particles
of low velocity, it is called the Schrédinger equation. A more accurate
equation valid for electrons of velocity arbitrarily close to the velocity of
light is the Dirac equation. In this case the probability amplitude is a
kind of hypercomplex number. We shall not discuss the Dirac equation
in this book, nor shall we investigate the effects of spin. Instead, we limit
our attention to low-velocity electrons, extending our horizon somewhat
in the direction of quantum electrodynamics by investigating photons,
particles whose behavior is determined by Maxwell’s equations.

In this book we shall give the laws to compute the probability ampli-
tude for nonrelativistic problems in a manner which is somewhat uncon-
ventional. In some ways, particularly in developing a conceptual under-
standing of quantum mechanics, it may be preferred, but in others, e.g.,
in making computations for the simpler problems and for understanding
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the literature, it is disadvantageous.

The more conventional view, via the Schrédinger equation, is already
presented in many books, but the views to be presented here have ap-
peared only in abbreviated form in papers in the journals.! A central
aim of this book is to collect this work into one volume where it may be
expounded with sufficient clarity and detail to be of use to the interested
student.

In order to keep the subject within bounds, we shall not make a com-
plete development of quantum mechanics. Instead, whenever a topic has
reached such a point that further elucidation would best be made by con-
ventional arguments appearing in other books, we refer to those books.
Because of this incompleteness, this book cannot serve as a complete
textbook of quantum mechanics. It can serve as an introduction to the
ideas of the subject if used in conjunction with another book that deals
with the Schrédinger equation, matrix mechanics, and applications of
quantum mechanics. :

On the other hand, we shall use the space saved (by our not develop-
ing all of quantum mechanics in detail) to consider the application of the
mathematical methods used in the formulation of quantum mechanics
to other branches of physics (Chaps. 10-12).

It is a problem of the future to discover the exact manner of comput-
ing amplitudes for processes involving the apparently more complicated
particles, namely, neutrons, protons, and mesons. Of course, one can
doubt that, when the unknown laws are discovered, we shall find our-
selves computing amplitudes at all. However, the situation today does
not seem analogous to that preceding the discovery of quantum mechan-
ics.

In the 1920’s there were many indications that the fundamental the-
orems and concepts of classical mechanics were wrong, i.e., there were
many paradoxes. General laws could be proved independently of the
detailed forces involved. Some of these laws did not hold. For exam-
ple, each spectral line showed a degree of freedom for an atom, and at
temperature T' each degree of freedom should have an energy k7', con-
tributing R to the specific heat. Yet this very high specific heat expected
from the enormous number of spectral lines did not appear.

Today, any general law that we have been able to deduce from the
principle of superposition of amplitudes, such as the characteristics of
angular momentum, seems to work. But the detailed interactions still
elude us. This suggests that amplitudes will exist in a future theory, but
their method of calculation may be strange to us.

I1R.P. Feynman, Space-Time Approach to Non-relativistic Quantum Mechanics,
Rev. Mod. Phys., vol. 20, pp. 367-387, 1948.
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IN this chapter we intend to complete our specification of nonrelativistic
quantum mechanics which we began in Chap. 1. There we noted the
existence of an amplitude for each trajectory; here we shall give the form
of the amplitude for each trajectory. For a while, for simplicity, we shall
restrict ourselves to the case of a particle moving in one dimension. Thus
the position at any time can be specified by a coordinate z, a function
of time t. By the path, then, we mean a function z(t).

If a particle at an initial time ¢, starts from point z, and goes to a
final point z; at time ¢, we shall say simply that the particle goes from
a to b and our function z(t) will have the property that z(t,) = 2, and
z(ty) = zp. In quantum mechanics, then, we shall have an amplitude,
often called® a kernel, which we may write K (b, a), to get from the point
a to the point b. This will be the sum over all of the trajectories that
go between the end points a and b of a contribution from each. This
is to be contrasted with the situation in classical mechanics in which
there is only one specific and particular trajectory which goes from a to
b, the so-called classical trajectory, which we shall label Z(t). Before we
go on to give the rule for the quantum-mechanical case, let us remind
ourselves of the situation in classical mechanics.

THE CLASSICAL ACTION

One of the most elegant ways of expressing the condition that determines
the particular path Z(t) out of all the possible paths is the principle of
least action. That is, there exists a certain quantity S which can be
computed for each path. The classical path Z(t) is that for which S is a
minimum. Actually, the real condition is that S be merely an extremum.
That is to say, the value of S is unchanged in the first order if the path
Z(t) is modified slightly.
The quantity S is given by the expression
tp
S = L(z,x,t)dt (2.1)
ta

where L is the lagrangian for the system. For a particle of mass m
subject to a potential energy V (z,t), which is a function of position and
time, the lagrangian is

L= %:&2 —V(z,1t) (2.2)
The form of the extremum path Z(t) is determined through the usual
procedures of the calculus of variations. Thus, suppose the path is varied

26
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away from Z(t) by an amount éz(¢); the condition that the end points
of Z(t) are fixed requires

dz(ty) = dx(tp) =0 (2.3)
The condition that Z(¢) be an extremum of S means

08 =Sz +dz]— S[Z] =0 (2.4)

to first order in dx(t). Using the definition of Eq. (2.1) we may write

(23
Sla + 62] = / L(& + 64,7 + 0z, ) dt
tq

or . OL oL
_ /t {L(m,x,t) 08 +5x-é-ﬂ dt
b 9L oL
Upon integration by parts, the variation in S becomes
oL1® [ _[d (8L\ &L

Since 6x(t) is zero at the end points, the first term on the right-hand
side of the equation is zero. Between the end points dz(t) can take on
any arbitrary value. Thus the extremum is that curve along which the
following condition is always satisfied:

4oy or_, o
dt \ 0z Oz
This is, of course, the classical lagrangian equation of motion.

In classical mechanics, the form of the action integral S = [ Ldt is
interesting, not just the extreme value S.. This interest derives from
the necessity to know the action along a set of neighboring paths in
order to determine the path of least action.

In quantum mechanics both the form of the integral and the value of
the extremum are again important. In the following problems we shall
evaluate the extremum in a variety of situations.

Problem 2-1 For a free particle L = (m/2)2%. Show that the
action S, corresponding to the classical motion of a free particle is

m (2 — 24)°

S =
‘T o T

(2.8)
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Problem 2-2° For a harmonic oscillator L = (m/2)(4? — w?z?).

With T' equal to t, — t,, show that the classical action is
mw

S =
el 2sinwT

22 + z2) coswT — 22p%q 2.9
b a

Problem 2-3° Find S,; for a particle under a constant force f, that
is, L = (m/2)i* + fz.

Problem 2-4 Classically, the momentum is defined as

oL
= — 2.10
P= 7z (2.10)
Show that the momentum at a final point is
oL 08,
= — 2.11
( ox ) T=1p + 8:1:;, ( )

while the momentum at an initial point is

?£ ____aScl
0z :c=a:a“ 0x,

Hint: Consider the effect on Eq. (2.6) of a change in the end points.

Problem 2-5 Classically, the energy is defined as

E=ip—-L (2.12)
Show that the energy at a final point is
while the energy at an initial point is

0S5

Otq

Hint: A change in the time of an end point requires a change in path,
since all paths must be classical paths.

THE QUANTUM-MECHANICAL AMPLITUDE

Now we can give the quantum-mechanical rule. We must say how much
each trajectory contributes to the total amplitude to go from a to b.
It is not just the particular path of extreme action that contributes;
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rather, all the paths contribute. They contribute equal magnitudes to
the total amplitude, but contribute at different phases. The phase of the
contribution for a given path is the action S for that path in units of the
quantum of action 7. That is, to summarize: The probability P(b, a) to
go from a point z, at time ¢, to the point z; at time ¢, is the absolute
square P(b,a) = |K(b,a)* of an amplitude K (b,a) to go from a to b.
This amplitude is the sum of contributions ¢[z(¢)] from each path.

Kbo= 3 () (2.14)

paths from a to b

The contribution of a path has a phase proportional to the action S:
o[z(t)] = const e(//R)SD)] (2.15)

The action is that for the corresponding classical system (see Eq. 2.1).
The constant will be chosen to normalize K correctly, and it will be taken
up later (Sec. 2.4) when we discuss more mathematically just what we
mean in Eq. (2.14) by a sum over paths.

THE CLASSICAL LIMIT

Before we go on to making the mathematics more complete, we shall
compare this quantum law with the classical rule. At first sight, from
Eq. (2.15) all paths contribute equally, although their phases vary, so
it is not clear how, in the classical limit, some particular path becomes
most important. The classical approximation, however, corresponds to
the case that the dimensions, masses, times, etc., are so large that S is
enormous in relation to i (= 1.05x 10727 erg-sec). Then the phase of the
contribution S/h is some very, very large angle. The real (or imaginary)
part of ¢ is the cosine (or sine) of this angle. This is as likely to be
plus as minus. Now if we move the path as shown in Fig 2-1 by a small
amount dz, small on the classical scale, the change in S is likewise small
on the classical scale, but not when measured in the tiny units of A.
These small changes in path will, generally, make enormous changes in
phase, and our cosine or sine will oscillate exceedingly rapidly between
plus and minus values. The total contribution will then add to zero; for
if one path makes a positive contribution, another infinitesimally close
(on a classical scale) makes an equal negative contribution, so that no
net contribution arises.



30 2 The quantum-mechanical law of motion

Z

Fig. 2-1 The classical path 1, Z(¢), is that for which a certain integral, the action S,
is minimum. If the path is varied by §z(t), to path 2, the integral suffers no first-order
change. This determines the classical equation of motion.

In quantum mechanics, the amplitude to go from a to b is the sum of amplitudes for
each interfering alternative path. The amplitude for a given path, e*3/" has a phase
proportional to the action.

If the action is very large compared to ki, neighboring paths such as 3 and 4 have
slightly different actions — slightly different on a classical scale. Such paths will (be-
cause of the smallness of ) have very different phases. Their contributions will cancel
out. Only in the vicinity of the classical path Z(t), where the action changes little
when the path varies, will neighboring paths, such as 1 and 2, contribute in the same
phase and constructively interfere. That is why the approximation of classical physics
— that only the path Z(t) need be considered — is valid when the action is very large
compared to h.

Therefore, no path really needs to be considered if the neighboring
path has a different action; for the paths in the neighborhood cancel
out the contribution. But for the special path Z(t), for which S is an
extremum, a small change in path produces, in the first order at least,
no change in S. All the contributions from the paths in this region are
nearly in phase, at phase S¢ /%, and do not cancel out. Therefore, only
for paths in the vicinity of Z(t) can we get important contributions, and
in the classical limit we need only consider this particular trajectory as
being of importance. In this way the classical laws of motion arise from
the quantum laws.

We may note that trajectories which differ from Z(t) contribute as
long as the action is still within about & of S¢;. The classical trajectory
is indefinite to this slight extent, and this rule serves as a measure of
the limitations of the precision of the classically defined trajectory.

Next consider the dependence of the phase on the position of the end
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point (zp,tp). If we change the end point a little, this phase changes a
great deal, and K (b,a) changes very rapidly. If by a “smooth function”
we mean one like S, which changes only when changes in argument
which are appreciable on a classical scale are made, we note that K (b, a)
is far from smooth, but in this classical approximation our arguments
show that it is of the form

K(b,a) = “smooth function” - ¢*5<t/" (2.16)

All these approximate considerations apply to a situation on a scale
for which classical physics might be expected to work (S > /). But at
an atomic level, S may be comparable with &, and then all trajectories
must be added in Eq. (2.14) in detail. No particular trajectory is of
overwhelming importance, and of course Eq. (2.16) is not necessarily a
good approximation. To deal with such cases, we shall have to find out
how to carry out such sums as are implied by Eq. (2.14).

THE SUM OVER PATHS

i

Analogy with the Riemann Integral. Although the qualitative
idea of a sum of a contribution for each of the paths is clear, a more pre-
cise mathematical definition of such a sum must be given. The number
of paths is a high order of infinity, and it is not evident what measure
is to be given to the space of paths. It is our purpose in this section to
give such a mathematical definition. This definition will be found rather
cumbersome for actual calculation. In the succeeding chapters we shall
describe other and more efficient methods of computing the sum over all
paths. As for this section, it is hoped that the mathematical difficulty, or
rather inelegance, will not distract the reader from the physical content
of the ideas.

We can begin our understanding with a consideration of the ordinary
Riemann integral. We could say, very roughly, that the area A under
a curve is the sum of all its ordinates. Better, we could say that it is
proportional to that sum. But to make the idea precise, we do this: take
a subset of all ordinates (e.g., those spaced at equal intervals h). Adding
these ordinates, we obtain

A~ Z f(z;) (2.17)

where the summation is carried out over the finite set of points x;, as
shown in Fig. 2.2.
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Fig. 2-2 In the definition of the ordinary Riemann integral, a set of ordinates is
drawn from the abscissa (the z-axis) to the curve. The ordinates are spaced a distance
h apart. The integral (area between the curve and the abscissa) is approximated by h
times the sum of the ordinates. This approximation approaches the correct value as h
approaches zero.

An analogous definition can be used for path integrals. The measure which goes to
zero in the limit process is the time interval € between discrete points on the paths.

The next step is to define A as the limit of this sum as the subset of
points, and thus the subset of ordinates, becomes more complete or —
because a finite set is never any measurable part of the infinite continuum
— we may better say as the subset becomes more representative of the
complete set. We can pass to the limit in an orderly manner by taking
continually smaller and smaller values of h. In so doing, we would obtain
a different sum for each value of h. No limit exists. In order to obtain
a limit to this process, we must specify some normalizing factor which
should depend on h. Of course, for the Riemann integral, this factor is
just h itself. Now the limit exists and we may write the expression

A =lim [h Z f(xi)} (2.18)

Constructing the Sum. We can follow through an analogous pro-
cedure in defining the sum over all paths. First, we choose a subset of
all paths. To do this, we divide the independent variable time into steps
of width e. This gives us a set of values ¢; spaced an interval € apart be-
tween the values t, and ;. At each time ¢; we select some special point
z;. We construct a path by connecting all the points so selected with
straight lines. It is possible to define a sum over all paths constructed
in this manner by taking a multiple integral over all values of z; for ¢
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between 1 and N — 1, where

Ne =1, —t,
€ =tir1 — 1t (2.19)
to = tg tn = 1p
Lo = Zq IN = Ty

The resulting equation is

K(b,a) ~ / //gb ) dzy dzg - - dxy—1 (2.20)

We do not integrate over zg or xy because these are the fixed end
points x, and zp. This equation corresponds formally to Eq. (2.17).
In the present case we can obtain a more representative sample of the
complete set of all possible paths between a and b by making e smaller.
However, just as in the case of the Riemann integral, we cannot proceed
to the limit of this process because the limit does not exist. Once again
we must provide some normalizing factor which we expect will depend
upon €.

Unfortunately, to define such a normalizing factor seems to be a very
difficult problem and we do not know how to do it in general. But we do
know how to give the definition for all situations which so far seem to
have practical value. For example, take the case where the lagrangian is
given by Eq. (2.2). The normalizing factor turns out to be A~ where

. 1/2

m

We shall see later (in Sec. 4-1) how this result is obtained. With this
factor the limit exists® and we may write

K(b,a) = lim A/ / e(t/m)Sbal dzl dzz - dx;z_l (2.22)
where
ty
S[b, a] = / L(s,2,1) dt (2.23)
ta

is a line integral taken over the trajectory passing through the points z;
with straight sections between, as in Fig. 2-3.
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Fig. 2-3 The sum over paths is defined as
a limit, in which at first the path is spec-
ified by giving only its coordinate x at a
large number of specified times separated by
very small time intervals ¢. The path sum is
then an integral over all these specific coordi-
nates. Then to achieve the correct measure,
< the limit is taken as € approaches 0.
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It is possible to define the path in a somewhat more elegant manner.
Instead of straight lines between the points 7 and 7 + 1, we could use
sections of the classical orbit. Then we could say that S is the minimum
value of the integral of the lagrangian over all the paths which go through
the specified points (z;,t;). With this definition no recourse is made to
arbitrary straight lines.

The Path Integral. There are many ways to define a subset of
all the paths between a and b. The particular definition we have used
here may not be the best for some mathematical purposes. For example,
suppose the lagrangian depends upon the acceleration of x. In the way
we have constructed the path, the velocity is discontinuous at the various
points (z;,t;); that is, the acceleration is infinite at these points. It is
possible that this situation would lead to trouble. However, in the few
such examples with which we have had experience the substitution

.1
T = 25(232'_{_1 — 2x; + &97;__1) (224)

has been adequate. There may be other cases where no such substitution
is available or adequate, and the present definition of a sum over all paths
is just too awkward to use.

A similar situation arises in ordinary integration, where sometimes
the Riemann definition, Eq. (2.18), is not adequate and recourse must
be had to some other definition, such as that of Lebesgue. The need
to redefine the method of integration does not destroy the concept of
integration. So we feel that the possible awkwardness of the special
definition of the sum over all paths (as given in Eq. 2.22) may eventu-
ally require new definitions to be formulated. Nevertheless, the concept
of the sum over all paths, like the concept of an ordinary integral, is
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independent of a special definition and valid in spite of the failure of
such definitions. Thus we shall write the sum over all paths in a less
restrictive notation as

b
K(b,a) = / RUBEIOE (2.25)

which we shall call a path integral. The identifying notation in this

expression is the script D. Only rarely shall we return to the form given
in Eq. (2.22).

Problem 2-6 The class of functionals for which path integrals can
be defined is surprisingly varied. So far we have considered functionals
such as that given in Eq. (2.15). Here we shall consider quite a different
type. This latter type of functional arises in a one-dimensional relativis-
tic problem. Suppose a particle moving in one dimension can go only
forward or backward at the velocity of light. For convenience, we shall
define the units such that the velocity of light, the mass of the particle,
and Planck’s constant are all unity. Then in the xt plane all trajectories
shuttle back and forth with slopes of +:45°, as in Fig. 2-4. The amplitude
for such a path can be defined as follows: Suppose time is divided into
small equal steps of length €. Suppose reversals of path direction can
occur only at the boundaries of these steps, i.e., at t = t, + ne, where
n is an integer. For this relativistic problem the amplitude to go along
such a path is different from the amplitude defined in Eq. (2.15). The
correct definition for the present case is

¢ = (ie)® (2.26)

where R is the number of reversals, or corners, along the path.

Fig. 2-4 The path of a relativistic parti-
cle traveling in one dimension is a zigzag of
straight segments. The slope of the segments
is constant in magnitude and differs only in
sign from zig to zag. The amplitude for a
particular path, as well as the kernel to go
from a to b, depends on the number of cor-
ners R along a path, as shown by Egs. (2.26)
and (2.27).

¢
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As a problem, the reader may use this definition to calculate the
kernel K (b,a) by adding together the contribution for the paths of one
corner, two corners, etc. Thus determine

K(b,a) =>_ N(R)(ie)" (2.27)
R

where N (R) is the number of paths possible with R corners. It is best to
calculate four separate K’s, namely, the amplitude K (b, a) of starting
at the point a with a positive velocity and coming into the point b with a
positive velocity, the amplitude K _ (b, a) of starting at the point a with
a negative velocity and coming into the point b with a positive velocity,
and the amplitudes K_ (b,a) and K__ (b, a) defined in a similar fashion.

Next suppose the unit of time is defined as i/mc?. If the time
interval is very long [ty — t, > h/mc?] and the average velocity is small
[z — 4 < c(ty—tq4)], show that the resulting kernel is approximately the
same as that for a nonrelativistic free particle (given in Eq. 3.3), except
for a factor exp{—(i/h)mc?(ty, — to)}. The definition given here for the
amplitude, and the resulting kernel, is correct for a relativistic theory of
a free particle moving in one dimension. The result is equivalent to the
Dirac equation for that case.

EVENTS OCCURRING IN SUCCESSION

The Rule for Two Events. In this section we shall derive an
important law for the composition of amplitudes for events which occur
successively in time. Suppose t. is some time between ¢, and ¢;. Then
the action along any path between a and b can be written as

S[b,a] = S[b, c] + S[e, a] (2.28)

This follows from the definition of the action as an integral in time and
also from the fact that L does not depend on derivatives higher than
the velocity. (Otherwise, we would have to specify values of velocity and
perhaps higher derivatives at point c¢.) Using Eq. (2.25) to define the
kernel, we can write

b
K(b,a) = / (/WS [b.cl+(/M)Slesa] g1y (2.29)
It is possible to split any path into two parts. The first part would

have the end points z, and z. = z(t.), and the second part would have
the end points z. and zp, as shown in Fig. 2.5. It is possible to integrate



2-5 Events occurring in succession 37

Fig. 2-5 One way the sum over all paths
can be taken is by first summing over paths
which go through the point at z. and time ¢,
and later summing over the points .. The
amplitude on each path that goes from a to
b via ¢ is a product of two factors: (1) an
amplitude to go from a to ¢ and (2) an am-
plitude to go from ¢ to b. This is therefore
valid also for the sum over all paths through
c: the total amplitude to go from a to b via ¢
is K(b,c)K(c,a). Thus summing over the al-
ternatives (values of z.), we get for the total
amplitude to go from a to b, Eq. (2.31).

over all paths from a to ¢, then over all paths from ¢ to b, and finally
integrate the result over all possible values of .. In performing the first
step of this integration S[b, c] is constant. Thus the result can be written
as

co pb
K(b, a):/ / e(/MSbe K (¢, ) Da(t) da, (2.30)

where integrations must now be carried out not only over paths between
c and b but also over the variable end point z.. In the next step we carry
out the integration over all paths between some point with an arbitrary
z. and the point b. All that is left is an integral over all possible values
of z.. Thus

K(b,a) = /_ " Kb, 0K(c,0) da. (2.31)

Perhaps the argument is clearer starting from Eq. (2.22). Select one
of the discrete times as t.. Thus let . = tx and x. = zg. First carry out
all the integrations over those z; such that ¢ < k. This will introduce
the factor in the integral K(c,a). Next carry out the integrals over all
those x; such that i > k. This introduces the factor K (b,c). All that is
left is an integral over z.. The result can be written as Eq. (2.31).

This result can be summarized in the following way. All alternative
paths from a to b can be labeled by specifying the position z. through
which they pass at time t.,. Then the kernel for a particle going from a
to b can be computed from the rules:

1. The kernel to go from a to b is the sum, over all possible
values of z., of amplitudes for the particle to go from a
to ¢ and then to b.
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2. The amplitude to go from a to ¢ and then to b is the kernel
to go from a to ¢ times the kernel to go from c to b.

Thus we have the rule: Amplitudes for events occurring in succession
in time multiply.

Extension to Several Events. There are many applications for
the important rule, and several will be developed in succeeding chapters.
Here we shall show the application wherein we follow an alternative route
in deriving the equation for the kernel, Eq. (2.22).

It is perfectly possible to make two divisions in all the paths: one at
t. and the other at, say, t5. Then the kernel for a particle going from a
to b can be written

K(b,a) = /_ ” /_ " Kb, 0K (¢, dK(d, a) dug dz, (2.32)

This means that we look at a particle which goes from a to b as if it
went first from a to d, then from d to ¢, and finally from ¢ to b. The
amplitude to follow such a path is the product of the kernels for each
part of the path. The kernel taken over all such paths that go from a to
b is obtained by integrating this product over all possible values of x4
and z..

We can continue this process until we have the time scale divided
into N intervals. The result is

K (b, a) / / K(b,N —1)K(N —1,N —2)---
TN ~1 T2v T1
xK(i+1,4)---K(1,a)dzy dzs - -dey—1 (2.33)

This means that we can define the kernel in a manner different from that
given in Eq. (2.22). In this alternative definition the kernel for a particle
to go between two points separated by an infinitesimal time interval € is

1 y . — R . . . .
K(i+1,i) = 5 exp {%EL (x“‘le Ti xz”; i tz“; ti) } (2.34)

which is correct to first order in €. Then by the rules for multiplying the
amplitudes of events which occur successively in time, we have

N-1

¢lz(t)] = lim g) K(i+1,1) (2.35)

for the amplitude of a complete path. Then, using the rule that am-
plitudes for alternative paths add, we arrive at a definition for K (b, a).
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It can be seen that the resulting expression is actually the same as
Eq. (2.22).

S PME REMARKS

In the relativistic theory of the electron we shall not find it possible
to express the amplitude for a path as e*>/* or in any other simple
way. However, the laws for combining amplitudes still work (with some
small modifications). The amplitude for a trajectory still exists. As a
matter of fact, it is still given by Eq. (2.35). The only difference is that
K(i+ 1,1) is not so easily expressed in a relativistic theory as it is in
Eq. (2.34). The complications arise from the necessity to consider spin
and the possibility of the production of pairs of electrons and positrons.

In nonrelativistic systems with a larger number of variables, and
even in the quantum theory of electromagnetic field, not only do the
laws for combining amplitudes still hold but the amplitude itself follows
the rules set down in this chapter. That is, each motion of a variable
has an amplitude whose phase is 1/ times the action associated with
the motion.

We shall take up these more complicated examples in later chapters.
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IN this chapter we shall develop the kernels governing some special types
of motion. We shall explore the physical meaning of the mathematical
results in order to develop some physical intuition about motion under
quantum-mechanical laws. The wave function will be introduced and its
relation to the kernel will be described. This represents the first step
in connecting the present approach to quantum mechanics with more
traditional approaches.

We shall also introduce some special mathematical methods for com-
puting the sum over all paths. The idea of a sum over all paths was de-
scribed in Chap. 2 with the help of a particular computational method.
Although that method may clarify the concept, it is an awkward tool
with which to work. The simpler methods introduced in this chapter
will be of great use in our future work.

Thus the present chapter has three purposes: deepening our under-
standing of quantum-mechanical principles, beginning the connection
between our present approach and other approaches, and introducing
some useful mathematical methods.

THE FREE PARTICLE

The Path Integral. The method used in Chap. 2 to describe a sum
over all paths will be used here to compute the kernel for a free particle.
The lagrangian for a free particle is

Thus with the help of Egs. (2.21) to (2.23) the kernel for a free particle
(distinguished by the subscript 0) is

. m \N/2
Ko(b,a) = g}—rf(l) (27r'ihe) (3:2)

. N
1m
X/"’/exp{é"ﬁg E (mi—xi_l)Q} dry---dry—_1
i=1

This represents a set of gaussian integrals, i.e., integrals of the form
i e~ dz or [ e~a%"+b% g Since the integral of a gaussian is again a
gaussian, we may carry out the integrations on one variable after the
other. After the integrations are completed, the limit may be taken.
The result is

4i00) = (55 =5 oo &:2)

42
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The calculation is carried out as follows. Notice first that

m \2/2 [ im
<27m'he) / eXp {5};‘;[(5’92 — 1)+ (21 - xo)z}} dz; =

m 1/2 im
(27rz'h : 2€> P { 2h - 2¢ (w2 $0)2} (34)
Next we multiply this result by
m \1/2 m
(zm'he) P {'2%2(5”3 B 332)2} (3:5)

and integrate again, this time over z5. The result is similar to that of
Eq. (3.4), except that (22 — z0)? becomes (3 — 2¢)? and the expression
2¢ is replaced by 3¢ in two places. Thus we get

m 1/2 im 9
(27%7?, - 3e> P { 2h - 3¢ (23 = 20) }

In this way a recursion process is established which, after n — 1 steps,
gives

( m )1/2X zm< ~ )2
2mih - ne P o e im0

Since ne = t, — to, it is easy to see that the result after N — 1 steps is
identical with Eq. (3.3).

There is an alternative procedure. Equation (3.4) can be used to
integrate over all variables z; for which 4 is odd (assuming N is even).
The result is an expression formally like Eq. (3.2), but with half as many
variables of integration. The remaining variables are defined at points
in time spaced a distance 2¢ apart. Hence, at least in the case that NV
is of the form 2%, Eq. (3.3) results from % steps of this kind.

Problem 3-1 The probability that a particle arrives at the point b
is by definition proportional to the absolute square of the kernel K (b, a).
For the free-particle kernel of Eq. (3.3) this is

m
P(b)dz = CE r— dx (3.6)
Clearly this is a relative probability, since the integral over the complete
range of z diverges. What does the particular normalization mean?
Show that this corresponds to a classical picture in which a particle
starts from the point a with all momenta equally likely. Show that the
corresponding relative probability that the momentum of the particle
lies in the range dp is dp/27h.
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Fig. 3-1 The real part of /i times amplitude to arrive at various distances z from the
origin after a given time ¢. The imaginary part (not shown) is an analogous wave 90°
out of phase, so that the absolute square of the amplitude is constant. The wavelength
is short at large =, namely, where a classical particle could arrive only if it moved with
high velocity. Generally, the wavelength and classical momentum are inversely related
(see Eq. 3.10).

Momentum and Energy. We now study some of the implications
of the free-particle kernel. For convenience let the point a represent the
origin in both time and space. The amplitude to go to some other point
b= (z,t)is

m \1/2 imaz?
Ko(z,t0,0) = (m) exp{ = } (3.7)

If time is fixed, the amplitude varies with distance as shown in Fig. 3-1,
in which the real part of viKo(z,t,;0,0) is plotted.

We see that as we get farther from the origin the oscillations become
more and more rapid. If z is so large that many oscillations have oc-
curred, then the distance between successive nodes is nearly constant,
at least for the next few oscillations. That is, the amplitude behaves
much like a sine wave of slowly varying wavelength A. Changing x by A
must increase the phase of the amplitude by 27. That is,

m(z+N)? mz? mzl  mi?
I = — = 3.
TS T ome ot Tt | ont (3:8)
Neglecting the quantity A2 relative to zA (that is, assuming z > A), we

find

2mh
m(z/t)

A= (3.9)
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From a classical point of view a particle which moves from the origin
to z in the time interval ¢ has a velocity z/t and a momentum mz /t.
From the quantum-mechanical point of view, when the motion can be
adequately described by assigning a classical momentum to the particle
of p = ma/t, then the amplitude varies in space with the wavelength

_h
p

We may show this relation still more generally. Suppose we have
some large piece of apparatus, such as a magnetic analyzer, which is
supposed to bring particles of a given momentum p to a given point. We
shall show that, whenever the apparatus is large enough that classical
physics offers a good approximation, then the amplitude for a particle to
arrive at the prescribed point varies rapidly in space with a wavelength
equal to h/p. For as we have seen, in such a situation, the kernel is
approximated by

K ~ exp {%Scz(b, a)} (3.11)

A (3.10)

Changes in the position of the final point z; cause variations in the
classical action. If this action is large compared to h (the semiclassical
approximation), the kernel will oscillate very rapidly with changes in z.
The change in phase per unit displacement of the end point is

. _l;agcl
N h 5&3()

but 0S.;/0xy is the classical momentum of the particle when it arrives
at the point z; (see Prob. 2-4). Thus p = hk. This quantity k, the phase
change per unit distance of a wave, is called the wave number, and it is
very convenient to use. Since the wavelength is the distance over which
the phase changes by 27, then k = 27w /\. Equation (3.12) is de Broglie’s
formula relating the momentum to the wave number of a wave, p = hk.

Next, let us study the time dependence of the free-particle kernel
given by Eq. (3.7). Suppose we hold the distance fixed and vary the
time. The variation of the real part of v/4 times the kernel is shown in
Fig. 3-2. Both frequency and amplitude change with ¢.

k

(3.12)
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%e{ﬂKo}

Fig. 3-2 The amplitude
to find the particle at
a given point varies with
time. The real part of
ViKp is plotted here. The
frequency of the oscilla-
tions is proportional to the
energy that a classical par-
ticle would have to have to
arrive at the point in ques-
tion within the time inter-
u val t.

fln .
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Suppose t is very large and neglect the change in amplitude with
variations of t. The period of oscillation T is defined as the time required
to decrease the phase by 27. Thus

maz> ma? ma:2< T )
27 =

— — 1
oht oG T) 2 \11 TR (8.13)

By introducing the angular frequency w = 27/T', and assuming ¢ > T,
we can write this equation as
m [T\2
~ (2 3.14
T <t> (3.14)
Since (m/2)(x/t)? is the classical energy of a free particle, this equation
says

Energy = hw (3.15)

This relation, like the one relating momentum and wavelength, holds
for any apparatus which can be adequately described by classical physics;
and, like the previous relation, it can be obtained from a more general
argument.

Referring to Eq. (3.11), any variation of the time ¢, of an end point
will cause a rapid oscillation of the kernel. The resulting frequency is

(3.16)

The quantity —8S;/0t, is interpreted classically as the energy E (refer
to Prob. 2-5). Thus

B
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In this way the concepts of momentum and energy are extended to
quantum mechanics by the following rules:

1. If the amplitude varies in space as e?*®, we say that the
particle has momentum hk.

2. If the amplitude varies in time as e™%?, we say that the
particle has energy hw.

We have just shown that these rules agree with the usual definitions of
energy and momentum in the classical limit.

Problem 3-2 Show by substitution that the free-particle kernel
Ky (b, a) satisfies the differential equation
0Ko(b,a) i [ A 8°Ko(b,a)

oty R | 2m  Oz?

(3.18)

whenever £, is greater than t,.

DIFFRACTION THROUGH A SLIT®

The Conceptual Experiment. We can learn more about the phys-
ical interpretation of quantum mechanics and its relation to classical me-
chanics by considering another, somewhat more complicated, example.
Suppose a free particle is liberated at ¢ = 0 from the origin and then, at
an interval of time 7T later, we observe that it is at a certain point X.
Classically, we would say that the particle has had a velocity V = X/T.
The implication would be that if a particle were left alone to continue
for another interval of time ¢/, it would move an additional distance
' = Vt'. To analyze this quantum-mechanically, we shall attempt to
solve the following problem:

At t = 0 the particle starts from the origin z = 0. After an interval T'
we shall suppose that it is known that the particle is within the distance
+b of X. We ask: After an additional interval ¢', what is the probability
of finding the particle at an additional displacement z’ from the position
X7 The net amplitude to arrive at this position z’ at the time 7"+ ¢/
can be considered as the sum of contributions from every trajectory that
goes from the origin to the final point, provided that that trajectory lies
in the interval 4+b from X at the time 7.

We shall calculate this in a moment, but first it is worth remarking
on what kind of an experiment we are contemplating here. How can
we know that the particle passes the point X within the interval £b7
One way would be to make an observation of the particle at the time
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x

L

Fig. 3-3 A particle starting at z = 0 when ¢ = 0 is determined to pass between X —b
and X +b at t = T. We wish to calculate the probability of finding the particle at
some point & at a time t’ seconds later, i.e., when ¢t = T'+t'. According to classical
laws, the particle would have to be between (X — b)(1 +¢'/T) and (X + b)(1 +t'/T),
that is, between the rectilinear extensions of the original slit. However, quantum-
mechanical laws show that such particles have nonzero probability of appearing outside
these classical limits.

We cannot approach this problem by a single application of the free-particle law of
motion, since the particle is actually constrained by the slit. So we break the problem
up into two successive free-particle motions. The first takes the particle from z = 0
att=0tox =X +yatt=T, where |y| < b. The second takes the particle from
z=X+yatt=Ttoxatt=T-++1t. The overall amplitude is an integral of the
product of these two free-particle kernels, as shown in Eq. (3.19).

T to see if it is within the interval b This would be the most natural
way to proceed, but it is somewhat more difficulty to analyze in detail
(because of the complicated interaction between the particle and the
observing mechanism) than another way of doing the experiment.

Suppose we look, say, with very strong light, everywhere all along the
x axis except within +b from the point X at the time 7. If we find the
particle, we discontinue the experiment. We consider only those cases
in which a thorough investigation of the region, except for the region
+b, shows no particle is present. That is, all trajectories which pass
outside the limits &b from X are rejected. The experimental situation
is diagramed in Fig. 3-3. The amplitude then can be written as

b
W(z') =/ KX+2,T+t;X+y,T)K(X +y,T;0,0) dy (3.19)
—b

This expression is written down in accordance with the rule for com-
bining amplitudes of events occurring in succession in time (Sec. 2-5).
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The first event is that the particle goes from the origin to the slit. The
second event is that the particle proceeds from the slit to the point 2’
further on. The slit has a finite width, and passage through each ele-
mental interval of the slit represents and alternative way of proceeding
along the complete path. Thus we must integrate over the width of the
slit. All particles which miss the slit are captured and removed from
the experiment. Amplitudes for such particles are not included. All the
particles which get through the slit move as free particles with kernels
given by Eq. (3.3). Thus the amplitude is

N [P m \1/2 im(z' — y)?
Wm)"/b(zm'ht') eXp{ 2t }

m \1/2 im(X + y)*
8 <2m'ﬁT> eXp{ ORT 2 (3:20)

This integral can be expressed in terms of Fresnel integrals. Such
a representation contains the physical results we are after, but in an
obscure way owing to the mathematical complexity of the Fresnel in-
tegral form. Rather than confuse the physical results by mathematical
complexity, we shall set up a different, but analogous, expression which
leads to a simpler mathematical form.

The Gaussian Slit. Suppose we introduce a function G(y) as a
factor in the integrand. If this function is defined as

_J1 for —b0<y<b
G(y)“{o for ly| > b

the limits of integration can be extended to infinity without any change
in the result. Then

P(z') = M/:G(y)exp{;—wg [(x';yy + (X;WH dy
(3.21)

Instead of this, suppose we define G(y) to be a gaussian function,
thus:

Gly) = e v'/2" (3.22)

This function has the shape shown in Fig. 3-4. The effective width of
such a curve is related to the parameter b. For this particular function,
approximately two-thirds of the area under the curve lies between —b
and +b.
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G(y)
Fig. 3-4 The form of the gaussian func-
tion G(y) = e~¥*/2*  The curve has
the same shape as the normal distribu-
tion with a standard deviation b.

—b— y

We do not know how to design metal parts for our imaginary ex-
periment which will produce such a gaussian slit. However, there is no
conceptual difficulty. We now have a situation in which the particles at
time T are distributed along the x axis with a relative amplitude pro-
portional to the function G(y). (The relative probability is proportional
to [G(y)]2.) If the particles move classically, we would expect, after a
succeeding interval of time ¢/, to find them similarly distributed along
the z axis with a new center a distance 2 beyond X and an increased
width parameter by given by

, t! t'

as shown in Fig. 3-5.
With such a gaussian slit the equation for the amplitude is
, m e im [z? X T
r) = exp{ — |~ + —
Vi) 2mihV/t'T [—oo P { 2R { t’ T

Lim[ @ X fimL ] 1,21,
Al e TV e\ ) T Y W

This integral is of the form

/oo exp{ay® + By} dy = \/:gr- exp {——g} for Re{a} <0 (3.25)

which is integrated by completing the square in the exponent. Thus the
amplitude becomes

(3.24)

ve) = zwi:m <(im/2ﬁ)(1/t':r1/T) _ 1./252)1/2 (3.26)
x eXp{im (Ef X2> + (m?/4R%) (=2’ /t' + X/T)? }

w\ T T T )T Gman) (e + 1/T) = 1/28
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The classical velocity to get from the origin to the center of the slit
is V = X/T. When we use this as a substitution and rearrange some of
the terms, the expression for the amplitude becomes

b)) = (= (T4t 4 T o (3.27)
—\V 27win mb? )

im [ ' (m2/2h2t/2)($/ _ Vt/)z
oD {'éﬁ (7 V2T> " /) (A6 + 1/T) — 1782 }

We shall consider first the relative probability for the particle to ar-
rive at various points along the x axis. This probability is proportional
to the absolute square of the amplitude. The absolute value of an expo-
nent with an imaginary argument is 1. So, by rationalizing the second
factor and the denominator in the last exponent of Eq. (3.27), we obtain

N_om b (z' = Vt')?
P(z") = o TAD exp{-———(—&;)—f—} (3.28)

where we have used the substitution

I\ 2 2112
(Am)sz2<l+t—> Lt

T m2b?
A\ 2 |

=b? + (WJ (3.29)
t
T 2b, :

¢ i
T 2b ‘ |

T : :
. )»{ L =

Fig. 3-5 The paths of particles moving through a gaussian slit. If the particles obeyed
classical laws of motion, as shown here, then the distribution at time T'+t’ would have
the same form as the distribution at time 7. The difference would be only a spreading
out proportional to the time of flight. The characteristic width of the distribution would
increase from 2b to 2b1, where b1 = b(1 +t'/T). For quantum-mechanical motion, the
actual spreading is greater than this.
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As we expected, the distribution is a gaussian centered about the
point zj = Vt' of Eq. (3.23). However, the spread of the distribution,
Az, is larger than the classical expected value b; of Eq. (3.23). This
can be interpreted in the following manner. Suppose a; and ay are two
independent random variables whose root-mean-square deviations about
their average values are respectively a; and ag. Then if ag = a1 + as,
the rms deviation of ag about its average value is az = (o + a)1/2.
Now, the rms deviation in a particular distribution is a measure of the
spread, or width, of the distribution. As a matter of fact, for the gaussian
distribution e~ /2" the rms value is b.

Thus in the present case we find that the quantum-mechanical system
acts as if it had an extra random variable zo whose rms deviation is

ht'

Axo = — .
9 mb (3 30)

It is this extra deviation Ax,, or spreading, rather than the apparent
extra variable xo, which has physical significance. That this term is
quantum-mechanical in nature is clear from the inclusion of the constant
h. Such a term is important for particles of small mass and for narrow
slits.

Thus quantum mechanics tells us that for small particles, passage
through a narrow slit makes the future position uncertain. This un-
certainty Az, is proportional to the time interval ¢t between passage
through the slit and the next observation of position. If we introduce
the classical notion of velocity, we can say that passage through a slit
causes a velocity uncertainty whose size is

ov = o

=— (3.31)

We could take the width parameter 2b of the slit as a measure of the
uncertainty of the position of the particle at the time it passed through
the slit. If we call this uncertainty dx and write the product muv as the
momentum p, then Eq. (3.31) becomes

dp dz = 2h (3.32)

Once more we have arrived at a statement of the uncertainty prin-
ciple. It tells us that, although classically the velocity might be known,
the future position has an additional uncertainty as though a random
momentum had been generated by passing through a slit of width dz. If
classical concepts are used to describe the results of quantum mechan-
ics qualitatively, then we would say that knowledge of position creates
uncertainty in momentum.
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What about the factors that appear in front of the exponent in
Eq. (3.28)7 If we integrate this expression over the complete range of
from —oo to 400, the result is

5 hT b/m (3.33)

This must be the probability that the particle gets through the slit, since
the integration includes those particles and only those particles which
did get through. But we have another way of obtaining this result.
Suppose we take the absolute square of the kernel K(X + y,T;0,0),
which comprises the second half of the integrand in Eq. (3.20). This
is just the probability per unit distance that the particle arrives at the
point X + y in the slit. That is,

P(any z) =

P(X +y)dy = dy (3.34)

QTLT

This probability is independent of the position along the slit. Thus,
if we were to multiply it by the width of the slit, we would obtain the
total probability for the particle to arrive at the slit. This implies that
the effective width of our gaussian slit is /7 b. Had we used the original
sharp-edged slit, we would have found the effective width to be 2b.

Problem 3-3 By squaring the amplitude given in Eq. (3.20) and
then integrating over z, show that the probability of passage through
the original sharp-edged slit is

P(going through) = me (3.35)
In the course of this problem the integral
/ e dx (3.36)
-0

will appear. This is the integral representation of the Dirac delta func-
tion of a.'

Thus the quantum-mechanical results agree with the idea that the
probability that a particle goes through a slit is equal to the probability
that the particle arrives at the slit.

Momentum and Energy. Next we shall verify again that, when
the momentum is definite, the amplitude varies as et**. We return to a
detailed study of the amplitude given in Eq. (3.27). This time we shall
try to arrange conditions in our experiment so that the particle velocity
after passing through the slit is known as accurately as possible.

TSee Eq. (A.9) in the table of integrals in the Appendix and L.I. Schiff, “Quantum
Mechanics,” 2nd ed., pp. 50-52, McGraw-Hill Book Company, New York, 1955.
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Quite apart from any quantum-mechanical considerations, there is a
classical uncertainty of b/T in the velocity. For any given slit width we
can make this uncertainty negligible by choosing 71" very large. We can
also make X extremely large so that the average velocity X/T' =V does
not go to 0. Considering V' and t’ as constants, the expression for the
amplitude in the limit of large T is

mb?

ima'?  (m?/2R%*?)(z' — V)2
X exp + :
2Rt im/ht! — 1/b2
Next we arrange that the quantum-mechanical uncertainty in mo-

mentum %/b is very small. That is, we take b very large, so we can
neglect 1/b2. Then the amplitude can be written

"o imV _,  imV?
Y(x") =~ const exp{ P 5% t}

5o\ —1/2
¥ (z") ~ const (1 + z’t'——-«) (3.37)

(3.38)

This is an important result. It says that, if we have arranged things
so that the momentum of a particle is known to be p, then the amplitude
for the particle to arrive at the point z at the time ¢ is

(z) ~ const LI (3.39)
R const exp y $pT = oo :

We notice that this is a wave of definite wave number k£ = p/h. Further-
more, it has a definite frequency w = p?/2mh. This means we can say
that a free particle of momentum p has a definite quantum-mechanical
energy (defined as 7 times frequency) which is p?/2m just as in classical
mechanics.

The probability of arriving at any particular x, which is proportional
to the square of the amplitude, is in this case independent of z. Thus
exact knowledge of velocity means no knowledge of position. In arrang-
ing the experiment to give an accurately known velocity we have lost
our chances for an accurate prediction of position. We have already
seen that the reverse is true. The existence of the quantum-mechanical
spread, inversely proportional to the slit width 2b, implies that an exact
knowledge of position precludes any knowledge of velocity. So, if you
know where it is, you cannot say how fast it is going; and, if you know
how fast it is going, you cannot say where it is. This again illustrates
the uncertainty principle.
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RESULTS FOR A SHARP-EDGED SLIT

Leaving the limiting case, suppose we return to a situation in which the
slit width and quantum-mechanical spread are comparable in size and
the times and distances of travel are not extremely large. We have seen
that a gaussian slit leads to a gaussian distribution. If we use that more
realistic sharp-edged version and work out the resulting Fresnel integrals,
the probability distribution at the time ¢ after passing through the slit

0.8 '

Fig. 3-6 The distribution of particles that have passed through sharp-edged
slits of various widths. These distributions are symmetric about the mean
position V(T +t’) so only the right-hand halves are shown. The classically-
predicted width by = b(1 +¢'/T) is indicated by a dashed vertical line. The
three distributions differ in the ratio of the classical width b; to the quantum-
mechanical spreading Azs: For curve (a), bi/Azy = 15; for curve (b),
bi/Azs = 1; and for curve (¢), bi/Aze = 1/15. In each case, the distri-
bution spreads beyond the classical width. The rms width of the distribution
is approximately equal to [(b1)? + (Axz2)?]'/2.
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This distribution is expressed® by

2 (3106 ~ O + 2ista) - S ) (340

P) = o+ )

where
(' = V)£ b(1+t'/T)
V (rht' /m)(1 4+t /T)

and C(u) and S(u) are the real and imaginary parts of the Fresnel
integral. The first factor in this probability distribution is identical to
the probability distribution of a free particle given in Eq. (3.6). The
remaining factor contains a combination of real and imaginary Fresnel
integrals.! It is this factor which is responsible for the variations shown
in the curves of Fig. 3-6.

Thus for both slits the general result is the same. The most probable
place to find the particle is within the classical projection of the slit.
Beyond this there is the quantum-mechanical spreading.

We have treated this problem as if it were a combination of two
separate motions. First the particle goes to the slit, and then it goes
from the slit to the point of observation. The motion seems almost
disjointed at the slit. It might be asked then, how does a particle with
such a disjointed motion “remember” its velocity and head in the general
direction predicted by classical physics? Or, to put it another way, how
does making the slit narrower cause as “loss of memory” until, in the
limit, all velocities are equally likely for the particle?

To understand this, let us investigate the amplitude to arrive at the
slit. This is just the free-particle amplitude given by Eq. (3.3), with
Zo = 0,t, =0, 2 = X +y, and t, = T. As we move across the
slit (vary y), both real and imaginary parts of the amplitude vary sinu-
soidally. As we have seen, the wavelength of this variation is connected
to the momentum (refer to Eq. 3.10). The subsequent motion is a re-
sult of optical-like interference among these waves. The interference is
constructive in the general direction predicted by classical physics and,
in general, destructive in other directions.

If there are many wavelengths across the slit (i.e., the slit is very
wide) the resulting interference pattern is quite sharp and the motion
is approximately classical. But suppose the slit is made so narrow that
not even one whole wavelength is included. There are no longer any
oscillations to give an interference, and velocity information is lost. Thus

Up = (3.41)

1Refer to p. 34 of E. Jahnke and F. Emde, “Tables of Functions,” Dover Publica~
tions, Inc., New York, 1943.
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in the limit as the slit width goes to zero all velocities are equally likely
for the particle.

THE WAVE FUNCTION

We have developed the amplitude for a particle to reach a particular
point in space and time by closely following its motion in getting there.
However, it is often useful to consider the amplitude to arrive at a par-
ticular place without any special discussion of previous motion. Then
we would say ¢(z,t) is the total amplitude to arrive at (z,t) from the
past in some (perhaps unspecified) situation. Such an amplitude has the
same probability characteristics as those we have already studied; i.e.,
the probability of finding the particle at the point z and at the time ¢
is |¥(z,t)|?. We shall call this kind of amplitude a wave function. The
difference between this and the amplitudes we have studied before is
just a matter of notation. One often hears the statement: The system
is in the “state” . This is just another way of saying: The system is
described by the wave function ¥(z, t).

Thus the kernel K (xp,tp; Zo,ta) = ¥(xp,tp) is actually a wave func-
tion. It is the amplitude to get to (xs,ts). The notation K (zp, ts; 24, ts)
gives us more information, in particular, that this is the amplitude for
a special case in which the particle came from (z,,%,). Perhaps this
information is of no interest to the problem, so that there is no point
in keeping track of it. Then we just use the wave function notation
/9/)» (:Uby tb) .

Since the wave function is an amplitude, it satisfies the rules for
combination of amplitudes for events occurring in succession in time.
Thus since Eq. (2.31) is true for all points (z,,t,), we see that the wave
function satisfies the integral equation

(T, tp) =/ K (xp, ty; e, te) (e, te) dze (3.42)

This result can be stated in physical terms. The total amplitude
to arrive at (zp,tp) [that is, 1 (xp, tp)] is the sum, or integral, over all
possible values of z. of the total amplitude to arrive at the point (z., t.)
[that is, ¥(z., t.)] multiplied by the amplitude to go from ¢ to b [that
is, K(zp,tp; T, te)]. This means that the effects of all the past history
of a particle can be expressed in terms of a single function. If we forget
everything we knew about a particle except its wave function at a par-
ticular time, then we can calculate everything that can happen to that
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particle after that time. All of history’s effect upon the future of the
universe could be obtained from a single gigantic wave function.

Problem 3-4 Suppose a free particle has a definite momentum at
the time ¢ = 0 (that is, the wave function is Ce!®/M)®). With the help of
Egs. (3.3) and (3.42), show that at some later time the particle has the
same definite momentum (i.e., the wave function depends on z through
the function e!®/M%) and varies in time as e~(#/M(®*/2m)t This means
that the particle has the definite energy p*/2m.

Problem 3-5 Use the results of Prob. 3-2 and Eq. (3.42) to show
that the wave function of a free particle satisfies the equation

oy i [ B o%
5 " R [‘5‘7;;57] (3.43)

which is the Schrodinger equation for a free particle.

GAUSSIAN INTEGRALS

We are finished with the physical portion of this chapter, and we now
proceed to mathematical considerations. We shall introduce some addi-
tional mathematical techniques which will help us to compute the sum
over paths in certain situations.

The simplest path integrals are those in which all of the variables
appear up to the second degree in an exponent. We shall call them
gaussian integrals. In quantum mechanics this corresponds to a case in
which the action S involves the path z(¢) up to and including the second
power.

To illustrate how the method works in such a case, consider a particle
whose lagrangian has the form

L = a(t)i? + b(t)dz + c(t)z® + d(t)E + e(t)z + f(¢) (3.44)

The action is the integral of this function with respect to time between
two fixed end points. (Actually, in this form the lagrangian is a little
more general than necessary. The factor & could be removed from those
terms in which it is linear through an integration by parts, but this fact
is unimportant for our present purpose.) We wish to determine

K(b,a) = /ab exp {% /:7 L(z,z,t) dt} Dz (t) (3.45)

the integral over all paths which go from (z4,tq) to (zs,%s).
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Of course, it is possible to carry out the integral over all paths in the
way which was first described (in Sec. 2-4) by dividing the region into
short time elements, and so on. That this will work follows from the fact
that the integrand is an exponential of a quadratic form in the variables
& and z. Such integrals can always be carried out. But we shall not
go through this tedious calculation, since we can determine the most
important characteristics of the kernel in the following manner.

Let Z(t) be the classical path between the specified end points. This
is the path which is an extremum for the action S. In the notation we
have been using

Secilb, al = S[z(t)] (3.46)
We can represent z(t) in terms of Z(¢) and a new function y(#):
z(t) = Z(t) + y(t) (3.47)

That is to say, instead of defining a point on the path by its distance
z(t) from an arbitrary coordinate axis, we measure instead the deviation
y(t) from the classical path, as shown in Fig. 3-7.

t

Z

Fig. 3-7 The difference between the classical path Z(t) and some possible
alternative path x(¢) is the function y(t). Since the paths must both reach the
same end points, y(ta) = y(t») = 0. In between these end points y(¢) can take
any form. Since the classical path is completely fixed, any variation in the
alternative path z(t) is equivalent to the associated variation in the difference
y(t). Thus, in a path integral, the path differential Dz(¢) can be replaced by
Dy(t), and the path z(¢) by Z(¢) + y(t). In this form Z(¢) is a constant for the
integration over paths. Furthermore, the new path variable y(t) is restricted
to take the value 0 at both end points. This substitution leads to a path
integral independent of end-point positions.
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At each t the variables z and y differ by the constant Z. (Of course,
this is a different constant for each value of ¢t.) Therefore, clearly, dz; =
dy; for each specific point ¢; in the subdivision of time. In general, we
may say Dz(t) = Dy(t).

The integral for the action can be written

Sz(t)] = S[E() + (1)) = /t la(t)@ + 259+ §7) + - dt (3.48)

If all the terms which do not involve y are collected, the resulting integral
is just S[Z(t)] = Se. If all the terms which contain y as a linear factor
are collected, the resulting integral vanishes. This could be proved by
actually carrying out the integration (some integration by parts would
be involved); however, such a calculation is unnecessary, since we already
know the result is true. The function Z(t) is determined by this very
requirement. That is, Z(¢) is so chosen that there is no change in §, to
first order, for variations of the path around Z(¢). All that remains are
the second-order terms in y. These can be easily picked out, so that we
can write ‘

Slz(t)] = Salb, a] + /t b [a(t)y® + b(t)yy + c(t)y?] dt (3.49)

The integral over paths does not depend upon the classical path, so
the kernel can be written

0 . ty
K(ba) = e0/mubel [“ex {% / o) + )i+ o0y dt} Dy(t)
(3.50)

Since all paths y(¢) start from and return to the point y = 0, the
integral over paths can be a function only of times at the end points.
This means that the kernel can be written as

K(b,a) = et/MSalbal gy, ) (3.51)

so K is determined except for a function of ¢, and t,. In particular, the
kernel’s dependence upon the spatial variables x;, and z, is completely
worked out. It should be noted that the dependence of the kernel upon
the coefficients of the linear terms d(t) and e(t) and the remaining coef-
ficient f(¢t) is also completely worked out.

This seems to be characteristic of various methods of doing path in-
tegrals; a great deal can be worked out by some general methods, but
often a multiplying factor is not fully determined. It must be deter-
mined by some other known property of the solution, as, for example,
by Eq. (2.31).
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It is interesting to note that the approximate expression K ~ etet/f
is exact for the case that S is a quadratic form.

Problem 3-6 Since the free-particle lagrangian is quadratic, show
that (Prob. 2-1)

(3.52)

K (b,0) = F(ty, ta) exp { im(zy — )’ }

Sty — ta)

and give an argument to show that I’ can depend only on the difference
Ft, — ta).

Problem 3-7 Further information about this function F' can be
obtained from the property expressed by Eq. (2.31). First notice that
the results of Prob. 3-6 imply that F'(t, — t,) can be written as F(¢),
where  is the time interval ¢, —t,. By using this form for F in Eq. (3.52)
and substituting into Eq. (2.31), express F(¢ + s) in terms of F(¢) and
F(s), where t = t, — t. and s = t, — t,. Show that if F' is written as

1/2
F(t)= () £ (353)
the new function f(¢) must satisfy
ft+s)=f(t)f(s) (3.54)
This means that f(¢) must be of the form
ft) = e (3.55)

where a may be complex, that is, a = o + ¢8. It is difficult to obtain
more information about the function f(¢) from the principles we have
so far laid down. However, the special choice of the normalizing factor
A defined in Eq. (2.21) implies that f(e) = 1 to first order in e. This
corresponds to setting a in Eq. (3.55) equal to 0. The resulting value of
F(t) is in agreement with Eq. (3.3).

It is clear from this example how the important properties of path
integrals may be easily obtained even though the integrand may be a
complicated function. So long as the integrand is an exponential function
which contains the path variables only up to the second order, a solution
that will be complete except possibly for some simple multiplying factors
can be obtained. This is true regardless of the number of variables.
Thus, for example, a path integral of the form

l d pb
/k / / exp{E[e(t), y(0), .., ()]} Da(t) Dy(t)--- Da(t)  (3.56)
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contains as its important factor es, where E,; is the extremum of F

subject to the boundary conditions. The only restriction is that in terms
of the variables z, y, and so on, E is a function of the second degree.
The remaining factor is a function of the times at the end points of
the paths. For most of the path integrals which we shall study, the
important information is contained in the exponential term rather then
in the latter factor. In fact in most cases we shall not even find it
necessary to evaluate this latter factor. This method of solving path
integrals will be used frequently in the succeeding chapters.

MOTION IN A POTENTIAL FIELD

One simple application comes in the classical limiting case in which the
action S is very large compared to Planck’s constant i. As we have
already pointed out for this situation, the kernel K is approximately
proportional to e?5</% We can now see more mathematically the basis
of this approximation. Only those paths quite near to the classical
path Z(t) are important, so suppose we make the substitution z(t) =
Z(t) + y(t). Now if the particle is moving through the potential V(z),
we can write

2 3
V(z) =V(z+y) = V(@) +yV' @)+ TV"(@) + LV @)+ (357)
where the prime indicates differentiation with respect to « and all deriva-
tives are evaluated along the classical path Z. Only small values of y are
important, so suppose V is a sufficiently smooth function that we can
neglect terms of order ¢ and higher. Thi$ means that we assume that
y3V'"" and all higher-order terms are negligible compared to the terms
kept.

Under this assumption the integrand can be expressed as a quadratic
form in y. In fact, since Z makes S extreme,

S = 8, + terms second order in y.

The important term in the result is e?®=/% where now, of course, S

contains the potential V(Z) along the classical path. The remaining
integral over y goes from 0 to 0 and is of the form of the last factor in
Eq. (3.50). It provides a smooth function as a factor to eiSe/h,
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The result is true in situations other than the classical limiting case.
For example, suppose V(z) is a quadratic function of x. Then the solu-
tion is exact, since the expansion of V(z) as in Eq. (3.57) contains no
powers higher than the second. Some examples of this type are given
in the problems. As another example, suppose V(z) is a slowly varying
function. In particular, if the third and higher derivatives are extremely
small, the result given above is a very accurate approximation. This
particular case is called the WKB approximation in quantum mechan-
ics.

There are other situations in which the approximation is good. Sup-
pose the total time interval for the motion is very short. If a particle
moves along a path differing greatly from the classical path, it must have
a very large extra velocity (to go out from the initial point and then re-
turn to the final point in the allotted time interval). The extra kinetic
energy is proportional to the square of this large velocity, and the action
contains a term roughly proportional to the kinetic energy multiplied
by the time interval (thus, the square of the velocity multiplied by the
time interval). The action for such paths will be very large, and the
phase of the amplitude will vary greatly for closely neighboring paths.
In this case again it is reasonable to drop the higher-order terms in the
expansion of V(z).

Problem 3-8 For a harmonic oscillator the lagrangian is
2

_ M. T 4
L= 5 52 (3.58)
Show that the resulting kernel is (see Prob. 2-2)
tmw p
K = F(T)exp {m[(azg + z2) coswT — 2:1:1,:1:@}} (3.59)

where T' = t;, — t,. Note that the multiplicative function F(T") has not
been explicitly worked out. It can be obtained by other means, and for
the harmonic oscillator® it is (see Sec. 3-11)

F(T) = < mw )1/2

2mih sin wT' (3.60)
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Problem 3-9 Find the kernel for a particle in a constant external

field f where the lagrangian is

L= %532 + fo (3.61)

The result is

K:( m )1/2€Xp{i {:m(xb”wa)2+fT($b+$a)___sz:T}

omihT B oT 2 24m
(3.62)
where T =t — t,.

Problem 38-10° The lagrangian for a particle of charge e and mass
m in a constant external magnetic field B, in the z direction, is

B
L= %—(c&z 9?4 5%) + %c—(:cy' — &y) (3.63)
Show that the resulting kernel is
m \3/2 [ WwI/2 im [ (25 — 24)?
K= (-2 _wiie am 2 Za) .
(zm'h:r) (sin(wT/Q)) P { oh [ T (364)

+ (s ) = a4 (o~ 90+ wlanee = 2o

where T = t;, — t, and w = eB/mc.
Problem 8-11 Suppose the harmonic oscillator of Prob. 3-8 is
driven by an external force f(¢). The lagrangian is

mw?

L= T—;-:aﬂ - o+ f(t)z (3.65)

Show that the resulting kernel is (with 7' = ¢, — t,)

K- ( mw )1/2 giSa/h

2mih sinwT
where
mw 9 5 B
Set = ST {(wb + ) coswT — 2z, (3.66)
2z, [ .
— t t—1t t
+ mw ), f(t) sinw( o) d
2z, [ .
t ty —t)d
+mw 5 f(t)sinw(ty —t) dt
2 ty, pt
T 202 /t /t f)f(s)sinw(ty —t)sinw(s — ty) dsdt
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This last result is of great importance in many advanced problems.
It has particular applications in quantum electrodynamics because the
electromagnetic field can be represented as a set of forced harmonic
oscillators.

Problem 3-12 If the wave function for a harmonic oscillator is (at
t=0)

— )2
$(@,0) = exp { (z—a) } (3.67)
then, using Eq. (3.42) and the results of Prob. 3-8, show that
T | |
¥(@,T) = exp {"%’“ - 7721—;:[ 2 _2age™T 4 g2 cos(wT)e‘“"T]}

(3.68)

and find the probability distribution |12

SYSTEMS WITH MANY VARIABLES!

Suppose a system has several degrees of freedom. A kernel for such a
system can be represented by the form of Eq. (2.25), where the symbol
x(t) now represents several coordinates rather than just one.

We take as a first example a particle moving in three dimensions.
The path is defined by giving three functions z(¢), y(t), and z(t). The
action for a free particle, for example, is
m [

5/ [2(t)% + 9(t)? + 2(t)?) dt
The kernel to go from some initial point (24, Ya, 24) at time £, to a final
point (zp,yp, 2p) at time tp is

[{(xb7ybﬂzb7tb;$a7ya7 zcuta) = (369)
b i tp m
[ {; [ 580470 + 2] de| Dato) D)) D20
a ta

The differential is written as Dxz(t) Dy(t) Dz(t). If the time is divided
into intervals €, the position at the time t; is given by three variables
Zi, Yi, #; and the integral over all variables is dz;, dy;, dz; for each i
in an expression like Eq. (2.22). (More generally, if we represent the

1R.P. Feynman, Space-Time Approach to Non-relativistic Quantum Mechanics,
Rev. Mod. Phys., vol. 20, p. 371, 1948.
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position by a vector x in some s-dimensional space, the differential at
each time interval is the volume element d®x; and the corresponding
path differential is D*x.)

If the definition of Eq. (2.22) is used, then the normalizing constant
A (Eq. 2.21) must be included for each variable in each time interval.
Thus if the total time interval is broken up into N steps of length €, the
factor A~3Y must be included in the integral.

Another situation involving several variables is that of two interact-
ing systems. Suppose one system consists of a particle of mass m and
coordinate xz while the other system is a particle of mass M and co-
ordinate X. Suppose these two systems interact through a potential
V(z,X). The resulting action is

Slz(t), X (8)] = /t t {Zg—x? + —Ag—XZ - V(:c,X)} it (3.70)

so that the kernel is

b pb .
K (o, Xo, 3520, Xart0) = | | exp{%sw),X(m} De(t) DX (1)
(3.71)

One might understand this generalization of Eq. (2.25) mathemati-
cally. Thus one might consider the motion of a point in some abstract
two-dimensional space of coordinates z, X. However, it is much easier to
think of it physically as representing the motion of two separate particles
whose coordinates are respectively z and X. Then K is the amplitude
that the particle of mass m goes from the point in space-time (zg,t4)
to (zp,t5) and the particle of mass M goes from (Xg,t,) to (Xp, ).
The kernel is then the sum of an amplitude taken over all possible paths
of both particles between their respective start and end points. The
amplitude for any particular pair of paths (i.e., both z(t) and X (t) are
specified) is e*¥/", where S is the action defined in Eq. (3.70). Mathe-
matically, the amplitude is a function of two independent functions z(t)
and X (t), and the integral is over both of the variable functions.

SEPARABLE SYSTEMS

Suppose we have a situation in which two particles are present, both
moving in one or perhaps more dimensions. Let the vector x represent
the coordinates of one particle and the vector X represent the coor-
dinates of the other, as in the paragraph above, except that now we
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extend the picture to a three-dimensional space. It may happen that
the resulting action can be separated into two parts, as

S[x, X] = Su[x] + Sx[X] (3.72)

where S, involves only the paths x(¢) and Sx involves only the paths
X(t). This is the situation when the two particles do not interact.

In this case the kernel becomes the product of one factor depending
on x alone and another depending on X alone. Thus

Xb7Xb7tb>Xa7Xavt )

/ / exp{ W] + Sx[X ]H@%«;(t)@fgxw
:/a exp{%S[}} Dex( t)/ exp{ Sx[X ]} DEX (1)

- Kfﬁ(xb?tngad (l)KX(Xb)t67Xa>ta) (373)

Here K, is the amplitude computed as if only the particle of coordinates
x were present, and K x is defined similarly. Thus in a situation involving
two independent noninteracting systems, the kernel for an event involv-
ing both systems is the product of two independent kernels. These are
the kernels for each particle to carry out its individual portion of the
overall event.

The wave function in a situation involving several particles is defined
in a straightforward manner by analogy with the corresponding kernel
as ¥(x,X,...,t). It is interpreted as the amplitude that, at time ¢, one
particle is at the point x, another particle is at the point X, etc. The
absolute square of the wave function is the probability that one particle
is at point x per unit volume, another particle is at the point X per unit
volume, etc. Equation (3.42), which holds for the one-dimensional case,
can be immediately extended to read

£ = (3.74)
/ KK XX (X ) X dEX

Where d3x’ is the product of as many differentials as there are coordi-
nates in x’ space.

In case two independent particles are represented by the sets of co-
ordinates x and X, then the kernel K is the product of one function of x
and t and another of X and ¢, as mentioned above. However, this does
not imply that, in general, ¥ is such a product. In the special case that
1) is at some particular time a product of a function of x and another of
X (thus ¥ = f(x)g(X)), then it will remain so for all time. Each factor
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will change as it would for the partial system alone, since the kernel K
represents the independent motion of two particles. But this is a special
case. Just because the particles are independent now does not mean
that they always were. There may have been some interaction in the
past, which would imply that ¢ is not a simple product.

Even though the action S does not appear as a simple product in the
original coordinate system, there is often a transformation (such as that
of center-of-gravity and internal coordinates) which will make it separa-
ble. Since the same form for the action is used in quantum mechanics as
in classical physics, any transformation which will separate a classical
system will also separate the corresponding quantum-mechanical sys-
tem. Thus a part of the great body of work in classical physics can be
applied directly to quantum mechanics. Such transformations are very
important. It is hard to deal with a system consisting of several vari-
ables. Separation of variables permits us to reduce a complex problem
to a number of simpler problems.

THE PATH INTEGRAL AS A FUNCTIONAL

When a problem contains more than one variable and a separation is
not possible, the analysis is generally very difficult. Later on we shall
discuss some approximations which can be applied to this case. Here we
shall describe one very powerful tool which can sometimes be applied.
Consider the kernel given by Eq. (3.71). This can be written out in
detail as

b rb . ty to
K(b,a):// exp{% mzdt+h/ Mdet
a Ja to

_% V(gj X, t) dt} z(t) DX (t) (3.75)

First, suppose we carry out the integral over the paths X (¢). The
result can be written forma,lly as

K(b,a) = / bexp{—% i g" 2dt} Tle(t)] Da(t) (3.76)
where
T(z(t)] = /a ’ exp {% /t jb {—j\;x-‘z —Vi(z, X, t)} dt} DX (t) | (3.77)

These results are interpreted in the following manner. Integrating
over all paths available to the X particle produces a functional T. A
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functional is a number whose value depends on specifying a complete
function. For example, the area under a curve is a functional of the
curve: A = [ f(y)dy. To find it, a function (the curve) must be speci-
fied. We write a functional as A[f(y)] to indicate that A depends on the
function f(y). We do not write A(f(y)), for that might be interpreted
as a function of a function, i.e., that A just depends what value f takes
at some specified point y. This is not the case. A[f(y)] depends on the
entire shape of the function f(y). It does not depend on y in any way.

The functional defined in Eq. (3.77) is the amplitude that the X
particle alone goes between its end points X, and X}, under the influence
of a potential V. This potential, which depends upon both z and X,
is computed assuming x is held to be a fixed path as X changes. Thus
it is the potential for the X particle when the z particle is moving
along a specific trajectory. Clearly, this amplitude 7' depends upon the
trajectory chosen for z(t), so we write it as a functional of z(t). Then
the total amplitude is obtained by summing over all paths a functional
consisting of the product of 7" and the free-particle kernel for z(¢).

Thus the amplitude K, like all others, is a sum over the amplitudes
of all possible alternatives. Each of these amplitudes is a product of
two lesser amplitudes. The first of these is the amplitude 7" that the X
particle goes between its given end points when z has a specified trajec-
tory. The second is the amplitude that = has that specified trajectory.
The final sum over alternatives becomes the sum over all possible tra-
jectories of z. It is important to understand this concept clearly, for it
includes one of the fundamental principles of quantum electrodynamics,
a subject which will be taken up in a later chapter.

Of course it is not practical to use this method unless the integral
T can actually be worked out, either exactly or approximately, for the
possible values of the trajectory z(t). As we have seen (in Prob. 3-11)
one exact case it that in which X is a harmonic oscillator. This is a very
important practical case. For example, when a particle interacts with a
quantized field, the field is an oscillator.

INTERACTION OF A PARTICLE AND
A HARMONIC OSCILLATOR

We shall consider in more detail the interaction of a particle and a
harmonic oscillator. Let the coordinate of the particle be x and that of
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the oscillator be X. The action can be written as
tp ity M .
Sz, X] = Solz] + / g(z(t),t) X () dt + / ~—2-—(X2 —w?X?) dt (3.78)
ta ta

where Sy is the action of the particle in the absence of the oscillator. In
the discussion above (Sec. 3-9) we assumed that this action corresponded
to that for a free particle. This assumption is not necessary. The motion
of z could be complicated by the existence of a potential depending upon
z and t only. Thus, for example, the action Sy might be

m . .o

Solz] = /t ’ (Zi2 V(a0 ar (3.79)

The second term in Eq. (3.78) represents the interaction between the
particle and the oscillator. Note that this term is linear in X. Omission
of a dependence upon X does not imply any loss in generality, since
if such a term were to occur, it could be removed by an integration
by parts. We can call the coefficient ¢ the coupling coefficient. Its
dependence upon z(t) is indicated, but it could also depend upon other
variables, such as #(t). Since the analysis we are presenting is general,
it is not important to write down the exact form of g. The last term in
Eq. (3.78) is, of course, the action of the oscillator alone. By combining
this with the second term, the functional T" of Eq. (3.77) can be written
as

Tla(t)] = / o { % /t t {g(m(t),t)X(t) + -A;(X-? —szz)} dt} DX(#)
(3.80)

Now as far as X is concerned, the situation is just that of a forced
harmonic oscillator. The forcing function g(z(t),t) is some special func-
tion of ¢, say, f(¢t). Thus the path integral is the same as that considered
in Prob. 3-11, with f(¢) replaced by g(z(t),t) and the final and initial
coordinate values (zp, z,) replaced by (Xp, X,).

For illustrative purposes, to simplify the expressions somewhat, we
take the special case in which the oscillator initially and finally is at the
origin, so X = X, = 0. (The general case is just as easily handled.)
Then according to Prob. 3-11 in this case we have

Mw 1/2 —1
r= (271'2'?& sin wT) P { hMwsinwT (381)

X /tjb/t: g(x(t),t)g(z(s), s)sinw(ty, — t)sinw(s — t,) ds dt}
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Therefore, the kernel for the present situation can be written

Mw 1/2
50,0 = (gt

<[ en{; [50{ - m‘l“m
/t jb / N (2(s), 8) sinw(ty — t) sinw(s — ta) ds dt} } Da(t)

with a similar (but more complicated) expression for arbitrary X,, Xp.

This is a more complicated path integral than any we have had to
solve so far. It is not possible to proceed further with the solution until
various methods of approximation have been developed in succeeding
chapters. Note that the integrand of this path integral can still be
thought of as being of the form e**/* but now S is no longer a function
of only &, x, and t. Instead, S contains a product of variables defined at
two different times, s and t. The separation of past and future can no
longer be made. This happens because the variable x at some previous
time affects the oscillator which, at some later time, reacts back to affect
z. No wave function 9(z,t) can be defined to give the amplitude that
the particle is at some particular place = at a particular time ¢. Such
an amplitude would be insufficient for continuing calculations into the
future, since at any time one must also know what the oscillator is doing.

(3.82)

3-11 EVALUATION OF PATH INTEGRALS BY FOURIER SERIES

Consider the path integral for the harmonic oscillator problem (Prob.
3-8). This is

K(b,a) = /ab exp {-% /t:b %(azQ — w?z?) dt} Dzx(t) (3.83)

Using the methods of Sec. 3-5 this path integral can be reduced to a
product of two functions, as in Prob. 3-8. The more important of these
two functions depends upon the classical orbit for a harmonic oscillator
and is given in Eq. (3.59). The remaining function depends upon the
time interval only and is written down in Eq. (3.60). This latter function
can be written as

0 . T
F(T) = /O exp{% /O %(QQ—wzyQ)dt} Dy(t) (3.84)
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We shall solve this, at least to within a factor independent of w, by a
method which illustrates still another way of handling path integrals.
Since all paths y(t) go from 0 at ¢t =0 to 0 at ¢ = 7', such paths can be
written as a Fourier sine series with a fundamental period of 7'. Thus

y(t) = Z an sin n_7rt (3.85)

It is posmble then to specify a path through the coefficients a,, instead
of through the function values y at any particular value of ¢. This is
a linear transformation whose jacobian J is a dimensionless constant,
obviously independent of w, m, and h.

Of course, it is possible to evaluate this jacobian directly. However,
here we shall avoid the evaluation of J by collecting all factors which
are independent of w (including J) into a single constant factor. We can
always recover the correct factor at the end, since we know the value for
w = 0, namely F(T) = (m/2nihT)'/? (a free particle).

The integral for the action can be written in terms of the Fourier
series of Eq. (3. 85) Thus the kinetic-energy term becomes

T
nmw mm nmt mmnt
—/ 7P dt = ZZ T T anam/O COS - cos—-—-——T dt

n=1m=1
mT o= (nT\2
-1 () 039
and similarly the potential—energy term is
mw? [T, mw? T
— dt = ———— 2 :
5 /o Y 2 3 . as (3.87)

On the assumption that the time T is divided into discrete steps of
length € (asin Eq. 2.19) so that there are only a finite number N of
coefficients a.,,, the path integral becomes

= [ [ e g S [GR) -o] )

o day dasg _”daN
A A A
Since the exponent can be separated into factors, the integral over each
coefficient a,, can be done separately. The result of one such integration
is

0 imT 7r2 5\ o) dag 2\ 2 /n2n? ) —1/2
i\ ey T =F) e

(3.89)

(3.88)
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Thus the path integral is proportional to

N 2,2 -1/2 N 2.2\ —1/2 N 22\ —1/2
nm 9 _ nm w=T
I (% - ) "E(T‘?) I(1-%%) 69

The first product does not depend on w and combines with the jacobian
and other factors we have collected into a single constant. The second
factor has the limit [(sinwT)/wT)~'/? as N — oo, that is, as € — 0.
Thus

W ~L2
sinw ) (3.91)

Py o (122

where C' is independent of w. But for w = 0 our integral is that for a
free particle, for which we have already found that

m 1/2
= .92
F(T) (ZM'FLT> (3.92)
Hence for the harmonic oscillator we have
mw 1/2
F(T) = (5 s (3.93)

which is to be substituted in Eq. (3.59) to obtain the complete solution.

Problem 3-13 By keeping track of all the constants, show that the
jacobian satisfies

r\ o \WH/2 [Ny
S I i N — .94
J (\/5> (7&‘26) gn — as 00 (3.94)






The Schrodinger Description
of Quantum Mechanics



THE path integrals which we have discussed so far (with the exception
of Eq. 3.82) have integrands which are exponentials of actions with the

property
S[b,a] = S[b, c] + Sle, a (4.1)

Such path integrals can be analyzed in terms of the properties of integral
equations which can be deduced from them. We have already seen this
in Chap. 2 (e.g., Eq. 2.31) and Chap. 3 (e.g., Eq. 3.42).

A still more convenient method is to reduce the path integrals to
differential equations if possible. This possibility exists in quantum me-
chanics and is, in fact, the most convenient way to present that theory.
It is in almost every case easier to solve the differential equation than
it is to evaluate the path integral directly. The conventional presenta-
tion of quantum mechanics is based on this differential equation, called
the Schrédinger equation. Here we shall derive this equation from our
formulation. We shall not solve this equation for a large number of exam-
ples, because such solutions are presented in a detailed and satisfactory
fashion in other books on quantum mechanics.’

In this chapter our purpose is twofold: (1) For the reader primarily
interested in quantum mechanics our aim is to connect the path integral
formulation with other formulations which are found in the standard
literature and textbooks so that he can continue his study in those books
and can learn to translate back and forth between the two different
languages. (2) For the reader primarily interested in path integrals this
chapter will show a technique which is available for a certain class of
path integrals to reduce these path integrals to differential equations.
This technique is best shown by the particular example of quantum
mechanics which we shall develop here.

THE SCHRODINGER EQUATION

The Differential Equation Form. The reason that we can develop
a differential equation is that the relationship of Eq. (4.1) is correct for
any values of the points a, b, and ¢. For example, the time ¢, can be
only an infinitesimal time e greater than the time ¢.. This will permit
us to relate the value of a path integral at one time to its value a short
time later. In this manner we can obtain a differential equation for the
path integral.

1For example, see L.I. Schiff, “Quantum Mechanics,” 2nd ed., McGraw-Hill Book
Company, New York, 1955.
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We have already found that as a consequence of Eq. (4.1) we can
define a wave function. Furthermore, we know that the equation

(s, t5) = / K (b, th; Tay ta)th(2a, to) dia (4.2)

gives the wave function at a time ¢, in terms of the wave function at a
time t,. In order to obtain the differential equation that we seek, we
apply this relationship in the special case that the time t, differs only
by an infinitesimal interval € from ¢,. The kernel K (b, a) is proportional
to the exponential of ¢/A times the action for the interval ¢, to ;. For a
short interval e the action is approximately € times the lagrangian for this
interval. That is, using the same approximation at that of Eq. (2.34),
we have

w<x,t+e>=;§[_ exp{%eL (“;y,”§y>}w<y,t>dy (4.3)

We shall now apply this to the special case of a particle moving in
one dimension subject to a potential energy V(z,t), i.e., that for which
L = (m/2)i* — V(z,t). In this case Eq. (4.3) becomes

sotrd =g [ ep iRl
X eXp {—%ev (xgy;t) } Y(y,t) dy (4.4)

The quantity (z — y)?/c appears in the exponent of the first factor.
It is clear that if y is appreciably different from z, this quantity is very
large and the exponential consequently oscillates very rapidly as y varies.
When this factor oscillates rapidly, the integral over y gives a very small
value (because of the smooth behavior of the other factors). Only if y is
near = (where the exponential changes more slowly) do we get important
contributions. For this reason we make the substitution y = z + 1 with
the expectation that appreciable contributions to the integral will occur
only for small n. We obtain

R A imn?
w(a:,t—l—e)-—A/_ooeXp{ Zﬁe}

xexp{-«%eV (:c+ g,t)}w(sc+77,t) dn (4.5)

The phase of the first exponential changes from 0 to of 1 radian when
n changes from 0 to /2%e/m, so most of the integral is contributed by
values of 7 in this order.
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We may expand v in a power series. We need only keep terms of order
¢. This implies keeping second-order terms in 7. The term eV (z+7/2,1t)
may be replaced by €V (z,t) because the error is of higher order than e.
Expanding the left-hand side to first order in € and second order in 7,
we obtain

b(z, 1) +e-8—t—- A/ {Zm" } (4.6)

3 2 2
X {1 - ﬁeV(x,t)] [w(:v,t) +77(791p- + 75&% dn

If we take the leading term on the right-hand side, we have the quantity
¥ (x,t) multiplied by the integral

1 [ imn?) .1 (2mihe\"?
Z/_ooexp{ Zhe}dn—Z( - ) (4.7)

On the left-hand side we have just ¥(x,t). In order that both sides agree
in the limit € approaches 0, it is necessary that A be so chosen that the
expression of Eq. (4.7) equals 1. That is,

a (2’/Tiﬁ€> 12 (4.8)

m

as we have stated previously (see Eq. 2.21). This is a way of obtaining
the quantity A in more complicated problems also. The A must be so
chosen that the equation is correct to zero order in e. Otherwise, no
limit will exist as € approaches 0 in the original path integral.

In order to evaluate the right-hand side of Eq. (4.6), we shall have
to use two integrals

1 [ imn? B
Z/_oonexp{ e }dn-O (4.9)
and
1 [ imn? _ihe
A/_wn eXp{ e }dn-— — (4.10)
Writing out the right—hand side of Eq. (4.6) gives

87,0 zhe 5‘2¢

This will be true to order e if w(:c, t) satisfies the differential equation

—— o+ V(:c,t)w} (4.12)
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This is the Schrédinger equation for our problem of a particle moving in
one dimension. Corresponding equations in more complicated situations
can be worked out in the same way, as demonstrated by the following
problems.

Problem 4-1 Show that for a single particle moving in three di-
mensions in a potential energy V(x,t) the Schrodinger equation is
OY(x, 1) A

5~ 7 *va Y(x,t) + V(x,t)(x,t) (4.13)
This equation was discovered by Schrodinger in 1925 and formed the
central feature of the development of quantum mechanics thereafter.

The Operator Form. The equations which result from various
problems corresponding to different forms for the lagrangian can all be
written for convenience in the form
o

7
= = -5 Hy (4.14)

Here H does not represent a number but indicates an operation on .
It is called the hamiltonian operator. For example, in Eq. (4.12) this
operation is

h* 92
2m 92
Such an equation with operators on both sides means this: If any

function f(z) is written after each operator on each side, the equation
will be true. That is, Eq. (4.15) symbolizes the statement: The relation

1) = -2

2m  Ox?

holds for any function f(z).

H=- +V(z,¢) (4.15)

+V(z,t)f () (4.16)

Problem 4-2 For a particle of charge e in a magnetic field the
lagrangian is

L= fg-xZ + SX-A(x,t) — ed(x, 1) (4.17)

where x is the velocity vector, ¢ is the velocity of light, and A and
¢ are the vector and scalar potentials. Show that the corresponding
Schrédinger equation is

O _ 1L (Mg _ea). Py ¢
weilmle ) (o]
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Thus the hamiltonian is

Ekzj;<EV~§A)-(nV—§A)+e¢ (4.19)

2m \ 1 )

Problem 4-3 Show that the complex conjugate function 1*, defined
as the function ¢ with every i changed to —i, satisfies
o™ i

7 =+ (HY)" (4.20)

The notation for operators can be described by giving a number
of examples. For example, the operator z means multiplication by z,
the operator 2 means multiplication by z2, the operator V(z) (some
function of z) means multiplication by V(z), the operator 8/0x means
partial differentiation with respect to x, ¢ /0x, etc.

If A and B are operators, then the operator AB means that we first
apply B and then A, that is, ABY means A(Bv). Thus, for example,
the operator z(8/0x) means = times 01/0x. On the other hand, the
operator (8/0z)x means the partial derivative with respect to x of z7,
or

%(m/») = :v-g—ﬁ + 1

We see that in general the operator AB and the operator BA are not
identical.

We further define the operator A+ B by the rule that A+ B operating
on ¥ is Ay + B1. For example, the previous equation can be written as
an equation among operators as follows:

—& = a:é— +1 (4.21)

the meaning being that (0/0z)xf = x(0/0x)f + f for any function f.
Problem 4-4 Show

R (4.22)

and therefore that, for the H of Eq. (4.15),

)
Hy—oH=-—— :
z—xH o (4.23)

This operator notation is used a great deal in the conventional for-
mulations of quantum mechanics.
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The Schrédinger Equation for the Kernel. Since K (b, a), thought
of as a function of the variables b, is a special wave function (namely,
that for a particle which starts at a), we see that K must also satisfy a
Schrodinger equation. Thus for the case specified by Eq. (4.15)

D ey =L [P e v EGa (4.24)
Oty " R 2mozE Y ’ . '
for tp, > t,. In general we have

—-—(?—K(b,a) = —~—Z-Hz,K(b, a) forty > t, (4.25)
Oty h

wherein the operator Hp operates on the b variables only.

Problem 4-5 Using the relation
K(b,a) = / Kb, 0)K(c, a) dze (4.26)

with ¢, — t, = ¢, an infinitesimal, show that if ¢; is greater than ¢, the
kernel K satisfies

0 i
—K(b,a) =+
o, K ba) =43

where H, now operates on the a variables only.

HK (b, ) (4.27)

The function K (b, a) defined by a path integral in Eq. (2.25) is de-
fined only for t, > t,. The function is not defined if ¢, < t,. It will prove
to be very convenient in later work (e.g., Chap. 6) to define K(b,a) to
be zero for t, < t,. (With this convention Eq. (4.2), for example, is valid
only if tp > t,.) With the condition

K(b,a) =0 forty <t, @ (4.28)

it is evident that Eq. (4.25) is satisfied also for t, < ¢, (in a trivial
fashion, of course, since K = 0). But this equation is not satisfied at
the point t, = t,, because K (b, a) is discontinuous at t, = t,.

Problem 4-6 Show that K(b,a) — §(zp — z,) as t, — t4 + 0.

From the result of Prob. 4-6 we see that the derivative of K with
respect to t, gives a delta function in the time multiplied by the height
of the jump, §(zp — z,). Hence K (b, a) satisfies

0

K (b,a) = —%be(b, a) + 8(xp — 22)0(tp — ta) (4.29)
b
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This equation plus the boundary condition of Eq. (4.28) could serve
to define K (b,a) if one were to have started out from the Schrodinger
equation as the fundamental definition in quantum mechanics. It is
clear that the quantity K(b,a) is a kind of Green’s function for the
Schrédinger equation.

The Conservation of Probability. The hamiltonian operator
given by Eq. (4.15) has the interesting property that, if f, g are any
functions which fall off to zero at infinity,

e 0] [e.@]
| worsia= | gapa (4.30)
— o0 had .0}

The meaning of the symbols is this. On the left we are to take g, operate
on it with H (forming Hg), and then take the complex conjugate. The
result is then multiplied by f and integrated over all space. The result
is the same as taking H f, multiplying by the complex conjugate of g,
and integrating. It is easily verified that this is true by integrating the
term [(Hg)*f dz (by parts, where necessary).

For our example in Eq. (4.15) we have for the left side of Eq. (4.30)

hQ d2 * oo
7},2 g 0 de oo
_ d *
5 { } g gz 0 + /_ _ Vg™ fdr
(integrating by parts twice). If f, g, fall off at infinity, the integrated

parts vanish and Eq. (4.30) is established. An operator which has the

property given by Eq. (4.30) is called hermitian. In all cases of quantum

mechanics the hamiltonian is hermitian. For more general cases than

that considered above the integraﬂion over our one-dimensional variable

x becomes an integration (or sum) over all the variables of the system.
If we put f and g equal to ¥(z,t), we get

/ O:O<Hw>*w i [ O:O o+ (H) da (432)

and if 1) satisfies the wave equation (4.14), this becomes

[maw*wd +/ 0 Bt %([Zw*wdw>zo )

That is, [¢*¢ dz is a constant independent of time. This is easily
interpreted. For if ¢ is suitably normalized, ¥*¢ is the probability
of being found at x; so the integral is the probability of being found
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somewhere, which is certainty (or 1) and is constant. Of course, as far
as the wave equation is concerned ¥ can be multiplied by any constant
and still be a solution. Then ¥*¢ is multiplied by the square of the
constant, and the integral is this constant squared.

It is fundamental to our definition of % as probability amplitude that
the integral of ¥*1 is constant. In terms of the kernel this means that if
f is the wave function at time £,, then at time ¢, it has the same square
integral. That is, if

- /_ " K(b,a)(a) dze (4.34)

then

/ * (D) (b) dzpy = / [ (a)f(a)dz, (4.35)

/OO /OO /OO K* b xa7ta,)K(b) xa,,ta)f*(g}:z)f(fﬂa) d{l}a dg';/a dxb —
| reaie) i, -

For this to be true for arbitrary f we must have
x
/ K*(b;xl,t,) K (byz,,t,) dr, = 6(z), — z,) (4.37)

That is, in order to interpret 1 as a probability amplitude, the ker-
nel must satisfy Eq. (4.37). We have derived this by means of the
Schrédinger equation. It would be nicer to demonstrate this and other
properties, such as Eq. (4.38) and Prob. 4-7, directly in terms of the
path integral definition of K instead of coming through the differential
equation. It is possible, of course, but it is not so simple or neat as
a derivation of such a fundamental relation should be. One can verify
Eq. (4.37) as follows: For a small interval with t, = ¢, + €, Eq. (4.37)
follows directly from the expression e**L/" for this interval. By induc-
tion, the complete Eq. (4.37) results. One disadvantage of the approach
to quantum mechanics through path integrals is the fact that relations
involving ¥* or K* are not self-evident.

By changing the variable name in Eq. (4.37) from a to ¢, multiplying
by K(c,a), and integrating over z., we find

[m K*(b,c)K(b,a) dxy, = K(c,a) (4.38)
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where, as usual, t, > t. > t,. Compare this to [ K(b,¢)K(c,a)dz, =
K (b,a). We may describe the second relation this way: Starting at .,
K(c,a) gives us the amplitude at the later time .. If we wish to go to
a still later time t,, we can do so by using the kernel K(b,¢). On the
other hand, if having the amplitude at £, we want to work back to find it
at an earlier time ¢, < tp, we can do this by using the function K*(b, ¢),
according to Eq. (4.38). That is, K*(b, ¢) undoes the work of K(c,b).

Problem 4-7 Show that [ K*(b,a)K(b,c)dzy, = K*(c,a), where
our usual convention of t, > t, > t, holds.

THE TIME-INDEPENDENT HAMILTONIAN

Steady States of Definite Energy. The special case that the
hamiltonian H is independent of time is of great practical importance.
This corresponds to the case that the action S does not depend on the
time explicitly; e.g., the potentials A and ¢, and the potential energy
V, do not contain t. In this case the kernel cannot depend upon the
absolute time but instead is a function only of the interval t, — t,. As a
consequence, there exist wave functions that depend periodically on the
time.

It is easiest to see what happens by studying the differential equation.
Starting from the Schréodinger equation (4.14), we try a special solution
of the form ¥ (z,t) = ¢(z) f(t), a function of position only multiplied by
a function of time only. Substitution gives us the relation

H(@)f () =+ [Ho(@)]£(2) (139
F) _ i Ho)
O A 6w (440

The left-hand side of this equation does not depend upon z, whereas the
right-hand side does not depend upon t. Because they are always equal
neither side can depend upon either variable ¢ or . That is, each side is a
constant. Let us call the constant —(i/h)E. Then f'(t) = —(i/h)Ef(t),
or f(t) = foe~C/ME where fy is an arbitrary constant factor. Thus the
special solution is of the form

W(z,t) = (a)e /M (4.41)
where ¢(x) satisfies

He(z) = E¢(z) (4.42)
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That is, for this special solution the wave function oscillates with
the same definite frequency at every point in space. We saw (Eq. 3.17)
that the frequency with which a wave function oscillates corresponds,
in classical physics, to the energy. Therefore, we say that when the
wave function is of this special form, the state has a definite energy E.
For each value of E a different particular function ¢(x), a solution of
Eq. (4.42), must be sought.

The probability that a particle is at x is the absolute square of the
wave function ¥ (z), or [4(z)>. In view of Eq. (4.41) this is equal to
|¢(x)|? and does not depend upon the time. That is, the probability of
finding the particle at any location is independent of the time. We say
under these circumstances that the system is in a stationary state —
stationary in the sense that there is no variation in the probabilities as
a function of time.

This situation is somewhat related to the uncertainty principle; for
in a situation in which we know that the energy is exactly E we must be
completely uncertain of the time. This is consonant with the idea that
the properties of an atom in a specific state are absolutely independent
of the time, so that at any time we would obtain the same result.

Suppose that E; is a possible energy for which Eq. (4.42) has a
solution ¢1(z) and that Es is another value for energy for which this
equation has some other solution ¢o(z). Then we know two special
solutions of the Schrodinger equation, namely,

Y1 (z,t) = ¢ (x)e” /B and  ahy(2,t) = P (z)e~ (/M) E2E (4.43)

Since the Schrodinger equation is linear, it is clear that if 1 is a solution,
then so is c¢ip. Furthermore, if ¢ is a solution and 15 is a solution, then
the sum 11 + 15 is also a solution. Evidently, then, the function

W(z,t) = cr¢ (z)e” C/MEL 1y, ()™ (/P E2t (4.44)

is also a solution of the Schrodinger equation.

As a matter of fact, it can be shown that if all of the possible values
of E and the corresponding functions ¢(x) are worked out, any solution
¥(z,t) of Eq. (4.14) can be written as a linear combination of these
special solutions of definite energy.

The total probability to be anywhere is constant, as we showed in
Sec. 4-1. This must be true no matter what the values of ¢; and ¢q, so
that, using Eq. (4.44) for ¥(z,t), we have

[ dz = cie, [¢16) da + clepet MBI folg, da (4.45)
+ Clcgew(i/h)(ErEz)tf(/blﬁb; dz + Cgczf(/ﬁ;ﬁbz dz
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Since this must give a constant result, the time-varying terms (i.e., terms
including e®(#/P)(E1=F2)t) must vanish for all possible choices of ¢; and
co. This means that

/ " $1(@)y(c) do = / " 1 (@)65(@) dw = 0 (4.46)

When two functions f(z) and g(z) satisfy [ f*(z)g(z)dz = 0, we say
they are orthogonal. Thus Eq. (4.46) says that two stationary states of
different energies are orthogonal.

In Sec 5-2 we shall learn an interpretation for expressions such as
[ 7*(z)g(z) dz, and we shall find that Eq. (4.46) records the fact that
if a pa,rtlcle is known to have energy E; (and hence a wave function
Y1 = e~ (/MEt4 ) then the amplitude that it is found to have a different
energy Es (i.e., wave function ¢y = e~(#/MF2tp,) must be zero.

Problem 4-8 Show from the fact that H is hermitian that £ is
real. (Hint: Choose f = g = ¢ in Eq. (4.30).)

Problem 4-9 Show from the fact that H is hermitian that Eq. (4.46)
holds. (Hint: Choose f = ¢2, g = ¢1 in Eq. (4.30).)

Linear Combinations of Steady-state Functions. Suppose that
our functions corresponding to the set of energy levels E,, are not only
orthogonal but also normalized, i.e., that the integral of the absolute
square over all z is 1. Then we shall have

/ o ( z) dT = Opm (4.47)

where p, m, the Kronecker delta, is defined by 0p,,, = 0 if n # m and
dn,n = 1. Many functions can be expressed as a linear combination of
such ¢,(z)’s. In particular, any function which is likely to arise as a
wave function can be so expressed. That is,

=3 andn() (4.48)

The coeflicients a,, are easily obtained: multiply Eq. (4.48) by ¢7,(x)
and integrate over all z to obtain

| n@i@a=3 e | @@ do = am (4.49)
-0 n=1 o0

That is,

-/ " @) f (@) do (4.50)
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Thus we have the identity

Z(pn(a: / b (y)fy) dy = [ N {qun(wm(y)} f(y) dy

This shows that, in terms of the Dirac delta function,

5z —y) Z &, ( (4.52)

It is possﬂole to express the kernel K (b, a) in terms of these functions
¢n(z) and energy values F,,. We do so by the following consideration.
Let us ask this: If f(z) is the known wave function at the time t,, what
is the wave function at time ¢,7 It can be written at any time ¢ as

W(z,t) = Z cne” (/M Entg, () (4.53)
n=1

for it is a solution of the Schrédinger equation, and any solution can be
written in this form. But at the time ¢, we have

fz) =v(x,t,) = ZC e~ (/R Enta g Zanqﬁn (4.54)

since we can always express f(z) in the form of Eq. (4.48). So we
conclude

Cn = apet /M) Enta (4.55)

Putting this into Eq. (4.53), we have

Yz, tp) = Zc e~ (/M) En nteg (2 Za e~ (/M) En(te=ta) g (x) (4.56)

Now using Eq. (4.50) for the coefﬁc:1ent ar,, We obtain

Y(@,tp) = Y pn(w)e” /MLt / én (W) f () dy
n=1 -0

= / D G (@) (y)e CMEnete) £(y) dy (4.57)
—0 n=1

This final expression determines the wave function at time £, com-
pletely in terms of f(z), the wave function at time ¢,. Previously we
represented this relation by the equation

b(a,ty) = / K (2, t:y, ta) /() dy (4.58)
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Comparing Eqgs. (4.57) and (4.58), we finally obtain the desired expres-
sion for the kernel K (b, a),

b ()% (14)e~ WM E(to=ta)  for ;> ¢,
;::1 () (ze) (4.59)

K(.’L’b, ib: Ta, ta) -
0 for tp, < t,

This expression for K(b,a) is very useful for translating expressions

to more conventional representations. It expresses the kernel, which was

originally a path integral, entirely in terms of solutions of the differential
equation (4.42).

Problem 4-10 Verify that K(b,a) as expressed in Eq. (4.59) satis-
fies the Schrodinger equation (4.29).

Problem 4-11 Show that for free particles in three dimensions the
solutions

p(x) = ! P/ (4.60)

go with the energy Ep = p?/2m. Consider the vector p as an index n
and note the orthogonality. That is, as long as p # p’,

/ Pp (X)Pp (%) d*x =0 even if By, = Ey (4.61)

Therefore the free-particle kernel must be

Ko(Xp, ty; Xa, ta) = Z o (P/1)-(xo—x%a) o= (i/R) (P /2m) (ts—ta) (4.62)
P

Since the p’s are distributed over a continuum, the sum over the “in-
dices” p is really equivalent to an integral over the values of p, namely

3
SO= O (4.63)

Therefore, we find that the free-particle kernel is given by

) (xp—x — (4 m —_ d3
Ko(xb,tb;xa,ta>:/e“p/’@( b=xa) o= (8/) (0% /2m) (b %)_(_2_7_?_7%_?: (4.64)
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Problem 4-12 Carry out the integral in Eq. (4.64) by completing
the square. Show that the correct free-particle kernel (i.e., the three-
dimensional version of Eq. 3.3) results.

NORMALIZING THE FREE-PARTICLE
WAVE FUNCTIONS

The derivation of the kernel for a free particle, as given in Prob. 4-11,
is unsatisfactory for two related reasons. First, the idea of a sum over
distinct states n used in Eq. (4.59) is not satisfactory if the states lie
in a continuum, as they do for a free particle where any p is allowed.
Second, the plane-wave functions for free particles, although orthogonal,
cannot be normalized; that is, ffooo P*pdr = ffooo ldx = o0, so the
condition of Eq. (4.47), used in deriving Eq. (4.59), is not satisfied.
Both of these points can be remedied together in a perfectly straight-
forward mathematical way. Starting all the way back when we expressed
an arbitrary function as a sum of eigenfunctions,

F@) =) andn(z) (4.65)

we allow part, or all, of the states to lie in a continuum, so that the sum
over n must be replaced partly by an integral. With mathematical care
one can find the correct expression for K analagous to Eq. (4.59) but
applying also when the states are in a continuum.

Normalizing in a Box. Many physicists prefer another, less rig-
orous approach. They modify the original problem in a way that (from
physical reasoning) will not essentially modify the result yet will leave
all the states separate in energy and all the simple sums as simple sums.
In our example this may be accomplished as follows. We are studying
the amplitude that in a finite time a particle goes from x, at time ¢, to
xp at time ¢,. Now if these two points are some finite distance apart and
the time is not extremely long, surely it can make no appreciable dif-
ference to the amplitude whether the electron is really free or is instead
confined to some enormous box of volume “Vol” with walls very, very
far from x, and xp. The amplitude could be affected only if the particle
could run out to the walls and back in the time t, — t,; but if the walls
are far enough away, there is no appreciable amplitude for this.

In is always possible that this assumption fails for some special-
shaped walls such that, for example, X; is at a focus of waves from x,
reflected at the walls. From time to time someone lets an error creep in
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by replacing a system in empty space with one at the center of a large
spherical box. The fact that this system remains at the exact center of a
perfect sphere may have an effect (like the spot of light at the center of
the shadow of a perfectly circular object) which does not vanish as the
sphere radius goes to infinity. For another shape, or a system off-center
to the sphere, the surface effect would vanish.

Take first the case of one dimension. In empty space the sp,ac{%—
dependent wave functions are e“?/™® (any p, positive or negative). If,
instead, the range of z is limited to —L/2 to +L/2, say, what are the
functions ¢(x)? The answer depends on the boundary conditions defin-
ing ¢(x) at x = —L/2 and © = +L/2. The easiest conditions to un-
derstand physically are those for walls which offer very high repulsive
potentials to the particle, thus confining it (i.e., perfect reflectors). They
correspond to ¢(z) = 0 at z = —L/2 and = = +L/2. The solutions of
the wave equation

2 52
9% gy (4.66)

2m 0z?
in the range |z| < L/2 are, for E = p?/2m = h*k?/2m,

eika: and e——ilaw

or any linear combination. Neither e**® nor e~*** can satisfy the bound-
ary conditions, but with k¥ = nn/L (n an integer) satisfactory solutions
are given by half the sum (which is cos(kz)) for n odd and i/2 times
the difference (which is sin(kz)) for n even, as diagrammed in Fig. 4-1.
Thus the states are sines and cosines and the energy levels are separated
(i.e. not in a continuum).

If the solutions are written as

\/%cos(km) and \/—%Sm(kx)

then they are normalized, since

/:;Zz (\/%cos(kx)) 2 dr =1 (4.67)

A sum over states is a sum over n. If we consider, say, the sine wave
functions (thus, even values of n) for very large L but not large z (walls
far from the point of interest), the successive functions differ by only a
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Fig. 4-1 The form of the one-
dimensional wave functions which
have been normalized in a box.
The first four are shown. The

corresponding energy levels are
Ei = h*n?/2mL? E» = 4E,
Es = 9F4, and FEy = 16F:. The

magnitude of the energy in abso-
lute terms, which depends on the
size of our fictitious box, is not

important for more realistic prob-
lems. Rather, it is the relation be-
tween the energy levels of the var-
| ious states which has significance.

small amount. This difference
2 . xz . z
\/% [sm (.‘Zw(n o+ 1)-E> — sin (ZWTLZ”
/2 2n+1xz\ . lz
=\ [2 cos (27r 5 Z) sin (277—2—- Z)]

227w T

is approximately proportional to the small quantity /L. So a sum on
n can be replaced by an integral over k = 27n/L. Since the successive
allowed values of k (for sine functions) are spaced by 27 /L, there are
(L/27) Ak states in range Ak. All of this applies also to states with the
cosine wave function, so that we may replace sums by integrals in our
formulas with

o) 00 I
;( )*—*fo ()5 dk (4.69)

and remember to add the result for the two kinds of wave functions,

namely, /2/L cos(kz) and /2/L sin(kzx).
It is often inconvenient to use sin(kx) and cos(kz) for the wave func-
tions as we would like to use the linear combinations

e = cos(kx) +isin(kz) and e %% = cos(kz) — isin(kz)

We were forced by our box to use sines and cosines and not the linear
combination, because for a given k one, but not both, of the functions
is a solution. But if we can disregard small errors arising from these
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small differences in k, we might still expect to be able to get the correct
results from these new linear combinations. Normalized, they are

1. 1.
E ezkw and Z e——zhw

Since the wave e~ %% can be thought of as e**® but for negative values
of k, our new procedure, including the addition of the two kinds of wave
functions, becomes the following practical rule:

To deal with free-particle wave functions e***  normalize them to a
range of z of length L (i.e., use ¢(x) = 1/1/L e***), and replace sums on
states by integrals over k with the rule that the number of states with &
in the range k to k + dk is (L/27) dk and the range of k is —oo to +oo.

Periodic Boundary Conditions. Sometimes this excursion into
cosines and sines and back to exponentials is avoided by the following
argument. The wall is artificial anyway, so its particular position and the
particular boundary condition should not make any physical difference
as long as it is far away. So instead of the physically simple conditions
¢(z) =0at z = +L/2 and at = —L/2, let us use two others for which
the solutions are indeed e**® directly. These are

6(z) (m 7= +§> — 4(z) (m = —g) (4.70)
and
& (z) (at v = +§> — ¢/(2) (at 5= —9 (4.71)

These are called periodic boundary conditions, because the same ones
would result by the requirement that ¢(x) is periodic in z in all space
with period = L. It is readily verified that the functions /1/L e**®
are solutions, normalized to range L, provided ¥ = 27n/L with n an
integer: positive, negative, or zero. From this our rule follows directly.

In three dimensions we can see what happens by using a rectangu-
lar box of sides Ly, Ly, L, in the three directions. Let us use periodic
boundary conditions. That is, the magnitude and first derivatives of a
wave function at a point on one face are respectively equal to the mag-
nitude and first derivative at the corresponding point on the opposite
face. The normalized wave function for a free particle is

[Tk / I i y | I I
— =T | VWY, [ oW E = e ¥ 4.72
La; Ly Lz A Vol ( )

where Vol = L;L, L, is the volume of the box and the allowed values
of k are 2wn, /L, for n, an integer, those of k, are 2wn, /L, for ny an
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integer, and those of k, are 2mn,/L, for n, an integer. Furthermore,
the number of solutions with k; in range dkg, ky in dk,, and k, in dk,
is

Ly, Ly, L, Vol 4
o dhs 5 Y dky = dks = itk (4.73)

That is, use plane waves normalized to volume “Vol”: exp{ik-x}/+/Vol.
The number of states in range d®k (differential volume of k space) is
Vold®k/(27)3.

Let us apply this to Prob. 4-11 and recall the connection between mo-
mentum and wave number p = Ak brought out in Sec. 3-1. In Eq. (4.64)
we must make two changes. First, since the wave functions used were
exp{ip-x/h}, whereas we should have used

1 oxc {z’pox}
v/ Vol P17n
there should be an additional factor 1/Vol; for the product of two wave
functions was involved. Second, the symbol

Z( ) must be replaced by V. 1/( ) 4’p
P e (27h)3

P

This justifies what was done in Prob. 4-11.
It is noted that the “Vol” factors cancel out, as indeed they must;

for as Vol — oo the kernel K(b,a) must be independent of the size of
the box.

Some Remarks on Mathematical Rigor. The reader may have
one of two reactions on seeing how the volumes “Vol” cancel at the
end of this calculation. One might be: How nicely it cancels out as
it should, for the walls have no effect. The other might be: Why do
it in the complicated and “dirty” nonrigorous manner, putting in walls
which make no difference, etc., when all this can be done much more
elegantly and rigorously mathematically without the need of walls, etc?
It depends on whether you are physically minded or mathematically
minded. There are many misunderstandings between mathematicians
and physicists on the place of mathematical rigor in physics, so perhaps
a word as to the value of each method (the box or mathematical rigor)
may be in order.

There is, of course, the more trivial point: Which is most familiar
— which takes the least new knowledge? Most physicists have seen this
argument about how to count the states in a box before.
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Another point is that the mathematically rigorous solution may not
be physically rigorous. That is, the box may in fact exist. It may not be
a rectangular box, but it is not often that experiments are done under
the stars. Rather they are done in a room. Although it is physically
reasonable that the walls have no effect, it is true that the original prob-
lem is set up as an idealization. It is no more satisfactory idealization
to move the walls to infinity than to replace them by perfect mirrors far
away. The mathematical rigor is wasted in the first idealization, since
the walls are not at infinity.

The box approach is just as rigorous, or rather just as nonrigorous. It
has several advantages. For example, in finding that the volume cancels
out we do learn that at least one aspect of the idealized walls, namely
how far away they are, is unimportant. This discovery makes us more
intuitively convinced that the actual disposition of the real environment
may be unimportant. Finally, the formula derived is very useful when
in fact we do have a finite sample. For example, in Chap. 8 we shall use
it to count sound-wave modes in a large, rectangular block of material.

On the other hand, the advantage of the mathematically clean ar-
gument is the avoidance of much unnecessary detail that cancels out.
Although, using the box approach, one may learn something about how
the walls have no effect, one may be firmly convinced that this is true
anyway and not wish to descend into details to see it again.

The normalization problem is a special example, but it illustrates
the point. The physicist cannot understand the mathematician’s care
in solving an idealized physical problem. The physicist knows the real
problem is much more complicated. It has already been simplified by
intuition, which discards the unimportant and often approximates the
remainder.
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So far we have described quantum-mechanical systems as if we intended
to measure only the coordinates of position and time. Indeed, all mea-
surements of quantum-mechanical systems could be made to reduce
eventually to position and time measurements (e.g., the position of a
needle on a meter or the time of flight of a particle). Because of this
possibility a theory formulated in terms of position measurements is
complete enough in principle to describe all phenomena. Nevertheless,
it is convenient to try to answer directly a question involving, say, a mea-
surement of momentum without insisting that the ultimate recording of
the equipment must be a position measurement and without having to
analyze in detail that part of the apparatus which converts momentum
to a recorded position. Thus, in this chapter, instead of concentrating
on the amplitude that a particle has a definite position, we shall develop
the idea of an amplitude to find a definite momentum, energy, or other
physical quantity.

In the first section of this chapter we shall show how a system may be
described in terms of momentum and energy. The concepts learned here
will be extended in the second section to describe in general various ways
of representing the quantum-mechanical system. The transformation
functions which enable us to go from one method of representation to
another have many interesting properties. Among them is the concept
of an operator, which was introduced in the preceding chapter and will
be discussed further in the third section of this chapter.

THE MOMENTUM REPRESENTATION

The Momentum Amplitude. So far we have used the concept
of probability in terms of the position of a particle, but suppose we
wish to measure the momentum. Is there an amplitude ¢(p) whose
absolute square will give us the probability P(p) that a measurement of
momentum will show that the particle has momentum p? There is in
fact such an amplitude, and we can easily find it.

Some ways of measuring momentum (or other physical quantities)
correspond to measurements of position, and thus they can be analyzed
if we know how to analyze coordinate measurements. For example,
working in one dimension, suppose we have a particle whose position at
t = 0 is localized within &b of the origin of the x axis. The uncertainty
b can be as large as desired so long as it is finite. We can measure the
momentum of such a particle by a time-of-flight technique. That is, we
can observe how far the particle has traveled (assuming no forces) by

96
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the time ¢t = T'. If the position is y, then the velocity is y/T and the
momentum is p = my/T. The error in such a momentum measurement,
+mb/T, can be made as small as desired by making T sufficiently large.

Suppose we analyze the momentum probability P(p) as defined by
such an experiment. The probability P(p)dp that the momentum lies
between p and p+ dp is the probability P(y) dy that, if all the potentials
affecting the particle are suddenly turned off, then after the time T the
particle will be found between the points y and y + dy. Of course, this
requires that we connect p with y by p = my/T. Assume the wave
function of the particle is given by f(z) at ¢ = 0, and our problem is to
find P(p) directly in terms of f(z).

The amplitude for the particle to arrive at y at the time ¢t =T is

= /_OO Ko(y,T;z,0)f(z) dx (5.1)

Upon substitution for the free-particle kernel Ky (Eq. 3.3), this expres-
sion becomes

m )1/2 (5.2)

Wy, T) = (2 —
" imy? °° im(—2yz + z2)
X exp{ SET }/_OO exp{ SHT }f(az) dz

The absolute square of this amplitude gives the probability that the
particle lies between y and y + dy. According to our definition, this is
identical (in the limit 7' — oo) with the probability that the momentum
of the particle lies between p and p + dp.

oo 2| o )

=Plp)dp  asT — 0 (5.3)

2

Then substituting p = my/T', and supposing that we pass to the limit
of large T, there results

o0 —ipz  imaz?
d
/ exp{ T f(z)dx
We assumed earlier that, initially, the particle would be restricted
to a region within £b of the origin. This means that the initial wave
function f(x) drops to 0 for values of x larger in absolute magnitude

than b. Now as T becomes large the quantity imb?/2hT becomes negli-
gibly small. Since there is no contribution to the integral of Eq. (5.4) for

dp 2

P(p)dp = 21h

(5.4)
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Fig. 5-1 The amplitude for a particle traveling freely to arrive at position y after
time interval T is determined by the convolution of two functions. The first is the
amplitude f(z) for the particle to start at position z, as indicated by the shaded curve
in the figure. The second, the amplitude to go from x to y, is the free particle kernel
Ko(y,T;z,0), indicated by the sine wave of slowly changing wavelength. (Shown here
is Re{V/iKo(y, T;x,0)} as a function of z for fixed y and T'.) If the point y is far from
the origin, compared to the distance —b to -+b over which f(x) is nonzero, the wave has
an approximately constant wavelength near the origin. Its form there is approximately
proportional to exp{(—i/h)(my/T)z}. The two functions are multiplied together and
then integrated over z to find the amplitude for arrival at y. Since the particle has
traveled approximately the distance y (again assuming y >> b) in time T', this amplitude
is equivalent to the amplitude that the particle has momentum p = my/T.

values of = greater in absolute magnitude than b, the probability P(p) dp
approaches dp/2nh times the absolute square® of the amplitude!

o) = [ e {ZE} sa)dy 55

-0
An alternative explanation of this result is given in Fig. 5-1 and extended
in Fig. 5-2.
The expression for the momentum amplitude given by Eq. (5.5) ap-
plies to a one-dimensional situation. It is easy to extend the definition

IMany writers prefer to account for the factor 1/27h in the definition of ¢(p),
where it appears as 1/v2nh. However, following the development of Sec. 4-3, we
prefer to write it in the form we have used and remember that the differential ele-
ment of momentum always includes the factor 1/27h in each dimension. For exam-

ple, the differential element of momentum in three-dimensional momentum space is
d3p/(2wh)3.



5-1 The momentum representation 99

(@)

T Fig. 5-2 If the amplitude f(z)
is roughly periodic with the same
wavelength as the overlying kernel,
as shown in (a), then the integral of
the product of the two functions is
large. That is, the probability that
the momentum is p = my/T is large.

On the other had, suppose the
wavelengths differ for some new

. function f’(z), as shown in (b).

| Then, when the product is taken,

! the contributions to the integral

I

i

UD ] o

()

from different values of x tend to
7 cancel each other. Now the prob-
y ability that the momentum is my/T
is small.
If a new position 3 is chosen as
a final point, as shown in (c¢), then a
new region of the kernel curve over-
lies the space —b to +b. For a cor-
rect choice of 3/, the wavelength of
the kernel in this new region is the
same as the wavelength of f'(z) and
a large probability results. That is,
there is a large probability that such
a particle has the new momentum
value p’ = my'/T.

(©)

CCD ] o o
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to the three-dimensional case where the amplitude for the momentum is

o) = [ep{ B2} 160 o (5:6)

where the wave function f(x) is now assumed to be defined for all points
in the three-dimensional coordinate space. This is the amplitude that
the particle has the momentum p at the time ¢t = 0. (Note that it is not
defined for the time ¢ = 7. The time interval T is part of the measur-
ing equipment, and it can be varied without changing the momentum
amplitude.) The square of this amplitude, multiplied by the differential
momentum element, gives the probability of finding the momentum in
the interval (three-dimensional) d®p/(27%)3 of momentum space.

We have analyzed a momentum measurement which is based on a
time-of-flight technique. However, such an analysis can be applied to
other techniques. The analysis of any technique for measuring momen-
tum will give the same result for the momentum amplitude. For suppose
we have two methods or techniques which purport to measure the same
quantity, momentum. If one gives a different result than the other, we
have to explain why one or the other apparatus is faulty. So if you will
grant that the time-of-flight technique is an adequate way to define a
momentum measurement, any other piece of equipment which measures
momentum must give the same results P(p)dp for the distribution of
momenta if the system is in the state f(x). Analysis of any equipment
which measures momentum must give the same expression ¢(p) for the
amplitude for momentum p, within possibly an irrelevant constant phase
difference (i.e., a factor e?® with & constant). For example, consider the
following problem.

Problem 5-1 Consider any piece of experimental equipment de-
signed to measure momentum by means of a classical approximation,
such as a magnetic field analyzer. Analyze the equipment by the meth-
ods outlined in the preceding paragraphs. Show that the same result for
the momentum amplitude is obtained.

Transformation to Momentum Representation. We have called
¥(x,t) the amplitude for a particle to be at the point x at the time ¢.
We have found that the momentum amplitude is given by

o.0) = [[exp{ “2= Luxt) x 5.7)

We shall call this the amplitude that the particle has momentum p at
the time t.
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It is often useful to analyze problems in this momentum represen-
tation rather than in the coordinate representation, or, as it is often
stated, in momentum space rather than in coordinate space. Actually,
the transformation from one representation to the other is just a Fourier
transform. Thus if we have the momentum representation and wish to

find the coordinate representation, we use the inverse transform given
by

sst) = oo {H22 o, 22 (55)

We can describe this last formula in the same physical terms we have
used to describe the structure of other amplitudes. The amplitude that
the particle is at the position x is given by the sum over alternatives.
In this case each alternative corresponds to the product of two terms.
One of these is the amplitude that the momentum of the particle is p,
given by ¢(p). The other term, exp{ip-x/h}, is the amplitude that if the
momentum is p, then the particle is at the position x. This second factor
is not new to us, for we have discussed such an expression in Prob. 3-4.

Note that in the transform of Eq. (5.7) the exponent has a minus
sign. Such a term can be described in a manner parallel to that used
in the preceding paragraph. Thus we say that exp{—ip-x/h} is the
amplitude that if a particle is at position x, it has the momentum p.

The Kernel in Momentum Representation. We have shown
(Sec. 3-4) how a wave function at a particular time t; can be obtained
from the wave function at an earlier time ¢, with the help of the kernel
describing the motion of the particle in the intervening time. Thus

B0, 1) = /K(xb,tb;xa,ta)w(xa,ta) #x, (5.9)

It is possible to define a kernel in momentum space which would be used
in a parallel expression. Thus the momentum amplitude at the time ¢,
can be derived from the momentum amplitude at an earlier time ¢, by
$(0n, 1) = [ (o, Pasta)pas ) 0 (5.10)
pb7 b) — pb7 b;paa a pCM a (27_(_71)3 .
Substituting in Eq. (5.9) for ¢(x,, t,) the expression of Eq. (5.8) and
taking the Fourier transform of 1(xp,t) to get ¢(psp, ts), as in Eq. (5.7),

we see that the kernel in momentum representation is given in terms of
the kernel in coordinate representation by the expression

j(:(pl” b Pa, ta) = // 6_(i/h>pb.be(X(,, ty; Xq, ta)€+(i/n)p“'xa dBXb dSXa
(5.11)
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Fig. 5-3 The kernel for a free par-
ticle in momentum space is unlike the
A~ kernel in coordinate space. In momen-
tum space, there is only one path which
can carry the particle to the momentum
value pp at the time ;. That single path
must start at the momentum p, = ps.
No other paths contribute to the kernel.

pa :pb

For example, the kernel describing the motion of a free particle in
momentum space is found by using K from Eq. (3.3) in Eq. (5.11). The
result of the integration is

jCO(pb)tb;pcmta> - (512)

. 2
<27rh>353<pb-pa>exp{—?—‘p“‘ <tb-ta>} for 1, > £,

h 2m
0 for tp < t,4

(The last line follows the convention of Eq. (4.28).) The occurrence of
the Dirac delta function in this expression shows that the momentum
of a free particle does not change, as diagrammed in Fig. 5-3. However,
the phase of the momentum wave function changes continuously in ac-
cordance with the factor e~(*/") Pt where E = p?/2m. This result given
by Eq. (5.12) can also be seen directly from Eq. (4.64).

This momentum-space kernel offers a much simpler representation
of the free particle than does the coordinate-space kernel. Generally,
when the particle is not free, but rather moves under the influence of
a potential, the kernel in momentum representation loses its simplicity.
But if the effect of the potential can be represented in a perturbation
expansion, this simplicity is regained (Chap. 6).

The Energy-Time Transformation. For many applications, par-
ticularly in relativistic quantum mechanics, it is best to treat the vari-
ables of space and time in a symmetric manner. Then in transforming
from coordinate representation to momentum representation we include
a transformation from time to energy. Thus the complete transformation
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for a kernel is

k(pb;Eb§pa; Ea) = /// / e'“(i/h)Pb-Xbe'i‘(i/h)EbtbK(Xb’tb;tha)
—00 J ity
x et t/MPaxap=(i/R)Bata gt gt dPx, d®x,  (5.13)

The energy E is not equal to p?/2m, but is instead an extra independent
variable (the coefficient of time) needed to define the kernel. Only if the
system exists in the same energy state for an infinite time can an exact
measurement of E' be made to establish the relation between energy and
momentuim.

As an example, we shall work out the kernel for a free particle. For
this case the integrals over x; and x, have already been worked out,
with the results given in Eq. (5.12). Thus we are left with the integrals
over tp, and t,. Make the substitution ¢, = ¢, + 7. Then the double
integral can be written as

o oo 2
/ (/R (Bo—Bata gy / o (i/R)(By=p2 f2m)T g (5.14)
0

- Q0

The first of these two integrals is a representation of the Dirac delta
function. In particular it is 27hd(Ey — E,). The second integral is of
the form

/ ein dr (515)
0

This latter integral arises often in quantum-mechanical problems. If w is
a real number, the integral does not converge. In order to carry out the
present calculation, we shall replace w with a complex number w -+ ie.
When both w and € are real numbers, with € > 0, the integral has the
value i/(w + €).

Now it would be possible to take the limit of this fraction as € ap-
proaches 0 and interpret the result simply as i/w. However, such an
interpretation would lead to incorrect (or rather, incomplete) results in
further work. The function we are evaluating is a kernel, and in future
work it will often be integrated (multiplied by some other function) over
values of w or its equivalent. If € were dropped from the expression, then
such integrals would have a pole at w = 0, and we would be at a loss
what to do.

It would not be correct to take just the principal part of the integral
at such a pole. This would give the wrong result. In particular, such a
result would imply that the inverse transform of the kernel would not
give back the original coordinate representation kernel with which we
started. Such a transform would differ from the correct kernel in that it
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would not be zero for values of time less than zero. One way to obtain
the correct result from such integrals is to place the pole an infinitesimal
distance above the real axis. This is accomplished by leaving € in the
expression.

If we rationalize the expression as

i i(w — i€) iw L€
w + i€ w? + €2 w? +€2  w?4e?

(5.16)

we can interpret the first term on the right-hand side as i/w and in
further integrations use the principal part of an integral involving this
term. The second term becomes 7d(w) as e approaches 0, and it is
to be interpreted as such in further integrations. That is, if a more
precise mathematical definition is wanted, i/(w + i€) should be replaced
by P.P.(i/w) + wd(w). This means that

/ e dr = lim
0

e—0+ w + 7€
~PP. (i—) + 7o (w) (5.17)
(This result is recorded in the Appendix as Eq. A.7.) In all expressions
containing €, a limit as € — 0+ is implied.
Returning to the evaluation of the kernel, we replace w with
(E, — p2/2m) /A to find

(27R)453 (py — Pa)d(Ep — E,) ih
E, — p2/2m + ie

ko(Pv, Ey; Pas Ea) = (5.18)
The existence of the delta functions in this expression means that neither
the energy E nor the momentum p changes during the motion of a free
particle. These two quantities affect the motion of the particle as shown
by the remaining pieces of this equation. That is, the amplitude for the
motion from one point to another of a free particle with energy E and
momentum p is proportional to i/(E — p?/2m + ie).

Earlier in this section it was mentioned that the energy E is not
in general identical to p?/2m, but is instead a separate variable. To
understand the distinction, let us look at the kernel for a free particle,
which is a wave-like function in time and space and wherein E is the
coefficient of time and thus has the properties of a frequency. This
kernel, given in Eq. (5.12), has the form shown in Fig. 5-4 when plotted
against the time difference T' =t — £,.
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Fig. 5-4 The real part
XK, of the free particle ker-

T then starts with a sharp
jump at 7' = 0 and con-
tinues as a cosine wave of
constant amplitude and
frequency.

nel X¢ as a function of
time. The function is
zero for negative times,

Ko is zero for T less than zero, and it suddenly begins to oscillate
at T' = 0. The transformation from time to energy representation is
equivalent to a Fourier transformation. Since the wave has a sharp
beginning (at 7' = 0), the Fourier transform contains components at all
frequencies and thus at all energies. If the function extends over a long
time interval (many periods), then one frequency begins to dominate in
the Fourier transform. For the free particle this dominating frequency
corresponds to the energy Eg = p?/2m.

It is for this reason that the free-particle kernel contains the factor

s i
-P. e e E . 2 2 .
B-mfmrie <Ea—]7§/2m>+m5( o —Pa/2m)  (5.19)

Here the first term on the right accounts for the transient effects that
result from the sudden start at T = 0. The second term gives the steady-
state behavior and shows that, if we wait long enough, the only energy
found is the usual p?/2m; but near T = 0 the energy is not given by this
classical formula.

Problem 5-2 1If we transform only the time and not the spatial
variables, defining

k(mb: By zg, Ea) = // €+(i/h)EbtbK(£Ub, tp; Tq, ta)em(i/h)E“ta dty dt,,

(5.20)
show that for a system with a time-independent hamiltonian H
. ¢n(xb ¢ (xa)
k(zp, Ey; q, By) = 21h2i6(E Z E. B, 1ic (5.21)

where E,, and ¢, (z) are the eigenvalues and eigenfunctions of H.
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MEASUREMENT OF QUANTUM-MECHANICAL VARIABLES

The Characteristic Function. In the preceding section we have
shown how an experiment designed to measure momentum leads to a
definition of a probability distribution for the momentum. That is, from
the results of a correctly designed experiment we can answer the ques-
tion: What is the probability that the momentum of a particle is p?
From the existence of a probability function for momentum we were led
to the discovery of a wave function or amplitude written in terms of mo-
mentum variables. In fact, we found that a system could be completely
described and problems completely analyzed in a momentum-energy rep-
resentation as well as the space-time representation which we have used
heretofore.

These same results apply to physical variables other then momentum.
If any physical quantity can be measured experimentally, a probability
function can be associated with it. That is, if an experiment is caphble
of measuring some characteristic A associated with a system (e.g., the z
component of momentum), then after repeating the experiment several
times it will be possible to construct the probability function P(a) which
gives the probability that in any particular experiment the numerical
values of A will be found to be equal to a.

In general, it is possible to associate a probability amplitude with
such a probability function. This amplitude would be defined in terms
of the measured variable, together with other variables necessary to
complete the specification. Let us see what is involved by generalizing
our example of a momentum measurement. First we shall take just one
dimension, but the extension to several dimensions will be obvious. We
ask: Does the system have the property G7 For example, G might stand
for the statement: The value of the quantity A is equal to a. We must
have some way to answer this experimentally. So let us imagine some
equipment can be designed so that, if it has the property G, the particle
will pass through the equipment and arrive at a certain location y on
some screen or meter.

The probability of this may be written

/_ " Koy, )£ (x) da (5.22)

where f(z) is the wave function of the system to be measured, Kexp(y, Z)
is the kernel for going through the particular experimental apparatus,

P(G) =
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and y is the position of arrival for particles with the property G. This
probability has the alternative mathematical form

2

P(G) = [ | @i (5.23)

-0

where we have defined

9" (2) = Kexp(y, ©) (5.24)

(Defining this as the complex conjugate of a function is just for conve-
nience, as we shall see later.) So° we can say

cO

0(e) = [ o'@f)ds (5.25)
-0

is the amplitude that the system has the property G. This concept is

further described in Fig. 5-5.

The property is defined by the function g*(z) for the following rea-
son. Suppose that some other experiment with different equipment, and
hence a different kernel Koy (', ), should be built to measure the same
property. In this second experiment the particle arrives at ¢/. Then the
probability of finding that the system has the property G is

| | K 0/, 0)d 2 { | @i

Since the property measured is the same, we must obtain the same
result in every case for P(G) as we did with the previous experiment.

2 (5.26)

g*x) ' Fig. 5-5 A device designed

: to measure the property G is

placed between the incoming par-
ticle (with wave function f(x))

and the final point y. The equip-
ment modifies the kernel for the
motion (compare Figs. 5-1 and
5-2), making it equal to g*(x).
The product g* (z) f(z), integrated
over z, is the amplitude to ar-
rive at y after passing through the
equipment.
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That is to say, we must have

l/wyWMﬂmm7=Lf”¢@ﬁ@Mw

—00 —00

(5.27)

for any arbitrary function f(z). This means ¢*(z) = ¢'*(z) within at
least an unimportant constant phase factor €*. That is, all methods to
determine the same property correspond (within a phase) to the same
g*(z). For this reason we call g*(z) the characteristic function of the
property G.

We may ask another question. What must the state f(z) be so that it
is sure to have the property G? (For example, what is the wave function
for a particle whose momentum is definite?) That is, we wish to find
an f(z), say F(z), so that the particle going through the apparatus will
certainly arrive at y and at no other point §j. The amplitude to arrive at
3 should be proportional to 6(y — ¢) (that is, zero unless § = y). Hence

/_ " Ko, 2)F(2) dz = 5(y — ) (5.28)

This we can solve by the relation of the complex conjugate of a kernel
to its inverse, discussed in Sec. 4-1. We have from Eq. (4.37)

| Kol ) Kl = 515 (5.29)
so that

F(.’Zﬁ) exp(ya ) - g(iU) (530>

That is, g(z) is the wave function of a particle having the property G
with certainly. We can say either (1) the particle has the property G or
(2) the particle is in the state g(z). So we find: If a particle is in a state
f(z), the amplitude that it will be found in a state g(x) is

o
w@) = [ g@i i (5.31)
— 0
For more dimensions, z becomes a space of several variables.
We might say loosely: The probability that the particle is in the state
is | [ g*(z)f(z)dz|®. This is all right if we know what we mean.
The system is in state f(z), so it is not in g(z); but if a measurement
is made to ask if it is also in g(z), the answer will be affirmative with
probability

| @i

-0

2

P(G) = (5.32)
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A measurement which asks “Is the state g(z)?” will always have the
answer yes if the wave function actually is g(z). For all other wave
functions, repetition of the experiment will result in yes some fraction P
(between 0 and 1) of the tries. This is a central result for the probabilistic
interpretation of the theory of quantum mechanics.

From all of this we deduce an interesting inverse relationship be-
tween a wave function and its complex conjugate. In accordance with
the interpretation of Eq. (5.25), g*(z) is the amplitude that if a sys-
tem is at position z, then it has the property G. (Such a statement is
put mathematically by substituting a Dirac delta function for f(z) in
Eq. (5.31).) On the other hand, g(z) is the amplitude that if the system
has the property G, it is at position z. (This is just a way of giving the
definition of a wave function.) One function gives the amplitude for: If
A, then B. The other function gives the amplitude for: If B, then A.
The inversion is accomplished simply by taking the complex conjugate.

Equation (5.31) can be interpreted as follows: The amplitude that
a system has property G is (1) the amplitude f(z) that it is at = times
(2) the amplitude g*(z) that if it is at x, it has property G, with this
product summed over the alternatives z.

Problem 5-3 Assume / f*(z)f(x) dz, which is the probability

that a particle of wave function J f(z) is somewhere, has been normalized
to the value 1. Under this constraint, show that the state f(z) which
has the highest probability of having the property G is f(z) = g(z).

Problem 5-4 Suppose the wave function for a system is 1(z) at
time ¢,. Suppose further that the behavior of the system is described by
the kernel K (xy,tp; z4,t,) for motions in the interval ¢, > ¢ > t,. Show
that the probability that the system is found to be in the state X(x) at
time tp is given by the square of the integral

/ / X* (azb)K(a:b, iy Tg, ta)w(a:a) dxg dzp
—00 J —00

We call this integral the transition amplitude to go from state ¥(z) to
state X(z).

Measurements of Several Variables. In the considerations of the
preceding section we assumed an ideal experiment, which means that no
quantity besides A could be measured at the same time. That is, we do
not allow that more than one g(z) would give the same result, but assert
that the maximum possible amount of information has been obtained
from the system by a measurement of A.
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Now in reality it is common for several variables to determine the
state of a system. For example, if only the  component of momentum is
measured in a three-dimensional system, no definite g(z) can be defined.
Both the wave functions exp{ip,z/h} and exp{ipyz/h — ipyy/h} give
the same value p, for the £ component of momentum. So if only p; is
measured in a three-dimensional system, the particle could be moving
with any component of momentum in the y direction and not change
the outcome of the measurement. Nor need the particle come to some
unique point in the measuring apparatus. All the particles which arrive
at some line or set of points could have the same value for p;.

Thus in general, we see that the wave function g(x) defines the prop-
erty G as follows: A state described by the wave function g(z) is certain
to have the property G. However, the converse is not necessarily true.
That is, it is not certain that all sates having the property G are de-
scribed by the wave function g(z). Only if G includes a specification
of all the quantities that may be simultaneously measured is the wave
function completely defined by G. Even then there remains an undefined
(and unimportant) constant phase factor e®.

It is easy to make the necessary extension of the characteristic func-
tion ¢g*(z) when the ideal experiment requires the measurement of more
than one variable. Thus suppose we have a set of quantities which we
shall call A, B, C, ..., and which can all be simultaneously measured
in an experiment: For example, the z component of momentum, the y
component of momentum, etc. Suppose we can completely describe the
state of a system by specifying the numerical values a, b, ¢, ... assigned
to these quantities. That is, we completely describe the state by saying
whether or not it has a certain property. In this case the property in
question is that the value of A is a, the value of B is b, etc. Furthermore,
suppose that no additional information (information not derivable from
a knowledge of the numerical values of A, B, etc.) could be obtained
simultaneously by any means.

Imagine we have an experimental setup capable of measuring all
these quantities, i.e., capable of telling us whether or not the state has
the property that the value of A is a, etc. We shall call the characteristic
function of such a property

9" (@) = Xgpe,...(7) (5.33)
This function is, of course, a function of the numerical values a, b,
¢, ... which the experiment is set up to measure, as well as the co-

ordinate variable z.
Suppose the system is in state f(z). Then the probability that the
experiment would show that the value of A is a, the value of B is b,
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etc. (i.e., the probability that the state has the property in question), is

Plabe,...) = l / X e (2)f () de : (5.34)

Transformation Functions. Suppose the system is actually in the
state Xg b e, (), that is, the value of A is @/, etc. Then with our
experiment the probability of finding the system in a state described by
a, b, c, ... iszero unless a = o/, b =0, ¢ = ¢/, .... This means that,
with suitable normalizing factors, we have

o0
/ Xabe, () Xar o, (@) dx = b(a — a')5(b—V)d(c—c) -+ (5.35)
-0

The function X,, . () is the amplitude that if the system is in
the state described by a, b, ¢, ..., then it will be found at z. The
function X7 , . (z), which we have called the characteristic function, is
the amplitude that, if the system is at z, it will be found in the state
specified by a, b, c, .. ..

If the system is in the state f(x), then

(0.0}

Faber. = | Xipe,. (2)f(0)do (5:30
— 0

is the amplitude to find the system in the state specified by A having

the value a, B having the value b, etc.

The quantities Fy p..... are just as good a representation of the state
as the function f(z,y, 2,...). In fact, if we know the function Fy, ;... we
can reproduce the function f(z,y, 2,...) by means of an inverse trans-
formation.

The function Fy ... is called the A, B, C, ... representation of
the state. (In the preceding section we had an example of this in the
momentum representation.) The function f(z,y, 2, ...) is the customary
coordinate representation, or z, y, 2, ... representation, of the state.
Transformations between the two are carried out with the help of the
functions X and X*. In particular, the function Xj, , .  (z,9,2,...) is the
transformation function going from the z, y, 2, ... representation to
the A, B, C, ... representation, while the function X, . .. (2,v,2,...)
is the transformation function going in the opposite direction. Thus the
inverse of the transformation given by Eq. (5.36) is

f(xa Yy 2y ) = Z Z Z e Fa,b,c,...Xa,b,C,‘..(w;y: Ry ) (537)
a b c
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This says that the amplitude to be found at z is the amplitude Fyp.c, ...
to be found with A = a, B = b, ... times the amplitude Xg ... (%) to
be at z if A =a, B = b, etc., summed over alternatives a, b, c, ....

Problem 5-5 Assume that the function f(z,y,z,...) can be rep-
resented by

f(maya By ) = Z Z Z e Fc;,b,c,...Xa,b,C,m(x7ya By ) (538)
a b c

By substituting this relation into Eq. (5.36), and using the orthogonal
properties of X as defined by Eq. (5.35), show that F, , . = Fype,....

Problem 5-6 Suppose A, B, and C are the three cartesian com-
ponents of momentum pg, py, p,. What is the form of the function
Xa,bc(,y,2)7 Using the results of Sec. 5-2, verify the relations obtained
in Sec. 5-1.

Problem 5-7 Suppose that the A, B, C, ... representation does
not correspond to either coordinate representation or momentum repre-
sentation, but instead is some third way of representing the state of the
system. Suppose we know the function X, 4., (2,9, 2,...) which per-
mits us to transform back and forth between coordinate representation
and A, B, C, ... representation. Suppose further that we know the
transformation function necessary to transform back and forth between
coordinate representation and momentum representation. What then is
the function necessary for the transformation between momentum rep-
resentation and A, B, C, ... representation?

OPERATORS

Expected Values. We can develop a few further properties of these
transformation functions. Let us try to answer this question: A system
is in a state specified by the wave function f(z), and the quantity A
is measured. If the measurement is repeated many times, what is the
average value which will be obtained for A? We shall denote this average
value (sometimes called the ezpected value) by the symbol (A).

Suppose it is possible, in principle, to measure simultaneously sev-
eral physical quantities A, B, C, ..., where a measurement of A could
produce any one of a continuous or discrete set of values {a}, a mea-
surement of B could produce any one of a continuous or discrete set of
values {b}, etc. The probability of obtaining one particular set of values
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a, b, ¢, ... 18 |Fape. . |*. So the probability of obtaining a particular
value a in a measurement of A, irrespective of the values taken on by
B, C, ... (for example, if B, C, ... were not measured at all) is

Z Z NFape, 2 (5.39)

In this equation summations are carried out over all possible values in
the continuous or discrete sets of {b}, {c}, ....

The average, or expected, value resulting from a measurement of A is
obtained by multiplying the probability of Eq. (5.39) by ¢ and summing
the result over all possible values of a. Thus

=200 alFape,. (5.40)
a b ¢

The need for computing such expected values arises frequently in
quantum-mechanical problems. It is useful to have available formulas
which simplify such computations. This subject, the subject of oper-
ators, was discussed briefly in Sec. 4-1. Now we shall develop a few
additional results. However, nowhere in this book shall we attempt a
really thorough study of operator calculus, since several excellent works
along this line are already available.?

The Operator. Let us try to express the expected value of A
directly in terms of the original wave function f(z). Note first that the
absolute square of Fi, ;. ... can be written as

Fape, > = Fape, T (5.41)

a,b,c,...* a,b,c,...

Then, using Eq. (5.36), we can write

XYY o Xepe @F@ds [ X, @) d
a b c —0o0 ’ —_—00

o0
- / £(@)R(x) dz (5.42)
—0o0
In the second line of this equation we have made use of the substitution
-—-/ Ga(z,z')f(") dz’ (5.43)
-0

where we have written
Galz,a') ZZZ X e, (€)X e, (&) (5.44)

1For example, see P.A.M. Dirac, “The Principles of Quantum Mechanics,” Claren-
don Press, Oxford, 1947.
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Equation (5.43) says that the function R(z) results from the function
f(z) as the result of an integration performed with the help of a linear
integral operator G 4(z,z’) associated with the quantity A. Often an
equation like Eq. (5.43) is symbolized by the notation

R=Af (5.45)

where A stands for linear operator which operates on the function f.
In the present case A stands for the operation displayed on the right-
hand side of Eq. (5.43), that is, multiplication by the function G4 and
integration. The operator A is associated with the physical quantity A.
Using this notation, we can write

w- [ " f(@)Af () de = / N / " P (@0)Cale, ) () de! da
(5.46)

Problem 5-8 Note that Eq. (5.44) implies G*% (z,2') = G4(/, ).
With this in mind show that for any two wave functions g(z) and f(z),
both of which approach 0 as = goes to o0,

| s@as@do= [ g f(e) da (547
Any operator, such as A, for which Eq. (5.47) holds is called hermitian
(see Eq. 4.30).

Problem 5-9 The transformation function between space represen-
tation and momentum representation is

Xap,eo(x) = el/MPx (5.48)

(see Prob. 5-6). Choose the physical quantity A as the momentum p,
in the z direction. Show that the function G4 is

Cpu2,2) = 28z — a')i(y — o/)( ~ ) (5.49)

d
where §'(z) = —4&(z). With this result determine the operator corre-

sponding to the z component of momentum and show that the expected
value of this component of momentum can be written as

(pz) = /_OO f*(x)-zf—g-g—{- dz (5.50)



5-3 Operators 115

Problem 5-10 Suppose the quantity A corresponds to the xz coor-
dinate of position. Show that the correct formula for the expected value
of z results when the function G4(z,2’) is taken to be

Go(z,2) = xé(z — 2")o(y — y')6(2 — 2) (5.51)

and the operator corresponding to x is simply multiplication by z, that
is,

Xf(x) ==f(z) (5.52)

Eigenfunctions and Eigenvalues. The wave function X, p.,.. (2),
as discussed in Sec. 5-2, shows a particularly simple behavior when sub-
jected to the operation A. Thus

AXa,b,c,...(m) = a'Xa,b,c,.,.(x) (553)

Problem 5-11 Show that this last result is true.

When a function X satisfies an equation such as (5.53), we say that
X is an eigenfunction of the operator A associated with the eigenvalue a.

If two physical quantities can be simultaneously measured, then the
operators associated with these quantities, A and B, for example, satisfy
an interesting relationship, namely, A(Bf) = B(Af). This relation says
that the result of performing one operation after the other is the same
regardless of the order in which the operations are performed. In this
case the two operators are said to commute:

A-B=B A

In general, we cannot expect the commutation relation to hold be-
tween operators, but in this special case it does. The reason for this is
that if A and B are physical quantities which can be measured simul-
taneously, they can form part of a set A, B, C, ... of simultaneously
measurable quantities with a single characteristic function Xgpc,.... If
the operator B is substituted for A and the value b is substituted for a
in Eq. (5.53), the result is still valid, so

A(BX) = A(bX) = b(AX) = baX = abX (5.54)
which is true, since a and b are just numbers. Now also
B(AX) = B(aX) = a(BX) = abX (5.55)

A comparison of these two equations proves the commutation of the
operators A and B when acting upon any of the functions X, p . .... Since
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both these operations are linear (i.e., they do not involve computations
with higher powers of the function X), the commutation relation must
also apply to any linear combination of the X functions.

If the X functions constitute a “complete set” (which is typical) we
can construct any function at all from such a linear combination. So
the operation AB and the operation BA give the same result on any
function; that is, they commute.

Problem 5-12 Show that the x coordinate of position and the
x coordinate of momentum are not simultaneously measurable quanti-
ties.

There are situations in which a set of commuting mathematical op-
erators A, B, C, ... are already known and it is required to find the
functions (the eigenfunctions) which are associated with them. This
requires solving a set of equations such as

AX =aX  BX=0bX CX = cX e (5.56)
For example, suppose the operators fo% maom%n%lm in the z, y, 2
directions pg, py, P, are given as — —. What are the

idz’ i0y 00z
eigenfunctions of this set of operators corresponding to a state in which
p; has the value a, p, has the value b, and p, has the value c? (These

are, of course, the eigenvalues.) We must solve the equations
hox N hox RoX

Tor ¢ an-—bx i0z

cX (5.57)
and the solution is some arbitrary constant times e(#/m(ez+bytez) Thig
agrees with our previous knowledge that a particle with a definite mo-
mentum p has the wave function e(¢/M)Px,

Interpretation of Energy Expansion. Various expressions in-
volving ¢, (z) can be interpreted more completely now. For example,
consider the expansion in Eq. (4.59) of the kernel in terms of the solu-
tions ¢, (x) of a constant hamiltonian

K (2, ty; Tasta) = Y &, ()@} (2g)e™ /M FnlEemte) (5.58)

We notice first that ¢,(z) is the amplitude that if we are in energy
state n, we are at position x. Therefore, from our previous discussion
(Sec. 5-2), ¢ (x) is the amplitude that if we are at =, we are in n. Now
let us interpret Eq. (5.58) this way. The amplitude to get from position
z, at time t, to position zp at time t; is the sum over alternatives. This



5-3 Operators 117

time the alternatives will be divided into the various energy states in
which the transition can be made. Thus we must sum over all of the
energy states n the product of the following terms:

1. ¢} (z4), which is the amplitude that if we are at z,, then
we are in the energy state n.

2. e~ (/M En(ts—ta) which is the amplitude to be in energy
state n at the time ¢, if we were in the energy state n at
the time t,.}

3. ¢,,(zp), which is the amplitude to be found at z;, when we
are in the energy state n.

Problem 5-13 Discuss the possibility of interpreting ¢,(z) as a
Xa,bc,...(z) function discussed in Sec. 5-2. That is, say ¢,(z) is the
transformation function to go from the x representation to a represen-
tation specified by n (energy representation).

tThere is no amplitude to change the state. That is the importance of these
particular states ¢n(x).






The Perturbation Method
in Quantum Mechanics



IF a quantum-mechanical system is subjected to a potential energy which
introduces only quadratic terms into the action, then we have seen in
Sec. 3-5 how the resulting motion can be determined with the path
integral method. However, many of the interesting potentials which
arise in quantum-mechanical problems are not of this special type and
cannot be handled so easily. In this chapter we shall develop a method
of treating more complicated potentials. The method which we discuss,
called the perturbation expansion, is most useful when the potential is
comparatively weak (compared, for instance, to the kinetic energy of the
system).

Although the perturbation expansion can be developed along strictly
mathematical lines, it is capable of an interesting physical interpreta-
tion. This interpretation, which we shall also present, leads to a deeper
understanding of quantum-mechanical behavior.

In the second section of this chapter we shall undertake a special
application of the perturbation method. We shall consider the motion of
an electron when it is scattered by an atom. In describing the scattering
interaction we shall find useful the classical notion of a cross-sectional
area which the atom presents to the impinging electron. Although this
area is related to the actual size of the atom, we shall find that its
complete description depends upon the quantum-mechanical aspects of
the interacting system.

THE PERTURBATION EXPANSION

The Terms of the Expansion. Suppose a particle is moving in a
potential V(z,t). For the present, the motion will be restricted to one
dimension. Then the kernel for motion between the points a and b is

Ky (b,a) = / bexp{% /tt (Pa>—via1)) dt} Da(t) (6.1)

a
The subscript notation Ky is used to remind us that the particle is in
the potential V. The notation Ky denotes the kernel for the motion of
a free particle.

In some cases the kernel Ky can be determined by the methods
already studied. For instance, in Sec. 3-6 we determined the kernel
for the harmonic oscillator subject to an outside force f(t). Here the
potential was (see Eq. 3.65)

mw?

V(z,t) = 52 — f(t)x (6.2)

120
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In general, we have found that if the potential is quadratic in z, the
kernel can be determined exactly, whereas if it is sufficiently slowly vary-
ing, the semiclassical approximation is adequate. There are some other
types of potentials which can be successfully treated with the help of
Schrédinger’s equation. Now we are studying a technique which is often
useful if the effect of the potential is small.

Suppose the potential is small, or more precisely, suppose the time
integral of the potential along a path is small compared to A. Then the
part of the exponential of Eq. (6.1) which depends upon V' (z,t) can be
expanded as

i [T |
exp{—h—/ V(z,t) dt} =
ta
2

! th d ! g tb[/ d 6.3
L —(_* + .
1 h/ta (z,1) t+2!< h/ta (z,t) ) + (6.3)

which is defined along any particular path z(t).
Using this expansion in Eq. (6.1) results in

Ky (b,a) = Ko(b,a) + KV (b,a) + K@ (b,a) + - - - (6.4)
where
b i ty m
Ko(b,a) :/ exp{g E:EQ dt} Dz (t) (6.5)
a ta
i b i tp m iy
KO () = -~ / expl i [ P2al [T v(as),s) dsDa(t) (6.6)
h a h ta 2 ta
1 b i ["m
2 - — — 32
K'(b,a) 2 . exp{h 5 5 & dt}

ty ty
x/ V(z(s),s)ds V(z(s'),s") ds' Dx(t) (6.7)
ta ta
and so forth. To avoid confusion in the integrals over V', we call the
time variables s, §', etc.

Evaluation of the Terms. First consider the kernel K(1). We wish
to interchange the order of integration over the variable x and the path
z(t). We write

KU (b,a) = —% /tb F(s)ds (6.8)
where "

b . ty m
F(s) :/ exp{—% t —2—3'32 dt} V(z(s),s) Dx(t) (6.9)
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Fig. 6-1 A particle starts from a and moves
7} NP as a free particle to c¢. Here it is acted upon,
or scattered, by the potential V(z(s),s) = V..
Thereafter, it moves as a free particle to b.
The amplitude for such a motion is given in
““““““ Eq. (6.10). If this amplitude is integrated
over all possible positions of the point ¢, the
result is the first-order term in the perturba-
tion expansion.

The path integral F(s) can be described as follows. It is the sum over
all paths of the free-particle amplitude. However, each path is weighed
by the potential V(z(s), s), evaluated at time s. The only characteristic
of the path x(¢) which is involved in this particular V is the position of
the path at the particular time ¢ = s. This means that before and after
the time s the paths involved in F(s) are the paths of an ordinary free
particle. The situation is sketched in Fig. 6-1.

Using the same arguments which led to Eq. (2.31), we divide each
path into two parts, one before the time ¢t = s and one after this time.
To be specific, we shall assume that each path goes through the point
z, at this division time. Later on we shall integrate over all values of
z.. If we denote the point z.(s) by ¢ (that is, s = t.), then the sum
over all such paths can be written as Ko(b, ¢)Ko(c,a). This means that
F(s) = F(t.) can be written as

F(t,) = /_OO Ko(b,c)V (2, te)Kole, a) dz. (6.10)

Substituting this into Eq. (6.8) gives [with V(c) = V(z¢, t.)]

- ty poo
KO (b,0) = f / Ko(b, o)V () Ko(c, a) da, dt. (6.11)
te v —00

The path integral (6.6) has been evaluated as an ordinary integral (6.11).

Here the limits on the integral over x have been written as +oco.
In a practical problem the limits will be established by the potential
(which in most cases drops to 0 when z becomes very large) or by the
equipment, which restricts the range of z.

Interpretation of the Terms. Equation (6.11) is very important
and very useful, so we shall develop a special interpretation to help think
about it physically. We call the interaction between the potential and



6-1 The perturbation expansion 123

the particle a scattering; thus we say that the potential scatters the
particle and that the amplitude to be scattered by a potential is —(i/R)V
per unit volume and per unit time.

With this interpretation we can describe Ky in the following way.
Ky is, of course, a sum over alternative ways in which the particle may
move from point a to point b. The alternatives are:

1. The particle may not be scattered at all [Kq(b,a)].

2. The particle may be scattered once [K( (b, a)].

3. The particle may be scattered twice [K(? (b, a)].
Etc.

In accordance with this interpretation, the various paths of the particle
are diagramed in Fig. 6-2.

Each one of these alternatives is itself a sum over alternatives. Con-
sider, for example, the kernel for a single scattering, K (b,a).

b b

[2)

Fig. 6-2 In (1) a particle moves from a to b through the potential V without
being scattered. The amplitude for this is Ko(b,a). In (2) the particle is
scattered once at c as it moves through the potential V. The amplitude
for this is K (b,a). In (3) the particle is scattered twice with the amplitude
K®(b,a). Andin (4) it is scattered n times, the last scattering taking place at
c. The total amplitude for motion from a to b with any number of scatterings
is K0+K<1) +K(2)+...+K(n)+...'
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One of the alternatives which comprise this kernel consists of the fol-
lowing motion. The particle starts at point a, moves as a free particle
to the point z.,t. = c, is there scattered by the potential V(c), after
which it moves as a free particle from point ¢ to the final point b. The
amplitude for this path is

Ko(b, ¢) {-— %V(c) iz, dtc] Ko(c, a) (6.12)

(Remember that in our convention we are using the motion of the par-
ticle is traced by reading the formulas from right to left.)

The construction of this amplitude follows the rule stated in Sec. 2-5,
namely, that the amplitudes for events occurring in succession in time
multiply. The completed form for the kernel K (1) is obtained by adding
up all such alternatives by integrating over z. and t., as indicated in
Eq. (6.11).

Using this reasoning, we can write down the kernel K () for double
scattering immediately as

i

K(Z)(b,a):<~ﬁ>/ Ko(b,c)V(e)Ko(e,d)V(d)Ko(d,a) drc drg
(6.13)

where dr = dz dt. Reading from right to left, this formula means: The
particle moves as a free particle from a to d. At d the particle gets
scattered by the potential V(d) at that point. It then moves as a free
particle from d to ¢, where it is scattered by the potential V(c). After
that it moves from c to b, again as a free particle. We sum over all the
alternatives, namely, all places and times that the scattering may take
place.

Here we have tacitly assumed that t. > t4. In order to avoid the
complication of having to introduce this assumption explicitly in each
such example, we shall make use of the convention adopted in Chap. 4
(Eq. 4.28) and assume

K(b,a) =0 for ty < tq (6.14)

Then Eq. (6.13) is correct without restrictions on the range of integration
of t, and tg.

The reader may wonder what happened to the factor % which appears
in Eq. (6.7) but is omitted in Eq. (6.13). Note that in Eq. (6.13) the
range of integration for ¢4 is still from ¢, to t; however, the range of ¢,
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has been restricted (by the definition of Eq. (6.14)) to lie between t4 and
tp. This restriction cuts the value of the double integral in half. To see
this more clearly, suppose the double integral of Eq. (6.7) is rewritten

/t b V(z(s),8)V(x(s'),s')ds' ds = (6.15)

/; :b V(z(s),s)V(x(s),s')ds ds+/tb/ V(z(s),s)V(x(s'),s') ds ds

The first term on the right-hand side of this equation satisfies the
restrictions implied by Eq. (6.14). By interchanging the order of inte-
gration, the second term on the right-hand side can be rewritten as

/t b /b V(a(s), )V (2(s'), ') ds ds (6.16)

If the variable names s and ¢’ are interchanged in the last expression,
the value of the double integral remains the same. (This useful result
is recorded in the Appendix as Eq. A.12.) This means that the first
and second terms on the right-hand side of Eq. (6.15) are equal, so each
one is half the value of the original double integral. This same sort of
argument accounts for a factor 1/n! in the expression for K (),

Problem 6-1 Suppose the potential can be written as U+ V', where
V' is small but U is large. Suppose further that the kernel for motion
in the potential of U alone can be worked out (for example, U might
be quadratic in 2 and independent of time). Show that the motion in
the complete potential U + V is described by Egs. (6.4), (6.11), (6.13),
and (6.14) with Ky replaced by Ky, where Ky is the kernel for motion
in the potential U alone. Thus we can consider V as a perturbation
on the potential U. We can say that —(i/A)V is the amplitude to be
scattered by the perturbing part of the potential (per unit volume and
per unit time). Ky is the amplitude for the motion in the system in the
unperturbed potential U.

Problem 6-2 Suppose a system consists of two particles which
interact only through a potential V (z,y), where z represents the coor-
dinates of the first particle and y represents the coordinates of the second
(see Sec. 3-8 and Eq. 3.75). Apart from this interaction, the particles
are free. If V were 0, then K would be simply a product of the two
free-particle kernels. Using this fact, develop a perturbation expansion
for Kv (2, Yb, tb; Ta, Ya, ta). By What rules of physical reasoning can the
various terms in this expression be described?
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AN INTEGRAL EQUATION FOR Ky

Before applying the results of the preceding paragraphs to a special
example, we shall develop some mathematical relations involving the
kernels and wave functions of systems moving in a potential field. Using
the results so far obtained, we can write Eq. (6.4) as follows:

Ky (b,a) = Ko(b, a) — % / Kob, &)V () Kolc, a) dr (6.17)

N
#(=2) [[ Kals. v @Ra(e. V@ Ko(d.o) et
Alternatively, this expression could be written as
Kv(b, a) = Ko(b, a) (6.18)
”‘% /Ko(b7 c)V(c) {KO(C» a) — %/KO(C, d)\V(d)Ko(d,a) drg+---| dre

The expression in square brackets has the same form as Eq. (6.17). In
both cases the sums extend over an infinite number of terms. This means
that Ky can be written as

Ky (b,a) = Ko(b,a) % / Ko(b, o)V (0) Ky (c, a) dre (6.19)

which is an exact expression. This is an integral equation determining
Ky if Ky is known. (Note that for the situation described in Prob. 6-1,
K would be replaced by Ky.) Thus the path integral problem has been
transformed into an integral equation.

This last result can be understood physically in the following way.
The total amplitude for the transition of the system from a to b, with any
number of scatterings, can be expressed as the sum of two alternatives.
The first alternative is the amplitude that the transition takes place with
no scatterings, which is expressed by Ky. The second alternative is the
amplitude that the transition takes place with one or more scatterings,
which is given by the last term of Eq. (61%) In this last term the point
c can be thought of as the point at which the last scattering takes place.
Thus the system moves from a to ¢ in the potential field with its motion
exactly described by Ky (c,a). Then at point ¢ the final scattering takes
place, after which the system moves as a free system (without scattering)
to the point b, as represented by the kernel Ky. This interpretation is
diagramed in Fig. 6-3.
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a

Fig. 6-3 In (1) the particle moves from a to b through the potential V as
a free particle, described by the amplitude Koy(b,a). In (2) the particle is
scattered one or more times by V, with the last scattering taking place at
c. The motion from a to c is described by Ky (c,a), and that from c to b
by Ko(b,c). A combination of the two situations, when all positions of ¢
are accounted for, covers all possible cases and gives Kv (b, a) in the form of
Eq. (6.19).

Since the last scattering could take place at any point in space and
time between a and b, the amplitude for this composite motion, repre-
sented by the integrand of the last term of Eq. (6.19), must be integrated
over all possible positions of the point c.

Problem 6-3 For a free particle, Eq. (4.29) reduces to

o i [ R? 02
—~ Kn(b L B A
Oty o(b ) R [ 2m Ox;
Show, from this result and Eq. (6.19), that the kernel Ky satisfies the
differential equation

Ko (b, a)} = 0(tp — ta)0(xp — T4) (6.20)

—Q—Kv(b, a) + % {——ﬁ*‘ﬁf{v(b,a> + V(b)Kv(b, a)}

Oty 2m Oz
= §(tp — ta)(S(xb — Zg) (6.21)

AN EXPANSION FOR THE WAVE FUNCTION

In Sec. 3-4 we introduced the idea of a wave function and discussed
some relations between wave functions and kernels. Equation (3.42) of
that section shows how the wave function at time £, can be obtained
from the wave function an earlier time ¢, with the help of the kernel
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describing the motion of the system between the two times. For our
present purposes this equation can be written as

/KV b a da:a (6.22)

where f(a) is the value of the wave function at the time ¢ = t, (that
is, f(a) is a function of z,), ¥(b) is the wave function at the later time
t = t,1 and we suppose that between the two times the system is moving
in the potential V, with the motion described by the kernel Ky (b, a).

If the series expansion (Eq. 6.17) for Ky is substituted into this
equation, the result will be a series expansion for ¢ (b). Thus

/ Ko(b, a) £(a) dze (6.23)

__/ Ko(b,e)V(c)Ko(c, a) dref(a) dzq +

The first term of the series gives the wave function at the time ¢
assuming the system to be free (or unperturbed, in case Ky is to be
substituted for Ky) between the time ¢, and ¢,. Call this term ¢. Thus

/K() b a dma (6.24)

Using this definition, the series of Eq. (6.23) can be rewritten as
VORFORE / Kolb, )V (0)6(¢)dr. (6.25)
+ (——-—) / Ko(b, )V (e)Ko(c,d)V(d)p(d) dre drg + - - -

In this form the series is called the Born ezpansion for ¢. If only the
first two terms are included (thus only through first order in V), the
result is the first Born approzimation. It involves a single scattering by
the potential V. This scattering occurs at the point ¢. Up to this point
the system described by 1 (c) is free; and after the scattering, the system
moves from ¢ to b, again free, and described by Ko(b,c). An integral
must be taken over all the possible points at which the scattering occurs.
If three terms of the series are used (thus through terms of second order
in V'), the result is called the second Born approzimation, etc.

TNote that our convention that K (b, a) is zero for ¢y < tq makes Eq. (6.22) invalid
if ¢, < tq, but we shall not use it in this range of ¢ values.
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Problem 6-4 Using arguments similar to those leading to Eq. (6.19),
show that the wave function ¢ (b) satisfies the integral equation

i
W(o) = 60) ~ + [ Kol V(@) dr. (6.26)
This integral equation is equivalent to the Schrédinger equation
oy i R,

Working in one dimension only, show how the Schrédinger equation may
be deduced from the integral equation.

THE SCATTERING OF AN ELECTRON BY AN ATOM

Mathematical Treatment. We have developed the concepts and
formulas of the perturbation treatment in a somewhat abstract frame-
work. Now, to develop a physical understanding of the perturbation
method, we shall discuss the specific problem of the scattering of a fast
electron by an atom. We envision an experiment in which a beam of
electrons bombards a target, such as a thin foil of metal, and then is
collected by some suitable counter, as shown in Fig. 6-4.

Fig. 6-4 FElectrons boil off a hot filament at a, are screened into a beam by
collimating holes in s and s’, and then strike a thin-foil target at O. Most of
the electrons pass straight on without being scattered (if their energy is great
enough and the target is thin enough), but some are deflected by interactions
with the atoms in the target and scattered, for example, through an angle 6
to b. As the counter at b is moved up and down, the relation between the
relative number of scatterings and the scattering angle 6 can be measured.
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Suppose the energy of the scattering particles is determined by a
time-of-flight method. That is, we release an electron from the source at
one time, say t = 0, and ask for the chance that it arrives at the counter
after some delay 7. We can then make direct use of our result for the
amplitude K (b,a) to go from one place to another in a definite time.

We shall simplify the problem by assuming that either the foil is so
thin or the interaction is so weak that each electron can interact with,
at most, one atom. Actually, this assumption is quite realistic for many
scattering experiments. Furthermore, most multiple scatterings can be
analyzed in terms of the simple scattering from one atom. Thus we shall
discuss the interaction between a single electron and a single atom.

The center of the atom will be taken as the center of a coordinate
system in which the electrons are released at the point a, as in Fig. 6-5,
at the time ¢ = 0. A counter placed at the point b tells us whether or
not, at the time ¢ = T, the electron arrives at the point b. We shall
make the following approximations:

1. The interaction can be represented by a first-order Born
approximation. That is, the electron is scattered only
once by the atom.

2. The atom can be represented by a potential® V(r) fixed
in space and constant in time.

Actually, the atom presents a very complicated system interacting
with the electron, and the interaction between the electron and the atom
is really more complicated than can be represented by a simple potential
V(r). The electron could excite or ionize the atom and lose energy in

Xp

Fig. 6-5 The geometry of the scattering problem. The electron starts at a and moves
as a free particle to ¢, where it is scattered by the atomic potential V(x.). After
the scattering, it moves as a free particle to the counter at b, which is located at
the end of vector x; from the scattering center O. In this process, the electron has
been scattered through the angle 6, measured from the direction of the nonscattered
beam. This process corresponds to the first-order Born approximation. If the amplitude
for two scatterings, say, at d and ¢, is included, then the result is the second-order

approximation, etc.
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the process. It can be shown, however, that if we consider only elastic
collisions between the electron and the atom, so that the atom is in
the same energy state after the collision as it is before, then when the
approximation (1) is valid, approximation (2) is valid too.

Let x, and x; be the vectors from the center of the atom to the
points at which the electron is released and detected, respectively. In
the calculations we shall take x, and x; to have lengths much larger
than the radius of the atom. That is, we shall assume that the atomic
potential V' (r) becomes negligibly small at distances much smaller than
|%xo| and |xp|. Thus during most of its flight, the electron will be moving
as a free particle, and only in the vicinity of the origin will it be exposed
to the potential.

The first-order Born approximation contains two terms, only the
second of which is of interest to us here. The first term is the kernel
Ky(b, a) for the motion of the electron from a to b as a free particle, and
it has already been studied sufficiently. The term of interest is then

KO (b,0) = —% / Ko(b, &)V (€) Ko, a) dr. (6.28)

i //T m 3/2 im|xp — x|
=—= , exp

x V(%) m ¥ ex impxe — Xa|” dt. d*x
*) \ 2rint, Pl 2htk. e e

Here we have used x. as the vector from the origin to the point ¢, and
d3x. represents the product of the differentials of all the components of
the vector x.. The integral over t. gives (see Appendix, Eq. A.5)

1 m \5/2
KO (b,a) = —3 <2m’hT) T (6.29)

! 1 m . .
X / <Rca + Rbc) exp { KT (Rca + Rbc) } V(Xc) d Xe

where R.q = |X. — Xo| and Rpe = |xp — X¢|. Using these definitions, as
well as 7, = |Xq| and rp, = |xp|, we write

2XaXe | |Xe|? 12
Reg = Ta (1 — ) Ty igeXe (6.30)
TG/ IrCL
1/2
92X} oX X, |? .
Rp. = 1p (l — b2 =+ ‘ 02l ) Ty — 1pXe (6.31)
b Ty
where i, and i, are unit vectors in the direction of —x, and xj, respec-
tively (that is, i, = —X,/7¢), and we have made use in the approxima-

tion the fact that r, is much larger than any value of |x.| for which the
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potential is not negligible. It is neéessary to keep the first-order terms
in |x.| only in the argument of the exponential, since this factor is quite
sensitive to small relative changes in phase. Here we need

(Rea + Roe)? = (1o +75)% + 2(ra + 75) (1a"Xe — ip-Xc) (6.32)

Using these approximations, the kernel can be written as

W N LM NP (L1 im_ 2
K> (b, a) h(2m’hT> T ot )P ohT (Ta +7e)" ¢ (6:33)

X /exp {%(ra +75)(1g X — ib-xc)} V(x,) d®x,

Physical Interpretation. We can deduce some of the physical
characteristics of the motion from a study of Eq. (6.33). In the time T'
the electron has traveled the total distance of r, + r,. Thus its velocity
during this time is u = (r, + 75)/7 and its energy is mu?/2, while its
momentum has the magnitude mu. In writing these expressions we are
making the assumption that the energy of the electron is not changed
by the scattering process.

That these values for the velocities, energy, and momentum are con-
sistent can be verified from an inspection of the exponential factor ap-
pearing in front of the integral of Eq. (6.33). The phase of this expo-
nential term is im(r, + )% /2AT, and the derivative of this phase with
respect to 1" gives the frequency as

m (rq +7p)2

With u defined as above this means that the energy is mu®/2 (see
Eq. 3.15).

Differentiating the phase with respect to 7 yields the wave number
at the point b as

o MTat T
R T

which means that the magnitude of the momentum is mu (see Eq. 3.12).

(6.35)

Problem 6-5 The integral over t, in Eq. (6.28) can be performed
approximately using the method of stationary phase. By studying the
application of such a method to this integral, show that most of the
contribution to the integral comes from values of t., near the region
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te = rq/u, the time at which the electron would arrive at the center of
the atom if it moved in a classical manner.

With the velocity of the electron defined as u = (r, + rp)/7 define
the incoming vector momentum p, as
Py = Mui, (6.36)

and the outgoing vector momentum py as

Py = muiy (6.37)
Then Eq. (6.33) can be written as
- o2
W) (b, ) o — L () i mu’
K7 (b,a) h <27r7}h) T/ 27,7y, PR 2 T (6.38)

7
X /exp {ﬁ-(pa — pb)-xc)} V(%) d*x,
Call the negative change in momentum, or the momentum transfer,
P=7Pas— Po
and define the quantity v(p) as

o(B) = / B/ (1 oy (6.39)

The probability that an electron arrives at the point b is given by
the square of the absolute value of the kernel Ky (b,a). Thus the prob-
ability will depend upon the first term in the series expansion of this
kernel, namely, Ko(b,a), which is likely to be so large as to completely
overshadow the small perturbation term K () (b, a).

For this reason it is customary in most scattering experiments to
collimate the incoming beam with suitable shields so that those elec-
trons which are not scattered by the atoms in the target are confined to
the region of a particular line (or direction), as shown in Fig. 6-6. Of
course, there will be some diffraction by the collimating shields, such as
that studied in Secs. 3-2 and 3-3, which means that some nonscattered
electrons will appear outside this central beam. However, with suit-
able collimation, and for positions suitably far away from the collimated
beam, the number of electrons diffracted by the collimator will be very
small compared to the number scattered by the atoms in the target.

In such a region the probability of arrival for an electron is given,
at least to first order, by the square of the absolute value of K (b,a)
alone. Using Eqs. (6.38) and (6.39), this probability is

2

Pb) 1 /m\5 u o
i volnme = 77 ae) Ty ) (6.40)
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In this last expression the factor v(P) contains the characteristics of
the atomic potential and the dependence of the kernel upon the relative
directions of x4, and xp. It is completely independent of the dimensions
of the experimental equipment. The effects of such dimensions are rep-
resented by the remaining factors of Eq. (6.40). For example, the term
1/r2 can be easily seen to result from the idea that the chance for an
electron to actually hit the atom varies inversely as r2. The application
of such an idea might be questioned in this experiment in view of the fact
that we have supposed some collimating shields are present. However,
this collimation has a negligible effect over atomic dimensions. From the
point of view of a target atom the beam of oncoming electrons appears
to consist of electrons spreading in all directions from a single source.

In a similar manner, after the scattering, the electrons spread out
again in all directions from the scattering atom. Thus the chance per
unit volume to find an electron in the counter varies inversely as r%.
Since the more interesting features of the experiment are contained in
the function v(p), we shall give special attention to this function in the
next section.

The additional factors depend on the particular normalization of
our kernel. We can interpret the formula more easily if we give it as
a ratio. We compare the probability of finding a scattered particle
at b to the probability of finding one at a point d behind the atom
at the same total distance r, + r, (and at the same time T, to keep
the velocity the same) if no scattering occurred, as shown in Fig. 6-7.
That is, we calculate P(d) per unit volume, as if no atom were present.

Fig. 6-6 Principle of collimation to eliminate the zero-order term at b. Only
electrons which have been scattered at least once can get from a to b with
any reasonable probability. Thus the zero-order term in the perturbation ex-
pansion of Kv (b, a) will contribute a negligible amount and can be neglected.
The first term of importance is K*) (b, a).
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7’a + Tb

Xp

b

Fig. 6-7 If d and b are the same total distance from O, namely 73, then
the difference (or ratio) of numbers of electrons arriving at the two points
can depend only on the scattering phenomenon. If d is in the direct line of
nonscattered electrons, the ratio of the number arriving at b to that arriving
at d if no scattering source were present is the probability of scattering to b.

The result is |Ko(d, a)|?

P(d) m \3 u?
unit volume (27rh) T(rq +1p)2 (6.41)
so that
P(b) _ m (Ta -+ ’f‘b)
Pld) (27%2) () |* 5 ~p (6.42)

We shall interpret the last factor geometrically in the next section, where
we shall also give more detailed attention to the function v(p).

The Cross Section for Scattering. It is convenient to describe
t}le characteristics of an atom in a scattering experiment by means of the
concept of a cross section. The utility of such a concept stems from the
convenience of thinking along the lines of classical physics. The cross
section do/dS) is defined as the effective target area (from a classical
point of view) of the atom that must be hit by an electron in order
that the electron be scattered into a unit solid angle. This solid angle
is measured around a sphere whose center is at the atom. The cross
section is thus a function of the scattering angle, i.e., the angle between
x, and Xp. In terms of such a classical model we can determine the
probability that an electron arrives at the point b.

If particles starting from the origin were to hit a small target of area
do at distance r,, these particles would be removed from the region
d, where they would have spread out over an area [(r, + 74)/74]? do.
Instead they are sent out in a solid angle df) toward b and are therefore
spread out over an area ri d$} there, as shown in Fig. 6-8. Hence the
ratio of the probability of finding them at b to that of finding them
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Fig. 6-8 Particles striking an area do of the target are deflected through
an angle 6 into an area measured by the solid angle df). If no target had
been present, those particles would have proceeded to point d. Instead, they
proceed to point b, spreading out into the area ridS. The probability of
finding a particle at d is inversely proportional to the area over which the
beam would have spread in arriving at d. Similarly, the probability of finding
the particle at b is inversely proportional to the area rZ dQ over which the beam
of scattered particles spreads in traveling from the target to b. If we take the
ratio of these areas, we have the inverse ratio of the associated probabilities.
From this point of view we say that all of the particles which hit the target
area do are scattered, and through a particular angle 8. Of course, actually
only a few particles which hit the target are scattered at all and only a fraction
of these through the angle 6. Thus, the area element do which we have used
in this calculation is the effective cross-sectional area for scattering through
the angle 6 measured in terms of the element of solid angle d{2 into which the
particles are scattered.

at d if there were no target is the inverse ratio of these areas,

P®) _ [(ra+ b)) /70)? do
P(d) 72 dQ)

On comparing Eqs. (6.42) and (6.43), we see that the cross section per
unit solid angle is

do m \>
- (27rh2> v(®)F° (04

The main advantage of an expression in terms of cross section instead
of using Eq. (6.40) directly is this: Equation (6.44) does not depend on
particular experimental conditions, so the cross sections obtained in one
or another experiment can be directly compared, whereas probabilities
per unit volume cannot be.

It must be emphasized that this idea of an effective target is purely
classical and is convenient in recording scattering probabilities. There is

(6.43)
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no direct relation between it and the size of the atom, nor is the scatter-
ing mechanism to be thought of as localized exactly over such an area.
For example, the shadow one would expect to find classically behind the
target is not there in the classical sense (with sharp boundaries); for
since we are dealing with a wave phenomenon, there is diffraction into
the shadow.

Special Forms of the Atomic Potential. The results obtained
when the atomic potential V(r) is assumed to have various forms are
shown in the following problems.

Problem 6-6 Suppose the potential is that of a central force. Thus
V(r) = V(r). Show that v(p) can be written as

v(p) =v(p) = igh /OOO (sin %) V(r)rdr (6.45)

Suppose V (r) is the Coulomb potential —Ze? /r. In this case the integral
for v(p) is oscillatory at the upper limit. But convergence of the integral
can be artificially forced by introducing the factor e™*" and then taking
the limit of the result as e — 0. Following through this calculation, show
that the cross section corresponds to the Rutherford cross section

dURuth N 4m2ZQG4 . 2264 (6 46)
ae Pt 16(mu?/2)%sin(6/2) '
where e = charge on a proton |
P = 2psin(0/2) = 2musin(6/2) (6.47)

0 = angle between the vectors i, and i

The result of Prob. 6-6 is, accidentally, exact. That is, the first-
order Born approximation gives the exact value of the probability for
scattering in a Coulomb potential. This does not mean the higher-order
terms are zero; it means, rather, that they contribution only to the phase
of the scattering amplitude. Since the probability is the absolute square
of the amplitude, it is independent of the phase. Thus a first-order Born
approximation, which gives the correct value for the probability, is not
exact for the amplitude. This case of a Coulomb scattering is amusing,
for there is also another accident. A completely classical treatment of
such a scattering problem, i.e., treating the electrons as charged point
masses, gives the same result.

Problem 6-7 Suppose the potential energy V(r) = —e¢(r) is the
result of a charge distribution p(r) so that

V2¢(r) = —4drp(r) (6.48)
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By assuming that p(r) goes to 0 as |r| — oo, multiplying Eq. (6.48) by
et®/M)r and integrating twice over r, show that v(p) can be expressed
in terms of p(r) as

4mh? (s
oB) = =5 [ ) (6.49)

An atom can be represented in terms of its charge density. At the
nucleus the charge density is singular, so that it can be represented as a
Dirac delta function of r of strength Ze, where Z is the atomic number
of the nucleus. Then if p.(r) is the density of atomic electrons, v(p) is

2,2
o(B) = —“Zf {Z = [ B ) (6.50)
The quantity in the brackets is called the form factor for electron scat-
tering. (Incidentally, a similar form factor appears in X-ray scattering.
The theory of X-ray scattering shows that only the atomic electrons,
and not the nucleus, contribute to the scattering. Thus the form factor
for X-ray scattering is the same but with the Z omitted.)

Problem 6-8 In an atom the potential follows the Coulomb law
only for very small radii. As the radius is increased the atomic electrons
gradually shield, or cancel out, the nuclear change until, for sufficiently
large values of r, the potential is zero. The shielding effect of atomic
electrons can be accounted for in a very rough approximate manner with
the formula

2
Vi) = 2 651

In this expression a is called the radius of the atom. It is not the same
as the outer radius of the atom as used by chemists, but instead is given
by ao/Z/3, where the Bohr radius is ap = A*/me? = 0.0529 nm.

Show that in such a potential

An Ze?

v(p) = “ IR + (/a) (6.52)
and hence
do _ Z%et (6.53)

40~ (mu?/2)2[4sin?(6/2) + (h/pa)?)?

The total cross section o is defined as the integral of do/d€) over the
unit sphere; thus

4
do
or = —df 6.54
Y ) A0 (654
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In the present example show that

o (2Ze? Juh)?
1+ (h/2pa)?

o = T4

(6.55)

Problem 6-9 Suppose we introduce that fact that the atomic nu-
cleus has a finite radius given by

ry = 1.2 fm x (mass mmrlber)l/8 (6.56)

and assume that the nuclear change is distributed approximately uni-
formly in a sphere of this radius. What is the effect of this assumption
on the cross section for the scattering of electrons by atoms at large
values of the momentum transfer p?

Show how the nuclear radius can be determined along with some of
the details of the nuclear charge distribution by making use of this effect.
How large must the momentum p of the incoming electrons be in order
to produce an appreciable effect? Would one observe more carefully the
large or small scattering angles? Why?

Note: In this type of experiment the required electron momentum is
so high that actually the relativistic formula E = \/(mc?)2 + (pc)2 —mc?
must be used to find the kinetic energy. So, strictly, we should not
be allowed to use nonrelativistic formulas to describe the interaction.
However, the relations between momentum and wavelength and between
energy and frequency are not changed in the relativistic region. Since it
is the wavelength which determines the resolving power of this “electron
microscope,” the momentum calculated by nonrelativistic formulas is
still correct.

Problem 6-10 Consider a diatomic molecule containing two atoms,
A and B, arranged with their centers at the points given by the vectors
a and b. Using the Born approximation, show that the amplitude for
an electron to be scattered from such a molecule is

KM = i®/Mag, 5y 1 BRI ro(5) (6.57)

where f4 and fp are the amplitudes for scattering by the two atoms
individually when each atom is located at the center of a coordinate
system. (Within the Born approximation, these f values are real for
spherically symmetric potentials.) The atomic binding does not change
the charge distributions around the nuclei very much (except for very
light nuclei such as hydrogen) because the binding forces affect only a
few of the outermost electrons.



140 6 The perturbation method in quantum mechanics

Using Eq. (6.57), show that the probability of scattering at a partic-
ular value of p is proportional to f2 + f2 + 2fafp cos(p-d/h), where d
is a — b.

Problem 6-11 Suppose the diatomic molecules are oriented in a
random fashion. Show that the electron scattering averaged over a group
of such molecules is proportional to

sin(|p||d|/h)
plld]/A

How can this result be generalized to the case of polyatomic molecules?

fa+fe+2fafs

These results form the basis of electron diffraction techniques which
make possible the determination of the form of molecules. The values
of f computed through the Born approximation are real and the result
is valid for electron energies usually used in diffraction experiments on
molecules (the order of 1 keV). However, if the molecule includes the
very heaviest atoms, such as uranium, the atomic potential is too large
for the results to be adequately described by the Born approximation,
and small corrections are necessary.

Problem 6-12 Assume that V(r) is independent of time and show
that the time integral of the second-order scattering term K () (b, a) gives

2 3/2 Roc + Rea + R
2 m be cd da
K (b CL) <2Wh2 ) 271_th // Rbc Cdea (658)

X exp { SRT (Roe + Req + Rao)? } V(x4)V (xe) d®x. d®x4

where the points a, d, ¢, and b are arranged as shown in Fig. 6-9. The
term R.q4 stands for the distance from point d to point ¢, etc.

Assume that V(r) becomes negligibly small at distances which are
short compared to r, or rp. Show that the cross section is given by
do/dQ) = |f|?, where the scattering amplitude f, including the first-
order term, is

et (p/R)Rea .
(2 h2> // —iPe/R) X/ (x ) o e V(xg)e!Pe/P)xa By dPxy
7
+ higher-order terms (6.59)

Here pp is the momentum of the electron traveling in the direction of
xp and p, is the momentum of the electron traveling in the direction
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Fig. 6-9 To increase the accuracy of scattering calculations, we can take
account of second-order terms in the perturbation expansion. Here, as in
Fig. 6-2 (3), we picture the electron as being scattered at two separate points
in the atomic potential. Thus the electron starts at a; moves as a free particle
to d, where it is scattered; then moves as a free particle to ¢, where it is
scattered again; and finally moves as a free particle to b, where it is collected
by the counter. The points d and ¢ can lie at any position in space. The
atomic potential at these positions depends upon the radius vectors x4 and
X¢, measured from the center of the atom 0.

of —x,. The magnitude of the momentum is p, and it is approximately
unchanged by an elastic scattering of the electron from the (relatively
massive) atom.

One might expect that in a situation in which the Born approxima-
tion is not adequate it would be worthwhile to compute the second-order
term as a correction. But in practice it seems that in this application
Eq. (6.59) is a kind of asymptotic series. If the second term makes an
appreciable correction (say 10 per cent or more) the higher terms are
not much smaller and the true correction cannot be gotten easily by this
method. Of course, if it is a problem in which the errors of the Born
approximation are small (say less than 1 per cent), the second term will
be adequate to find the corrections.

The Wave Function Treatment of Scattering. In the scattering
experiment which we have described we have assumed that the initial
state of the incoming electron was that of a free particle with momentum
Po. We have assumed that the value of the momentum is determined
by a time-of-flight technique (i.e., the total time required to travel the
distance rq + 75 is T).

It is not necessary to use such a technique. Any device which enables
us to determine the momentum is equally satisfactory. So suppose we
generalize our picture of scattering phenomena with the help of the wave
function method.
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Suppose the incoming electrons have momentum p, and energy
E, = p2/2m. Then the wave function for the incoming electrons is

P (%, 1) = eiPa/R)x=(i/R) Eat (6.60)

Then, using the first two terms of Eq. (6.25), the wave function for the
outgoing electrons is, to first order,

(x5, 1) = €i(Pa/M) 0 o= (/W) Bty (6.61)
. tb . s
— % / / KO (Xb) tb; XC7 tC)V(X(H tc)eﬁ(pa/ﬁ)'xc6—(2/7&)Eatc dSXC dtc
0

The first term represents the alternative of the particle passing through
the potential region without scattering. The second term represents the
alternative of the particle scattering, summed over all possible scattering
locations. This second term is called 1s(xs,tp), the scattered wave.

Problem 6-13 Assume that V(r,t) is independent of time. Sub-
stitute the free-particle kernel Ky into Eq. (6.61) and integrate over t.
to show® that

W(xp, tp) = e~ /M Eets [ei(pa/h)'x” (6.62)

m ei(p/h’)Rbc
a 271'77,2 Rbc

where R is the distance from the variable point of integration x. to the
final point x; and p is the magnitude of the momentum of the electron.

Once again suppose that the potential drops to 0 for distances which
are short compared to either r, or r,. Show that Eq. (6.62) can be
written as

V(Xc)ei(pa/ﬁ)'xc dSXC

(6.63)

i(p/R)r
W(xp, ty) = e~ (/M Eats [ei(pa/h)-xb . f(@)e_(ﬂ]

)

where the scattering amplitude f(6) is defined in terms of v(p) (see
Eq. 6.39) as

m o

£6) = —550() (6.64)

The last term of Eq. (6.63), f(8)e*®/™)7e /1, can be thought of as the
spatial part of the scattered wave function. It has the form of a spherical
wave radiating outward from the center of the scattering atom. The am-
plitude of this spherical wave at some particular scattering angle depends
upon that angle through the function f(#) which, by Eq. (6.64), varies
with the momentum transfer p. Thus the complete wave function for the
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\Q
o
4
S

Fig. 6-10 An electron, represented by its equivalent wave, moves toward
the atom at 0. The strongest amplitude is for the electron to continue on
undisturbed as a plane wave with momentum p,. A weaker amplitude is for
the electron to be scattered and move away from O as a spherical wave. The
resulting amplitude of ending up at some point b, located at x; relative to
the atom at 0, is then made up of two parts. The first is the nonscattered
amplitude given by the plane wave e!®+/")*s  Tq this is added the scattered
wave of spherical form e!®/™" /ry times the scattering amplitude f(6). The
combination of these two waves gives the spatial part of the scattered wave
function.

electron after scattering can be thought of as the sum of two terms. The
first term is the plane wave of the nonscattered alternative, e*(Pa/R)xe
and the second term is the spherical wave of the scattered alternative,
as indicated in Fig. 6-10. Use this point of view to derive the formula
for the cross section do/dSQ.

Problem 6-14 Use the wave function approach to discuss the scat-
tering of an electron from a sinusoidally oscillating field whose potential
is given by

V(x,t) = U(x) coswt (6.65)

Show that in the first-order Born approximation the energy of the out-
going wave is changed by either +hAw or —Aw. What happens in the
higher-order terms?
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TIME-DEPENDENT PERTURBATIONS
AND TRANSITION AMPLITUDES

The Transition Amplitude. An especially useful form of the per-
turbation theory occurs if the unperturbed problem corresponds to a
potential U independent of time, for then we have seen in Eq. (4.59)
that the unperturbed kernel can be expanded as (now in one dimension
for convenience)

Ky(b,a) = Z . (20) % (zg)e~ (/M Ete=ta)  for ¢, > ¢, (6.66)

in terms of the eigenfunctions ¢,(z) and eigenvalues E, of the unper-
turbed hamiltonian. Let us look at our series for Ky (b,a) after sub-
stituting this expression for K. Writing out the first two terms, it is
(compare Eq. 6.10)

Ky (b,a) qu 25) 6% (1) e~ (/) Bn(ts—ta)

s //oo REALAERLE

X V (T, )by, (Xc)dr (44 )e~ /M Enlte=ta) gy gt
T (6.67)

It is clear that within each term the variable xz, will appear in some
energy eigenfunction, like ¢ (z,), and the z; likewise, so we can always
write Ky in the form

KV b a' szmn tb; ¢m(xb)¢n($a) (668>

where the \'s are coefficients depending on t,, t,. We shall call these
coefficients transition amplitudes. To zero order in V/, this must reduce
to K7, so to this order Amp = mne” /M Erlto—te)  If we expand \ in a
series in increasing orders of V, we obtain

A, = 5mne_('i/h')En(tb"'ta) T )\7(71731 + )\7(7?&21 4. (6.69)
and comparison to Eq. (6.67) shows

A ___/:/ &% (z2) (6.70)

X V xc’ )¢n(wc) _(Z/h)[Em(tb_tC)+En(tc—ta)] dwc dtc
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Problem 6-15 Recall that in Prob. 5-4 we defined a particular
integral as the transition amplitude to go from state () to state X(z).
Show that the function A, satisfies this definition when the initial state
is the eigenfunction ¢, (z) and the final state is the eigenfunction ¢,,(z).

Define, for brevity,
Vin(te) = | #5a(ee)V (weste)a(e) (6.71)

(This is called the matriz element of V between states m and n.) Then
Eq. (6.70) can be written

O = b ) Emts=Bata) [
mn 7:,/ ta
This is an important result of the time-dependent perturbation theory.
The coefficient A, is the amplitude for the system to be found in
state m at time t; if it was in state n at time t,. Suppose the wave
function at t, was ¢, (z,). What is it at ¢,7 Using Eq. (3.42), we can
express the wave function at ¢, as

| Ev@onten) due = 1 hadsen) [ 61(e0)6,wa) doa
oo ik —00

b .
Vinn (te)et@/MEm=En)te qp - (6.72)

= Njndj () (6.73)
J

That is, the wave function at ¢, is in the form Z Crn®m/(xp).

This expansion in terms of eigenfunctions nvéas first introduced in
Eq. (4.48). Now we can assign a deeper meaning to the constants Ci,.
We can interpret Cy, as the amplitude that the system is in state ¢, ().
In this particular case, C,, = Ay is the amplitude for the system to be
in state ¢, (x) at time tp if it was in ¢, (z) at time t,.

With no perturbation acting, a system once in state n is always in
state n, with an amplitude varying in time. So, to zero order,

/\m’n — 5mne“(i/ﬁ)En(tb_ta)
We can interpret the first-order term by the rule (see Fig. 6-11) that:
The amplitude to be scattered from state n to state m within o time dt

Problem 6-16 Interpret Eq. (6.71) as a sum over alternatives; i.e.,
identify the alternatives.
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Fig. 6-11 A system initially in
T the nth energy state is subjected
to a potential V which “scat-
ters” the system into all of the
states available to it. The ampli-
T tude for scattering into the mth
state is proportional to Vinn. In

I
T
=
+
—_

Tl particular, the amplitude to be
scattered from the state n to the
i state m in the time interval dt is
initial state final state = (1/h)Vmn (t) dt.

Problem 6-17 Interpret Eq. (6.72) by explaining the meaning of
each term. Then explain and verify the equation for the second-order
coefficient

LN 2 ty te
7 —(4 -
o= (5) [ ][] Dt (6.74)
a a i
x e~ WMEBite=ta)y, (1)~ (/R Bnlta=te) gy, | dp,

Problem 6-18 Derive and interpret the integral equation

Arn (tos ta) = Omne™ (/M Em(o=ta) (6.75)
. ts ‘
— % t 6—(’&/71)Em(tb*’tc) Z VmJ (t(:)Ajn(tc, ta) dtc
@ J

Problem 6-19 Consider A\, () as a function of the final time .
Show, using either Eq. (6.75) or (6.69), that

d i
Ei_;)\mn(tb) - _'ﬁ Em/\mn(tb) + EJ: ij (tb>/\jn<tb) (676)

Give a direct physical interpretation of this result. Next, deduce this
result directly from the Schrodinger equation. Hint: Use Eq. (6.73) and
substitute into the Schrédinger equation. Note that Eq. (6.76), with
the initial condition Apy,(ts) = dmn, could be used to determine the A’s
directly.
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We can interpret all of the terms in Eq. (6.69) using the rule that
—(%/h)Vinn (t) dt is the amplitude that the potential V will scatter (or
induce a transition) from a state n to a state m during the time interval
dt. We can go from the state n to the state m by 0, 1, 2, or more
scatterings. We can go directly between the two states, i.e., with no
scatterings, only if m = m. Thus the first term in the expansion is
proportional to §,,,.

The second term, given by Eq. (6.72), gives the amplitude that the
transition will take place as the result of a single scattering. The ampli-
tude for the particle to be found in the initial state n is e~ (/") En(te—ta)
at the time t.. (In this case the phrase “to be found in the state n”
should be interpreted as “available for scattering from the state n by
the potential V.”) The amplitude to be scattered by the potential V(¢.)
from the state n to the state m is —(i/h) Vi (te). Finally, the amplitude
to be found in the state m (which in this case means “the amplitude that
the state m shall be available to the particle at the time the scattering
takes place”) at the time t;, is proportional to e~ (#/MEm(te—te)  Thig
scattering (at time ¢.) can take place at any time between t, and tp.
Therefore, an integration over the time ¢, is carried out between these
two end points.

The third term, given by Eq. (6.74), is the amplitude for a transition
as the result of a double, or second-order, scattering. The first scattering
takes the system from its initial state n to the intermediate state j at
time t4. The system then stays in this state until the time t., when its
availability for scattering is again measured by an exponential function,
e~ (/M E;(te=ta) - Another scattering takes place at the time ¢, and carries
the system from the state j to the state m. We integrate over all of the
possible alternate times for the scatterings at ¢4 and t., requiring only
that tg be earlier than t.. Next, we add over all the possible states j into
which the system may have been scattered in the intermediate interval.

The terms of Eq. (6.69), which we have just interpreted, give the
results of the general time-dependent perturbation theory. It is applica-
ble when the unperturbed system has a constant hamiltonian and thus
definite energy values. Next, we shall study some special cases of this
theory in more detail.

First-order transitions. First, let us take the case that the final
state m is different from the initial state n and let us consider only the
first Born approximation, i.e., the second term in Eq. (6.69). The result
will be applicable for small values of V. The amplitude that we make
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the transition from n to m is

. ¢

Ao = —%e—“/h)(Em%—Enta) / Vi (£)e ORI En =Bt gy (6.77)
ta

This is a very important special formula in the time-dependent pertur-

bation theory. Suppose as a first example that V(z,t) = V(z) is not an

explicit function of time. If we take the interval of time from 0 to T,

then since V,,,, is constant, we have

. T
A +G/) (Bt Ente) :"';ZV’”” / /) (Bm=Ea)t gy
0

. e+ (/) (Em—En)T _ |
—Ymn Em — En

The probability of a transition during the time interval 7' is then

Vi |* .o (Bm = Bn)T
(B — B)° 4 sin o

We see that for at least a long interval T' this probability is a rapidly
oscillating function of the energy difference E,, — E,. If E,, and E,
differ appreciably, i.e., if |Ey, — En| > |Vinn|, this probability is very
small. This means that the probability that the energy in the final state
will be modified appreciably from that in the initial state by a very weak
constant perturbation is very small. One might ask: How can the energy
be expected to change at all by the large amount F,, — E,, as a result
of the small disturbance V,,,,? The answer is that we have considered
V to start suddenly at the time ¢t = 0, and the definiteness of this time
permits, by the uncertainty principle, a large uncertainty in the energy
(see Eq. (5.19) and associated discussion).

(6.78)

P(n—m) =N 2 = (6.79)

Problem 6-20 Suppose V is turned on and off slowly. For example,
let V(z,t) = V(z)g(t), where g(t) is smooth, as shown in Fig. 6-12.

Zett fort < 0
1—Lle for 0 <t<T/2
t) = 2 6.80
9() 1—1ettD  forT/2<t<T (6.80)
%e"V(t'T) for T < t

The rise time of the function g(t) is 1/7. Supposing that 1/y < T,
show that the probability given by Eq. (6.79) is reduced by a factor
{1+ [(En — E,)/hy)?}72. In this definition of g(¢) we still have a
discontinuity in the second derivative with respect to time. Smoother
functions make still further reductions.
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Fig. 6-12 The potential effecting the transition from n to m is turned on and
off slowly with the time variation g(t), shown here. As this time factor becomes
smoother (e.g., as discontinuities appear in successively higher derivatives) the
probability of a transition becomes smaller.

If it should happen that E,, and E,, are exactly the same energy, we
find P(n — m) = |Vin|?*T?/R*. This grows as the square of the time.
It means that a concept of “transition probability per unit time” is not
meaningful in this case. This formula holds only for 7" short enough
that |Viun|T < h. It turns out that if only two states of exactly the
same perturbed energy are involved, the probability of being found in
the first goes as cos?(|Vinn|T/R) and of being found in the second as
sin?(|Vinn|T/R), while our formula is only a first approximation to this.

Problem 6-21 Consider the special case that the perturbing po-
tential V has no matrix elements except between the two states 1 and
2; and further, suppose these states are degenerate, that is, suppose
E| = Ey. Let V1o = Vo1 = v and let Vi1, Vo, and all other V,,,,, be zero.
Show that

v2T? 44 T

v
Niq = 1 — + — e = COS — 6.81
H on? | 24h* h (81)
T 373 T ’
Ay = —i% n iv6h3 . = —{sin % (6.82)

Problem 6-22 In Prob. 6-21 we have Vi5 = V51, so that V35 is real.
Show that even if Vi is complex, the physical results are the same (let
v = [V1i).

Such systems swing back and forth from one state to the other. A
further conclusion can be drawn from this result. Suppose the pertur-
bation acts for an extremely long time so that |V, |T > k. Then if the
system is investigated at an arbitrary time 7', which is somewhat indef-
inite, the probabilities of being in either the first or second state are,
on the average, equal. That is, a small indefinite perturbation acting
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for a very long time between two states at the same energy makes these
states have equal probability. This will be useful when we discuss the
theory of statistical mechanics in Chap. 10.

The case of great importance is that in which the values allowed
for F,,, the energy of the final state, are not separate and discrete but
lie in a continuum, or at least are extremely closely spaced. Let us
say that p(F)dE is the number of states in the range of energy F to
E +dE. Then we can ask for the probability to go to some state in this
continuum. First we see that to go to any state for which |E,, — E,| is
large is very unlikely. It is most likely that the final state will be one of
nearly the same energy as the initial F,, (within an error +|V;,,|). The
total chance to go into any state is

S Pr—m) =Y Vo222 {((g:: i ”)ZT/ d (6.83)
~ / Vi P 222 [(f:_“ Ei “))ZT/ 2N o(Br) dE,

The quantity {4sin®[(E,, — E,)T/2h]}/(Em — Ey,)? is very large if
E., =~ E,, reaching a maximum of 72/ h%, whereas it is much smaller if
E,, and E, differ appreciably (relative to A/T), as shown in Fig. 6-13.
Thus almost all the contribution to the integral over E,, comes when
E,, is in the neighborhood of the value E,,.

If |Vinn| varies slowly enough with m that we can replace it with a
typical value, and furthermore if p(E,,) likewise does not vary rapidly,

sin’z
2

z

Fig. 6-13 In this figure the energy difference E,, — Ey, is replaced by the vari-
able z. When these two energies are approximately equal (thus z is very small)
the function (sin®z)/xz® approaches its maximum value. For large values of
the difference the function becomes very small. Thus, in expressions involving
this function, the most important contributions come from the central region,
that is, the region where the two energies are approximately equal.
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then to a good approximation we can replace the integral of Eq. (6.83)
by the expression

Vo *p(En) / i K(gz:gjzg/ 2]

dE,, (6.84)

o 0]
Since / [(sin® z)/2%] dz = 7, the integral of Eq. (6.84) has the value

O
7T /2h and we obtain the result that the probability for a transition to
some state in the continuum is

2
P(n— m) = = Viun|*p(En)T (6.85)

and that the energy in the final state is the same as the energy in the
initial state.
From these results we can write the probability of a transition per
unit time in the form
dP(n — m)
dt

where M, .., is called the matriz element for the transition and p(E)
is the density of levels in the final state. In our case M, .., is Vi If
we went to a higher-order expansion of A,,,, it would be more compli-
cated. Another way to write this expression is that the probability of a
transition per unit time from state n to some particular state m is

dP(n—m) 2 5
—————————— | Mn_..).m Em - En .
) 2y 6( B~ En) (6.87)

Then when we sum over a group of final states, only those with energies
E,, = E, survive. Since Z( ) — / ( )p(Em) dEr,, we get as a result

m

27
= 5| Mo *p(E) (6.86)

Eq. (6.86).

We may illustrate Eq. (6.86) by an example which we have previ-
ously discussed from a different point of view, namely, the scattering
of an electron in a potential (see Sec. 6-4). Suppose an otherwise free
particle has an interaction with a potential V(r) and we wish to dis-
cuss the scattering of this particle from an initial state of a definite
momentum to a final state with another definite momentum in a new
direction. We suppose that the state n, the initial state, is a plane wave
of momentum p, so that the wave function ¢, (x) is e(Pa/R)*/{/Vol
(where “Vol” is the volume of the enclosing box as described in Sec. 4-3).
Likewise, suppose the final state is a plane wave of momentum p so that
the wave function ¢, (x) is e!®e/2)* /v/Vol. The matrix element Vi, is

1 : . 1
— = [ gmipe/h)x i(Pa/h) X By — = (% _
Vinn Vol/e Vix)e x Volv(p) (6.88)
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where p = p, — P». In the scattering, the energy will be conserved so
that p2 /2m = pZ/2m. This means that the magnitudes of momenta p,
and p; are the same. Let us call that magnitude p, so that

IPs] = |pPal =p

By our usual convention for writing differential elements of momentum,
the number of states which have their momenta in the volume element of
momentum space d°py is Vol d®p,/(27h)% = Vol p? dp d2/(27h)3, where
d©) is the element of solid angle which contains the momentum vector
py». An element dE of the energy range is connected to the element of
momentum space by

2 d

dE = d (p—> — L% (6.89)
2m m

Thus the density of momentum states for particles traveling into the

solid angle df2 is

Vol
E)= dQ——= 6.90
Substituting these relations into Eq. (6.86), we find the probability of
transition per second into the element of solid angle df? to be

dP mp  dl, ..

—_ = — 6.91

d = nn2y Vel VP (6.91)
We define an effective target area or cross section for scattering into

dQ as do (see Sec. 6-4). The number of particles that will hit this area

in time dt is the cross-sectional area times the velocity of the particles

coming in, u, = pa/m, times dt, times the density of incoming particles.
Thus

dP dou,

T Vol (6.92)
Therefore the cross section is

do m \? y

= (52:) pwP (6.99

which is exactly what we obtained in Eq. (6.44).

Problem 6-28 Show that the same result is obtained for do/dQ if
the wave functions ¢(x) have the specific normalization of unity for a
box of unit volume, e.g., ¢, (x) = etPa/P)x,

Problem 6-24 Suppose that the.potenti_al V is periodic in time.
For example, suppose V (z,t) = V(z)(e" +e ). Show that the prob-
ability for a transition to take place is small unless the final state is one



6-5 Time-dependent perturbations and transition amplitudes 153

of the two values (1) Eapal = Einitia1 + hw (corresponding to an absorp-
tion of energy) or (2) Efnal = Finitial — iw (corresponding to an emission
of energy). This means that Eq. (6.86) is unchanged, but the density of
states p(F) must be calculated at these new values of E. Or, in analogy
with Eq. (6.87), we have

dP(n — m) B
dt

o Moo 6B — By — ) + 8(Ep — By + )]
(6.94)

Problem 6-25 It has been argued that the equations of the elec-
trodynamics must, like those of mechanics, be converted to a quantized
form on the basis of the photoelectric effect. Here an electron of energy
hw is occasionally emitted from a thin layer of metal under the influence
of light of frequency w. Is this impossible if matter obeys the quantum
laws but light is still represented as a continuous wave? What arguments
can you adduce for the necessity of giving up a classical description of
electrodynamics, in view of the results of Prob. 6-247

Problem 6-26 Suppose we have two discrete energy levels E; and
Ej5, neither of which is in the continuum. Let a transition be induced by
a potential of the form V(x,t) = V(x)g(t). Show that the probability
of transition is

P(1 — 2) = [Vi2|*|¢(wo) */2* (6.95)

if g(t) is 1epresentab1e by the Fourier transform

/ P(w M (6.96)
and wy = (Fy — El)/ﬁ.

If g(t) is a statistically irregular function familiar from the theory of
noise (called filtered white noise), the value of ¢(w) given by the inverse
transform

T
B(w) = / g(B)e= d (6.97)
~T

depends on the integration range 7. If T is very large, |¢(wo)|* can
be shown to be proportional to 7'. Thus we get a transition probability
proportional to the time and to the “intensity” or “power” (mean-square
value of g per second) at frequency wg per unit frequency range. In virtue
of this, the probability for the transition of an atom in a continuous
spectrum of light is proportional to (1) the exposure time and (2) the
intensity of light at the frequency of absorption (Ey — Ey)/h.
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The Higher-order Terms. It is interesting to look at the second-
order term in the perturbation expansion. This term is of special im-
portance in problems where V,,, = 0 for those particular states n and
m of interest. Let us suppose that we have such a problem, and suppose
further that there are other states j # m for which Vj, # 0. The first-
order term is 0, and so long as m # n the zero-order term is likewise
zero. Thus the lowest-order term which enters into the calculation of
the transition amplitude is the second.

Suppose that the potential V(x) is independent of t. Then the
second-order term in the transition element is /\,(7%21; and if T =t — tg,
we have from Eq. (6.74)

A2) ot (1/R)(Bmts—Fnta)

LN 2 T pte
= <__%> vajvjn/ / ot (/R (Em—Ej)te o+(i/R)(E;—En)ta dt, dt.
F 0 Jo

: T +G/R)(Bs—En)te _ 1
- % Z me%nﬁ €+(2/h)(Em_Ej)tc [ dtc
J

E; - B,

5 Vs FWR)(EMEUT 1 TOVETER AL (g 0g)
-~ E;-E, B, — E, B — E; |

The first of the two terms in brackets has the same time dependence as
we have seen in our first-order result. Therefore if the second term is
neglected for a moment we see that the net result would again be to make
transitions to states where E,, = E,,, with a probability proportional to
T. The probability per unit time has the same form as Eq. (6.86) but
with M,,_,., now given by

ijvjn
—~ E; — Bn

If the states lie in a continuum, the sum becomes an integral.

Equation (6.99) is correct in the circumstance that it is impossible
to go by a first-order transition from state n to state m or to any state
with the same energy as the initial state. Under these circumstances
Vin = 0 for states such that E; = E,. Then the second term in brackets
in Eq. (6.98) is never large; for it cannot be large unless £, — E; is
nearly zero, and then Vj, in the numerator is zero. All the effects come
from the first term, and Eq. (6.99) is correct. Furthermore, in the sum
over j in Eq. (6.98) there is no ambiguity at the pole where E; = Ep;
for the numerator vanishes at this same value of Ej.

On the other hand, in some situations it may be true that a first-
order transition is possible to some other continuum state (e.g., a nucleus
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may decay in more than one way). In such a case the sum in Eq. (6.99)
is meaningless; for we must define what to do near the pole. It is the
neglected second term in Eq. (6.98) which comes to our rescue here and
shows that the correct expression for M,,_.,, (now including the first-
order term for generality) is

Vimj Vin
— F, —ic

Mn—-&m - an + Z 7. (6.100)
; J
J

in the limit ¢ — 0. How this comes about we shall now analyze.

First we may notice that for large T' we cannot get a large proba-
bility of transition (proportional to T, that is) unless E, and E,, are
practically equal (within about #/T). This is evident for the first term
in Eq. (6.98). For the second term large amplitudes can arise only if
E; ~ Ep; but if E,, is not very close to E,, the factor in front is a
smooth function of E; for E; near E,,. Taking it as nearly constant

for a small range near E; = E,,, we see that the second term can be
approximated as some constant times
(i/R)eT _
e
e €

€

where € = I, — I/; is to be integrated over a small range, say —§ to +§.
But

o (i/R)eT _ 1 TS/h iy _ 1
/ T de= / ¢ dy (6.101)
-5 € ~T5/h Y

___/T‘S/h (cosym1+isiny> a
~T8/h Y Y

The first integral is that of an odd function and vanishes. The second
approaches a finite limit as T — oo (and therefore as 76/ — o0). That
is,

co -
2 / MY gy = 2mi
0 Y
so no large transition probability occurs. A large effect can arise only in
case E,, and E,, are essentially equal, for then the double coincidence of
the two poles from (E; — E,,)~! and (B, — E;)~™! can make the second
term important. Therefore, we continue the analysis, assuming E,, and
E,, are nearly equal.
The sum over j in Eq. (6.98) can be divided into two regions by

choosing a very small energy A and breaking the sum up into a part
A for which |E; — E,| > A and a part B for which |E; — E,| < A.




156 6 The perturbation method in quantum mechanics

We choose A to be small enough that the factor Vi,;Vj, does not vary
appreciably when E; varies about E, over the energy range 2A. This
is some finite energy, and we shall take 7' so long that A/T < A, which
means that |E, — En,| < A.

First, for part A, |E; — Ep,| > A. Then the second term cannot
become large, for its poles are avoided. Only the first contributes, and
the contribution is

e 1T

— 6.102
a7 (6.102)
where z = (1/h)(E,, — E,)T and

N — E; — B,

The sum extends over all E; except for those within +A of Ey,. This
sum is nearly independent of A, and as A — 0 it is the definition of a
principal-value integral. That is, in the limit A — 0 we can write

1
where P.P. is the principal part and we have reinstated the first-order
term, in case it does not vanish.

For the region B we take V,;Vjn to be constant at its value for
E; — E, = 0. That is, we replace

(6.103)

(B) Em+A
S VadVinF(B) by | X Vs VindB5 = B)| [ F () aBy
j j m=
(6.104)

We can write this as bl, where
b= Vi Vind(Ej — Enn) (6.105)

J
and

Em+A (i/R)(Bm—En)T _ (i/h)(Em—E;)T _

7 :/ 1 [e 1 e 1 dE,

B, -A Bj—Ey E.,—E, E,—E;

(6.106)

Now we put (1/h)(E,, — E,)T = z and (1/h)(E; — E,,)T =y, so that
(1/R)(Ep — E;)T =z —y, to get

= ——/ [ - ] dy (6.107)
TA/R Y z T—Y
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This integral is most easily evaluated by contour integration, imag-
ining y as a complex variable and changing the contour. Instead of
integrating on the straight line from —T'A/h to TA/h, we go on the
semicircle of radius T'A /A below the real axis. Since TA/F is very large,
the second term contributes negligibly; and since

TA/R
/ @ =47
-TA/R Y
on this contour, we get I = in(T/h)(e*® — 1) /.
Putting the A and B parts together, we get
(-7
h

for the amplitude. This gives a probability for transition of the form
Eq. (6.86) with

My = a+imh (6.109)
= Vi + 3 Vin Vi {P.P. +in6(Ej — En)
J

(a + imb) (6.108)

1
E; - E,

In light of Eq. (A.10), the last bracket can be written (E; — Ep, — i€)™?
in the limit as € — 0, as we have written in Eq. (6.100).

From Eq. (6.100) we learn then that even if no direct transition
is possible from n to m, nevertheless the transition can occur, as we
say, through a wvirtual state. That is, we can imagine that the system
goes from n to j, then from j to m. The amplitude for an indirect
transition process is given by Eq. (6.99). We note that it is not right to
say that it actually goes through one or another intermediate state 7,
but rather that in characteristic quantum-mechanical fashion there is a
certain amplitude to go via the various intermediate states j, and the
contributions interfere.

The intermediate states are not of the same energy as the initial and
final states. The conservation of energy is not violated, for the virtual
state is not permanently occupied. The strength of contribution to the
sum varies inversely with this energy discrepancy.

There is nothing absolute about these intermediate states. They
come from considering V' as a perturbation to a system H and from
speaking about the true states of H +V in terms of those of H alone. If
other separations are made as to what is the “unperturbed” problem and
what is the “perturbation,” different formulas and intermediate states
will arise in the description.

When the potential depends upon time (e.g., periodically), many in-
teresting effects result. Most of these have been observed in microwave
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experiments, where the perturbation V(x,t) is a weak electric or mag-
netic field with a periodic variation in time.

Problem 6-27 Derive the perturbation expansion up through the
terms of the second order for potentials periodic in time.

Sometimes a transition cannot take place except by the use of two or
more intermediate virtual states. Analysis of such transitions requires
the calculation of third- and higher-order terms in the perturbation ex-
pansion.

Problem 6-28 Show that when a transition is impossible either
directly or through a single intermediate state, but requires the use of
two intermediate states, it is determined through the matrix element

My = ;2}; BB (B — ) (6.110)

This corresponds to the third-order term in the perturbation expansion.

Problem 6-29 Suppose two perturbations, V(z,t) and U(z,t), are
acting. (Examples include a combination of DC and AC electric fields or
a combination of electric and magnetic fields.) Suppose further that a
certain transition cannot occur with either V or U alone, but can occur
only when both act together. Under the special assumption that both V'
and U are constant in time, show that the matrix element determining
the transition element is given by

_ O VmiUjn + Ui Vin
Mpom =) ) (6.111)

J
Next, suppose both potentials are periodic in time but have different
frequencies, wy and wy. What then is the matrix element?
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Calculation of the Change in Energy of the State. In comput-
ing transition amplitudes we have considered only those states m # n.
Suppose we turn our attention to the term m = n. Considering the zero-
and first-order terms in the perturbation expansion, we have

. T
eHW/MET Y ] _ %/ Vi (1) dt (6.112)
0

If V is constant in time, this gives 1 — (¢/h)V,,T. What is the meaning
of this result? As a consequence of the introduction of the additional
potential V into the original hamiltonian we can expect the energies of
all the states of the system to be slightly altered. We can write the new
energy of the state n as E, + AE,. The time-dependent portion of the
wave function describing this state will be e~ (/M (En+AEn)t jngtead of
the previous e~ (/M) Ent

Over the period of time 7' during which the perturbing potential
acts this relative difference in phase introduces the factor e~ (#/A) AE~ T,
Expanding this factor to first order in time gives 1 — (i/h) AE,, T. Thus
we see that a first-order calculation of the energy shift in a state n due
to a perturbation V is

AE, = Vpn (6.113)

This derivation of the first-order energy shift is not correct if the
system is degenerate, i.e., if there are initially several states of exactly
the same energy. It turns out that in such a case terms of second order
in V give equally large effects.

Adding in the second-order term in the perturbation expansion for
the transition element gives

eH/MBTy 1 %VnnT (6.114)

-\ 2 T pte
_i Y. - /h (Ej""En tc—1

For the present let us assume that there is no degeneracy. Consider
first the term j = n in the series which is the second-order term.
The integral over this particular term is just 72/2. Integrals for the
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terms j # n can also be performed easily to give the result

etE/MET ) 1 %VnnT _ Q%anTz (6.115)
iy~ Vinl'T [} 1= exp{=(/R)(E; — Bu)T}
b By = En —(i/R)(B; — En)T

The first three terms on the right-hand side of this equation repre-
sent an expansion through second order of e~ (/MVanT  The first of the
summation terms, the one corresponding to the 1 in brackets, can be
interpreted as a second-order energy change. That is, the incremental
energy is not just Vj,,, but contains higher-order corrections. Writing
out the energy correction through second order in the perturbation en-
ergy, we get

an Vgn

i Bi

This last equation gives the correct expression, through second order,

for the shift in energy of nondegenerate states. This result is much more
easily obtained by conventional methods, i.e., by finding solutions of

(H+V)p=E¢ (6.117)

AE, =V — (6.116)

Furthermore, the conventional approach based on Eq. (6.117) permits
simpler handling of degenerate states. However, it has been our purpose
here to give an example of the use of transition amplitudes, rather than
to give the simplest formulas for the computation of energy shifts.

Actually, there are more complex problems involving energy shsifts
in which the method of transition amplitudes is the simplest to apply.
In such applications the scheme, as we have attempted to show above,
is to identify terms in a series proportional to 7', T2, etc. Then, if we
remember that the amplitude to stay in the initial state is proportional
to e~ (/MAET and that the series expansion is equivalent to a series
expansion of this exponential, the correct expression for AE,, can be
written down.

We have not yet discussed the last term in Eq. (6.115). If the states
E; lie in a continuum, we must also define the character of the reciprocal
in the sum of Eq. (6.116). If we take it to mean the principal value, just
as we found when analyzing the problem in second order for m # n, this
extra term can be shown to produce an effect proportional to T" and to
lead to an additional correction to Eq. (6.116) of

A'E, =—ir Y Vo;Vind(E; — Ep) (6.118)
J
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But this cannot represent a further correction to the energy for it is
purely imaginary, and the energy must be real. Let us call it —ihy/2
(the h/2 is for convenience later) and write

thy

V. . V.
AE G S _ njgrin
n= g = Von ~ Ej — By —ic

(6.119)

This implies that the transition amplitude )\, to be in the nth state
after a long time is proportional to

exp {-—% (AEn — —Z—ZZ> T} = exp {—%AEnT} exp {—%1:}

The first factor is the energy shift. The second is easily interpreted; for
the probability to be in state n after time T is [Ap,|? = e™7T. It falls
with time because at each instant there is a probability that a transition
is made from 7 to some other state. That is, if all is consistent, v must
be the total probability per second of a transition from n to any state in
the continuum of the same energy. This it is, because from Eq. (6.118)
our v is

27
7 =5 D [Vinl*6(E; — En) (6.120)
J

So we see that the total probability per second is just the sum of
Eq. (6.87) over all possible final states as required (i.e., up to the re-
quired order in V).

The reciprocal of «y is called the mean lifetime of the state. Strictly
speaking, a state with a finite lifetime has no definite energy; the energy
uncertainty by the Heisenberg relation is //lifetime, or fiy.

If resonance experiments are performed to find the energy difference
between two levels, each of which has a decay rate 7y, the resonance is not
sharp but has a definite shape. The center of the resonance determines
the energy difference, and the width of the resonance gives the sum of
the v’s of each level.
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IN the preceding chapter we developed the concept of a perturbation
treatment for changes of state in a quantum-mechanical system. We car-
ried out an investigation of this method as it is applied to systems whose
unperturbed hamiltonians are constant in time. In this chapter we shall
continue the development of the perturbation concept and generalize
the treatment to cover systems where the unperturbed state may have a
hamiltonian varying with time. We shall introduce a more general type
of notation and attempt to broaden and deepen our understanding of
the ways in which changes of state take place in a quantum-mechanical
system. The notation to be introduced applies to a type of function
which will be defined in the first portion of this chapter. The function
is called a transition element.

The chapter is divided into four parts. The first part, consisting of
Sec. 7-1, defines “transition amplitude” and “transition element,” with
the help of examples based upon the perturbation theory of Chap. 6. The
second part, consisting of Secs. 7-2 to 7-4, gives some interesting general
relations among transition elements. The third part, consisting of Sec.
7-5, shows the connection between transition elements defined with the
help of path integrals and the treatment of quantum-mechanical transi-
tions defined in terms of the more usual operator notation of quantum
mechanics. In the last part, consisting of Sec. 7-6 and 7-7, the results
learned in the preceding sections are applied to two interesting problems
of quantum mechanics.

DEFINITION OF THE TRANSTION ELEMENT

The time development of a quantum-mechanical system can be pictured
as follows. At an initial time t, the state is described by the wave
function ¥ (z4,ts). At a later time ¢, the original state will develop into
the state ¢(xp,tp).

At this later time suppose we ask the question: What is the prob-
ability of finding the system in the specific state X(xp,t5)?7 We know
from the general principles developed in Chap. 5 that the probability of
finding the system in this specified state is proportional to the square of
the amplitude defined by

/ X* (s, ty)P(p, 1) dp

-0

We also know from Chap. 3 that the function ¢(xp, ) can be ex-
pressed in terms of the original wave function with the help of the ker-
nel K(xp,tp;Zq,ts) describing the propagation of the system between

164
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the times t, and tp. Thus, in determining the probability of finding the
system in a specified state we can start with the original wave function
¥ (zq,t,) and bridge the time gap with the propagation kernel K (b, a).

The resulting amplitude, whose absolute square gives the probability
desired, we shall call the transition amplitude, and we shall write it in
the following notation:

(X[1) = / / X* (29, 8) K (b, 0)9(2a, ta) da dzy (7.1)

We wish to return to an even more basic description of the transi-
tion phenomena, and we reintroduce the action S[z(t)] describing the
behavior of the system between the two time limits. Thus we write the
transition amplitude as

(X[1ly)g = / / / " X*(zp, 1) €5/ Mp (x4, to) Da(t) dq day (7.2)

Here we have made the notation a bit more explicit by attaching the
subscript S to the transition amplitude to indicate the action for which
the integral was calculated. The path integral is to be taken over all
paths that go from x, to zp and the result of this path integral is multi-
plied by the two wave functions, then integrated over the space variables
at the two limits.

Before proceeding further, we shall define the notation more com-
pletely to cover a more general situation. We introduce the functional
Flz(t)] without (for the present) describing its physical nature. With
this functional we define a transition element as

(X|Fl)g = / / / " X* (mp, t) Flz(8)] e/ Pp (24, t0) Dz(t) dzg dzy  (7.3)

Here F is any functional of z(¢) which does not involve z(¢) at the end
points z4 or xp or beyond the end points. In the special case that F' =1,
the integral of Eq. (7.3) is a transition amplitude.

It is difficult to understand transition elements at an intuitive level.
One approach toward such understanding involves a classical analogy.
Picture a small particle moving with brownian motion. At some initial
time t, the particle is at z,. We wish to determine the probability
that the particle arrives at the point z; at the time ¢,. For quantum-
mechanical particles, we talk about starting from an initial state and
arriving at some final state. Thus, the point z, for the brownian particle
is analogous to the initial wave function ¥(z,) in Eq. (7.2), and the
point zp to X(xp). Furthermore, the solution of the quantum-mechanical
problem requires integration over the variables z, and z; of the initial
and final states — a step unnecessary in our classical problem.
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We would solve the classical problem by considering all possible paths
for the particle’s motion. We would weigh each path with the function
defining the probability that the particle actually follows such a path
and then integrate the weighed contributions for all such paths. The
weighing function is analogous to the term e*5/" appearing in the integral
of Eq. (7.2).

The final position in such a problem would not be a single point,
but rather a small interval, zp to xp + dxp. The result, when properly
normalized, would be the distribution function P(zp) giving the relative
probability of arriving in the (differential) vicinity of xp. This function
is analogous to the transition amplitude of Eq. (7.2) in the case that
Y(x,) and X(zp) are Dirac delta functions of position.

Now suppose we wish to know more about the motion than simply
the relative probability to arrive at z,. For example, we may wish to find
the acceleration experienced by the particle at some particular instant,
say 2 seconds after it starts. But now we need the weighed average of the
acceleration, i.e., the acceleration for each possible path with each path
weighted by the function defining the probability of the path. Such a
weighted average is analogous to the transition element of Eq. (7.3). The
property of interest, such as the acceleration at some time %., replaces
the functional F[z(t)] in the integral of Eq. (7.3). The classical problem
could be solved by a path integral very similar in form to Eq. (7.3).

In the remainder of this chapter we shall make use of this analogy,
and we shall occasionally refer to transition elements as “weighted av-
erages.” However, it must be kept in mind that the weighting function
in quantum mechanics is a complex function. Thus the result is not an
“average” in the ordinary sense.

The path integral method of solving brownian-motion problems as
described in this classical analogy is actually a very powerful method.
It will be developed in detail in Sec. 12-6. For now, we attempt to
further clarify the notion of a transition element with the help of the
perturbation theory developed in Chap. 6.

Perturbations. Suppose the action describing the development of
the system can be separated into two parts, so that S = Sp + 0. We
suppose that the first part Sy leads to simple path integrals, whereas
the remaining part ¢ is small enough that we can apply a perturbation
scheme. We write the exponential function of Eq. (7.2) as

eiS’/ﬁ — eiSo/heia/h (74)
Using Eq. (7.3), the transition element of Eq. (7.2) becomes
X[L) gy 40 = (Xl W), (7.5)
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The exponential function can be expanded to give

i 1

XL go0 = X[UW)s, + 5 (Xlolb)g, — o3 Xlo®[Y)g, +-- (76)

This expansion is a generalized version of Eq. (6.3) and forms the
basis of the perturbation theory. The transition elements which arise in
most quantum-mechanical problems result from this expansion.

Suppose the perturbation action o results from a perturbation po-
tential, so that

th

o= V(x(t),t)dt (7.7)

la

Then the first-order perturbation is given by the transition element

Xo)s, = / TV (), ) g, dt (7.8)

a

To evaluate this element, we need to solve the integral

(X|V]z(t), /// X*(zp)V]z(t), tle 2S‘)/h?,b( o) Dz(t) dzgy day,
(7.9)

The first step in the solution of this integral is the same as the solu-
tion for the perturbation kernel K(}) described in Egs. (6.8) to (6.11).
This solution for the path integral is followed by integration over both
end points, z, and x;, as well as an integral over the midpoint z.. That
is,

(X|V][x(t /// (xp) Ko (b, )V (e)Ko(e, a)(x,) dx. dx,, dxy,
(7.10)

We have now arrived at an expression which combines three concepts
previously introduced. First, we have made use of the propagation rule
for a wave function as defined in Eq. (3.42). Next, we have made use of
the amplitude function as defined in Eq. (5.31), which gives the ampli-
tude that a system known to be in one state will be found in another
state. Lastly, we have made use of the first-order perturbation theory
given in Eq. (6.11) for the kernel describing the propagation in time. All
of these ideas combined give the transition element of Eq. (7.10). The
absolute square of this element is the probability that a system starting
in state ¢ and acted upon by the small potential V (z,¢) will be found
at a later time in state X (if state X would not be reached for V = 0,
that is, if (X|1|¢))g, = 0).
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We can use Eq. (3.42) to shorten our notation, in the same way that
the notation of Eq. (6.23) was shortened into the form of Eq. (6.25). We
define

W(xe, te / Ko(e,a)(z,) dz, (7.11)

which is the wave function that would result at time ¢, from the initial
wave function if there were no perturbation. In a similar way we define

oo
X* (20, t0) = / X* () Ko (b, ¢) s (7.12)
— Q0

as the complex conjugate of the wave function which, at ¢t = ¢, would
result in the function X(zp) at time t, if there were no perturbation.
(See Eq. (4.38) and the following discussion, including Prob. 4-7.)

In terms of these new wave functions, the first-order term in the
perturbation expansion can be simplified to read

ty ty poo
<>< / Viz(t), 4 dtl ¢> _ / / X (2)V (0 () doe dte  (7.13)
ta So tg v —00

We see here that the transition amplitude written in this form is a
generalization of the transition amplitude A, which was introduced in
Sec. 6-5. If the wave functions on the right-hand side of Eq. (7.13) are
el(genfunctions, then the resulting transition amplitude is identical with

A, as defined by Eq. (6.70).

Thus the evaluation of a transition element of a functional F[z(t)],
which depends only on z at a particular time ¢ (that is, an ordinary
function of z(t)), or of a time integral of such a functional presents no
problem. The evaluation of a transition element for functionals involving

the values of = at two separate times is also easy. This occurs, for
example, in the second-order perturbation term. This can be written as

1
K2

The integrand of this last equation is itself a transition element, and
it is written as

XV (), 0V [z(s), s]w) = / / X )V () Kole, d)V (d)p(d) drg daz,
(7.15)

(o )g, = 52 [ [ VIO, 0ViR(e), Ay deds (719

where we have substituted t; =sand t, =tifs<tortgy=tandt.=s
ift <s.
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Thus the second-order term in the perturbation expansion becomes

% <>< >SD - (7.16)
5}% / / XAV () Kole, )V ()b (d) dwg dty da, dt,

This can be recognized as a generalization of the transition amplitude
defined in Eq. (6.74). Expressions involving three or more functionals
are also readily written down.

Equation (7.6) corresponds also to a more general type of perturba-
tion theory. For example, consider the case of the particle interacting
with an oscillator. After integrals have been carried out over the coor-
dinates describing the oscillator, the resulting action can be written as
So + o, where (see Sec. 3-10)

ty tp

t Vix(t),t] dt t Viz(s),s] ds

tp
o= MwsmwT/ /ta z(t),t)g(x(s), s) sinw(ty, — t) sinw(s — t,) ds dt
(7.17)

with g(z(t),t) characterizing the interaction of the particle and oscilla-
tor, and T = tp — t,.

We have noted that path integrals involving such complicated actions
are very hard to evaluate indeed; but if the effect of the complicated term
o is expected to be small, we can obtain useful results with less effort
with the help of the perturbation expansion of Eq. (7.6). To illustrate,
we find the first-order term in such an expansion (i.e., the first Born
approximation). Using Eq. (7.17) for o, we must evaluate the term
(i/h)(X|o|) g, This term can be written as

') —1
ﬁ_(X!O‘WS"  AMwsinwT

/ b/ (X|glz (), t]lglz(s), 8”¢>SO sinw(ty — t)sinw(s — ty) dsdt

(7.18)

so that the difficult part of the problem is reduced to finding

(Xlglz(t), tlglz(s), s]|¥) g,

But this we have already done in Eq. (7.15), except that g replaces
V. Therefore, we write

(Xlgla(t), Hgla(s), sll) (7.19)
/ / )9 (te), t) Ko(e, d)g(a(ta), t)(d) dea dee
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This expression can be substituted into Eq. (7.18) to obtain the final
result for the first Born approximation, (i/R)(X|o|¥)g,

Transition elements will come up more frequently in succeeding chap-
ters. In each example they can be evaluated in the straightforward man-
ner which we have illustrated here. For that reason, very little of the
material in the remainder of this chapter is really essential to the work
that follows. Nevertheless, there are two reasons for the inclusion of
this material in this book. First, it is possible to obtain a very general
relation between transition elements. This relation might well serve as
an alternative starting point for the foundations of quantum mechanics.
Second, for many people already familiar with the more conventional op-
erator notation of quantum mechanics, it is helpful to have examples of
the translation from the more customary representation into that which
is used in this book, such as expressions in the form of Eq. (7.3).

With the rules for translation available, the subject matter of the
later chapters, developed as it is from the path integral approach, can
be appreciated in terms of more familiar symbolic concepts.

The relations discussed in the remainder of this chapter are indepen-
dent of the form of the wave functions which describe either the initial
or final state of the system, and which are used in defining the transition
element. For this reason we shall abbreviate our notation by omitting
any specific reference to these wave functions. Thus a transition element
will be written as (F) g instead of (X|F|¢)g.

FUNCTIONAL DERIVATIVES

We are embarking on a mathematical development which leads to an
interesting relation between transition elements. This relation finds its
most elegant expression in terms of a mathematical idea, the functional
derivative. Since this idea may not be familiar, we describe it in this
section.

The functional F[z(t)] gives a number for each function z(t) that
we may choose. We may ask: How much does this number change if
we make a very small change in the argument function z(t)? Thus, for
small 7(t), how much is Flz(t) + n(t)] — Flz(t)]? The effect to first
order in 7 (assuming it exists, etc.) is some linear expression in 7, say,
[ K(s)n(s)ds. Then K(s) is called the functional derivative of F[z(¢)]
with respect to variation of the function z(¢) at s. It is written 6F/dz(s).
That is, to first order,

Flz +n] = Flz] + / 3:%%77(8) ds+ - (7.20)
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This §F/éx(s) depends on the function z(t), of course, and also on the
value of s. Thus it is a functional of z(¢) and a function of time s.

We may look at it another way. Suppose time is divided into very
many steps of small interval €, the values of the time being t; (t;41 =
t; +¢). The function z(t) can now be specified approximately by giving
the value x; that it takes on at each of the times ¢;. The functional
Flz(t)] now is a number depending on all the z;; that is, it becomes an
ordinary function of the variables x;,

F{x(t)] — F( oy Lgy Lgg1s o ) (721)

Now we can consider 0F/0zx;, the derivative of F with respect to just one
of these several variables. Our functional derivative is just this partial

derivative, taken at the point ¢; = s, and then divided by e. That is
OF 1 0F
[E—— ___) U

5x(s) €z

This we can see as follows. If we alter the path from z(¢) to z(t)-+n(t),
we change all the z; from z; to x; + n; (where n; = n(t;)), so that the
first-order change in our function is

OF
F(...,in+?7@,£8@'+1 +77i+l>'--> ”’F(---amha:i-f*l:'“) :Zax.m
K]

(7.23)

from the ordinary rules of partial differentiation. If now we call
(1/€)(0F/0z;) = K;, the last sum is Y, K;m;€, which in the limit be-
comes [ K(s)n(s)ds. So if this limit exists as e — 0, then it is equal to
SF/dx(s).

One can also use the ideas of differentials. Just as we can write

of
df = dz;
so we can write for the first variation of any functional

5F = / 52@ sda(s) ds (7.24)

where x(s) is the differential change in path at z(s).

(7.22)

i

Problem 7-1 1If S[z(t)] = tt: L(%,x,t)dt, show that, for any s
inside the range t, to tp,

5S___d (oLy oL

Sz(s)  ds \ 0z Oz

— (7.25)
where the partial derivatives are evaluated at ¢ = s.
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Problem 7-2 1If Flz(t)] = z(t), show that

52@) =o(t—s) (7.26)
Problem 7-8 If

Flj(r,t)] =
exp {% ////j(rl>t1)j(r2,t2)R(rz — 11, tg — t1) dPrp dty dPry dtl}

where the integrals extend over all space and all time, show that

SOF

o) — F//j(r,t)%—[R(r —x,t—8)+ R(x—r,s—1t)]d’rdt (7.27)
Note that the function j(r,t) is a function of the four variables
(rz,Ty,T2,t). Thus the single coordinate s, as used in Eq. (7.24), for
example, must be replaced by the set of coordinates (z,y, 2, s) in speci-
fying the point at which the functional derivative is evaluated.

The general relation between functionals which we mentioned at the
end of the preceding section may be obtained by trying to develop a
formula for the transition element of §F/dz(s). This we can do most
easily in this way. Consider, using an abbreviated notation,

(F)g = / Fla()]e/MS=0) Da(p) (7.98)

Now in the integral over paths substitute z(t) + 1(t) for the variable
z(t). For fixed n(t), Dl[z(t) + n(t)] = Dxz(t), because dz; + n;] = dz;.
But the integral is unchanged by a substitution of its variable. Hence

(F)s = [ Fla(t) + n(o)]et M=) Dae) (7.29)
— [ Flap)eE/mSE®] oy OF  ds| o(/mSlz®] py
[Fiato) Da(t)+ [ | [ o) D)

+ %/F[w(t)] {/ 5ié>n(s) ds} e/MSEOl Dy (t) 4 - -

expanding the exponential and displaying only to first order. The zero-
order term is exactly (F) g again, so the remaining terms must all vanish.
In particular, the first-order term must vanish for any 7(s), so that we
conclude the relation

(), = F 5w, i

This general relation has many important consequences.
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It would be possible to use Eq. (7.30) as a starting point to define the
laws of quantum mechanics. One could work backwards to reproduce,
for example, Eq. (7.6). If some generalization of quantum mechanics
is desired, one might suppose such a generalization is included in the
action S appearing in the term e*>/" or perhaps start with a form like
Eq. (7.30) and introduce modifications with the help of the differential
notation. Julian Schwinger has been investigating the formulation of
quantum mechanics suggested by Eq. (7.30).

We can see how the relation of Eq. (7.30) comes about in another
way by imagining our time split into intervals € and functionals replaced
by functions of the points z; corresponding to t;. Then consider the
path integral

oF |
(i/m)S1a(®)] g 31
5 z(t) (7.31)

where 7j is some intermediate time not at either end point. The path
integral is simply an integral over all the points z;. So we integrate by
parts to get

OF .. i oS
9E G/mS@) (s :—-—/F—-—— (&/R)Sle®] Dop(t 7.39
6‘3%6 z(t) 5 Bazke (1) (7.32)

dropping the integrated part.
Problem 7-4 Discuss why the integrated part vanishes.

The result is

OF 7 08
_ Y/ poe 3
<3xk>s h <F5$ic>s (7.33)

which has the same content as Eq. (7.30).
It is better to write these relations as differentials,

(6F)g = —%{F 55)s (7.34)

for then the specific variables on which F' and S depend need not be
indicated

Problem 7-5 Argue that Eq. (7.34) may be misleading, for Eq. (7.33)
applies only to rectangular coordinates. Do this by studying the corre-

sponding relation where spherical coordinates, for example, are used and
we wish to find (0F/0r) .
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TRANSITION ELEMENTS OF SOME SPECIAL FUNCTIONALS

The relation of Eq. (7.34) has many interesting implications. In this
section we shall investigate some of them. We shall take the special case
of a one-dimensional particle moving in a potential V(z).

Suppose the action over the path of the particle is given by

ty

5= [%jﬂ(t)—vw(t))} dt (7.35)

Upon application of the small variation dz(t) to each path there results
(to first order)

0S8 = — /tb Imi + V()] dz(t) dt (7.36)

Using Eq. (7.34), we have
7

o) =+ <F /t t im + V'(2)] 6a() dt> (7.37)

Alternatively, we could return to the point of view used in developing
Eq. (7.33). That is, we imagine time divided into small slices of length
e. In this case the action S can be written as

S = Z [ -m—“—-——)i —V(xi)e} (7.38)

If we select a particular time ¢, and, as before, let zj be the associated
position of a path, then

as Tkl — Tk Tk — Th—1 ,
P m ( - - ) — V'(zg)e (7.39)

Upon application of Eq. (7.33) there results

() -l ) o

In this last expression the factor involving an €2 in the denominator is
actually the acceleration # evaluated at the time t;. Thus Eq. (7.40)
is just a special example of Eq. (7.37). In particular, it corresponds to
Eq. (7.37) if 6z(t) is zero for all ¢t # t. If éx(t) is assigned the value
€ 6xp - 6(t — ty), then Eq. (7.40) results. Actually Eq. (7.40), since it
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holds for all &, is completely equivalent to Eq. (7.37) in a more detailed
notation.

In Eq. (7.37) suppose we choose the special functional F = 1. Then
0F = 0 and we have

—7%- </[mw + V'(z)] 6= (t) dt> =0 (7.41)
Since this result holds for any arbitrary choice of §z(t), it must be that
(mz) = —(V'(z)) (7.42)

at all values of time. This is the quantum-mechanical analogue of New-
ton’s law. Making use of the classical analogue for a transition element,
described in Sec. 7-1, this result says that the weighted “average” of the
mass times acceleration at any time (where “averaged” means “averaged
over all paths with the weight e*5/%”) is equal to the weighted “average”
of the force (negative gradient of the potential) at the same time.

As another example, suppose F' is some arbitrary nonzero functional
of all position variables ezcept . Then the left-hand side of Eq. (7.40)
is zero (since OF /Ox, = 0) and there results

Tt — 2Tk + Tp—
<F(x1;'-'7xk-1>$k+17"'7$N) m E egk i +V’(wk)}>zo

(7.43)

This equation says that the transition element of ma + V'(z), averaged
over all paths, is zero at ¢y even if these paths are weighted with an
arbitrary functional, so long as the functional is independent of the
position of the path at the time ¢ of interest.

Suppose, however, the functional does depend upon the position of
the path at the moment of interest. In particular, suppose simply that
the functional F' is zj. Applying Eq. (7.40), we have

; .1 — 2% % _
<1> — —Z—e <m:13;€ <$k+1 T + T 1) -+ SCI;V’(SCk)>

h €2
— % <mxk ($k+16_ Tl . Tk —emk:—1> + exkvl(xk>> (7.44)

If we suppose that the potential V(x) is a smooth function, then in the
limit as € — 0 we find that ez, V'(z1) becomes negligible in comparison
with the remaining terms. The result is

<m§—’?i1 - $k$k> - <azkmw—'—1—> =y (7.45)

€ € 7
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This last equation involves the product of position variables z and
momentum variables ma. In the first term the momentum is evaluated
first as a linear average corresponding to the time tp + €/2, and the
position is taken at t;. In the second term the position is again taken
at ¢, but the momentum corresponds to the time t; — €/2. Thus this
equation says that the transition element of a product of position and
momentum depends upon the order in time of these two quantities.

Later on, when we make a translation into the more usual operator
notation, we shall see (Sec. 7-5) that both the operator equation of
motion, corresponding to Eq. (7.42), and the operator commutation laws
of Eq. (7.45) have been derived from the same fundamental relation,
Eq. (7.34).

We can derive a further result from Eq. (7.45) which will give us a
better idea of the characteristics of the paths which are important in
quantum mechanics. Consider the two terms

<ka?—’"——sc—’“:i> (7.46)

€

and
<xk+1m?ﬁ-“€_—“> (7.47)

These two terms differ from each other only in order ¢, since they are
the same quantity calculated at two times differing by the interval e.
Thus we are justified in substituting Eq. (7.47) for the second term in
Eq. (7.45). The result is

(m™ e, ) ) = 51 (7.43)

Alternatively, we can write this as

<(£’1+1—€”-f”-’3>2> - —g—%(l) (7.49)

This equation says that the transition element of the square of the ve-
locity is of the order 1/¢, and thus becomes infinite as ¢ approaches zero.
This result implies that the important paths for a quantum-mechanical
particle are not those which have a definite slope (or velocity) every-
where, but are instead quite irregular on a very fine scale, as suggested
by the sketch of Fig. 7-1. In fact, these irregularities are such that
the “average” square velocity does not exist, where we have used the
classical analogue in referring to an “average.”
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If some average velocity is defined for a short time interval At, as,
for example, [z(t + At) — x(t)]/At, the “mean” square value of this is
—h/(im At). That is, the “mean” square value of a velocity averaged
over a short time interval is finite, but its value becomes larger as the
interval becomes shorter.

It appears that quantum-mechanical paths are very irregular. How-
ever, these irregularities average out over a reasonable length of time
to produce a reasonable drift, or “average” velocity, although for short
intervals of time the “average” value of the velocity is very high.

(b, tp)

A

X

Fig. 7-1 Typical paths of a quantum-mechanical particle are highly irregular
on a fine scale, as shown in the sketch. Thus, although a mean velocity can
be defined, no mean-square velocity exists at any point. In other words, the
paths are nondifferentiable.
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Problem 7-6 Show, for a particle moving in three-dimensional
space z, Y, 2,

he

{(zps1 — 28)%) = (Wk+1 — yr)%) = ((Zh41 — 2)%) = —%m (7.50)
((Trr1 — 1) W1 — Y&)) = ((@r+1 — To) (Zo+1 — 28))
= ((Yot+1 — Y&)(Zet1 — 2)) = 0 (7.51)

It will not do to write the transition element of the kinetic energy
simply as

.;. <m <__..___"”’<~'+16” i > 2> (7.52)

for this quantity becomes infinite as ¢ approaches zero. How shall we
find an appropriate expression to represent the kinetic energy? We might
make the heuristic guess that only those functionals F’ which might ap-
pear in some kind of a physical perturbation problem may be of impor-
tance. How can we get the kinetic energy through a perturbation? If
the mass of the particle were perturbed by a factor 1 +n (with n very
small) for some short interval of time At¢, the action would be perturbed
by n At(m/2)4?, which is proportional to the kinetic energy. We are led
to ask: What would be the form of the first-order perturbation (o) g, if
m were changed to m(1 +n) for a short time?

For simplicity we can take the short time to be just €, the step used
to define the time spacing, so that the first-order term divided by en is
the kinetic energy. The perturbation in S of Eq. (7.38) (if the m in the
i = k term is changed to m + nm) is clearly en(m/2)(zg+1 — 2x)?/€2.
But this is not the only change in the path integral if m changes. The
normalizing factors 1/A for each m vary as m*/2, so a factor (1 +7/2)
is introduced from this. Hence the entire first-order change in the path
integral when m is so changed becomes, after dividing by ne,

, 2
ifm (Zen —2e )" R
I < 2 ( € ) i 2z'e> (7.53)

which should be satisfactory for i/A times the kinetic energy.

Using Eq. (7.49), one might expect this to vanish; but Eq. (7.49) is
valid only as € — 0 to the order 1/¢. The quantity in Eq. (7.53) is, in
fact, finite as € — 0. The expression can be rewritten by expanding the
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quadratic term. In Eq. (7.40) let F be xpi1 — x. If terms of lowest
order in ¢ are kept, the result is

(3 () (22 (3 (222) ) o

(7.54)

Thus we can define the left-hand side of Eq. (7.54) as the transition
element of the kinetic energy.

We see from this result that the easiest way to produce satisfactory
transition elements involving powers of the velocities is to replace these
powers by a product of velocities, each factor of which is taken at a
slightly different time.

In simple problems the transition elements can sometimes be evalu-
ated directly. For such problems the same results can also be obtained
by using the relations among transition elements which we derived in
Sec. 7-2. These relations may supply us with soluble differential equa-
tions for the transition elements. We shall give a few illustrations, but
it will be readily seen that the examples for which the method works
must be so simple that a direct evaluation would not really be much
more difficult.

For our first example, consider the case of a free particle going from
T4 to zp in the total time interval T'. Let us find the transition element of
the position at the time ¢, that is, z(¢). Of course, this is some function
of t and it is clear that

(2(0)) = za(1)  (2(T)) = 25(1) (7.55)

Since any potentials acting on the particle are constant in space (i.e., no
forces act), the second derivative of the transition element of position is
zero in accordance with Eq. (7.42). Thus an integration gives

t

(x(t)) = |zq + -f(zvb — xa)] (1) (7.56)

Note that the expression in the brackets is just the value of z(t) along
the classical path Z(t).

Problem 7-7 Show that for any quadratic action
{z(t)) = z(t)(1) (7.57)

As a somewhat less trivial example, let us try to evaluate the tran-
sition element (z(t)z(s)) for the same free-particle conditions. Since
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this is a function of two times, we can write it as g(¢,s). The second
derivative with respect to t is

2
TI03) _ (i (tyas) (7.58)
This transition element can be worked out by substituting F = z(s)
into Eq. (7.40). For s # t, following the arguments leading to Eq. (7.42),
the result is —(1/m){(V'(z(t))z(s)); while for s = t, following the ar-
guments leading to Eq. (7.44), we find that the transition element of
Eq. (7.58) is of order 1/e. In the limit of small € we have

———-—-—-—-——-82%&2’ s) _ (Z(t)z(s)) = %5@ —8){(1) — %(V’(x(t))m(s)) (7.59)

Since for our free particle the potential is independent of position, the
second term on the right of Eq. (7.59) vanishes. The resulting equation
may be solved by dividing the region of interest into two parts. For¢ < s

g(t,s) = a(s)t + b(s) (7.60)
while for £ > s
g(t,s) = A(s)t + B(s) (7.61)

Thus the first derivative of the function g with respect to ¢ jumps by
the quantity A(s) — a(s) as ¢ goes from just below to just above s, and
in accordance with Eq. (7.59), A(s) — a(s) = (h/im)(1).

The boundary conditions state that

(@(0)z(s)) = zalz(s)) = z42(s)(1)
(z(T)z(s)) = zp(s)(1) (7.62)

This is not enough information to determine all of the four functions
a(s), b(s), A(s), and B(s), but we can either make use of the relation
0%g h

— = —4§(s—t){1 .
ez — 70t = t){D) (7.63)
obtained by differentiating g(t, s) with respect to s, or else notice that
g(t, 8) must be symmetric in ¢ and s. One can conclude that the func-
tions a(s), b(s), A(s), and B(s) must all be linear in s. The boundary
conditions are now sufficient to determine the solution. The result is
[ hot(T —s)]

x(t)a:(s) + o= | (1) fort < s

@(t)e(s) =4 - (7.64)

i(t)o’s(s)+%8(TT_t) 1) fort>s
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That this result is right can be verified by inspection. The product
of two classical paths taken at different times, Z(t)Z(s), is the solution
of the homogeneous equations obtained by setting the right-hand sides
of Egs. (7.59) and (7.63) equal to zero, which satisfies the necessary
boundary conditions. The last terms on the right of the pair of equations
(7.64) are the special solutions of the inhomogeneous equations (7.59)
and (7.63), which are zero at the end points.

The transition element of the product of two positions taken at two
different times contains more than just the product of the two corre-
sponding positions along the classical path. There is a small additional
term which is purely quantum-mechanical in nature. This additional
term is consistent with our picture of quantum-mechanical motion. Even
though the particle moving between fixed end points will be found on the
average along the classical path, it has an amplitude for motion along
all alternative paths. This fact must be remembered when considering
the transition element of the product of positions at two different times.
All the possible positions among all the various alternatives must be ac-
counted for in the transition element, and this accounting introduces the
extra term. Only at the specified end points are no other alternatives
possible.

We can better understand the significance of this result if we make
use once again of the terminology from our classical analogue. Suppose
the path of the particle goes through a particularly large value of x at
some time s. Then the “average” value of x at a later time ¢ is not just
the ordinary average Z(t). There is a correlation with the previous large
deflection. Therefore, the “average” product is not just the product of
“averages.”

In this and other applications of the classical analogue, we remember
that the “average” referred to is defined with the help of the weighting
function e*®/". This weighting function is not positive definite, and
is in fact complex. Thus we develop such purely quantum-mechanical
results as that of Egs. (7.64), wherein the extra correlation term is pure
imaginary!

Problem 7-8 Find the transition element (z(t)z(s)) = g(t, s) when
the potential is not constant but, rather, corresponds to that of a forced
harmonic oscillator. Do this by obtaining differential equations for g(t, s)
and trying the solution

(z(t)a(s)) = g(t,s) = [2(t)Z(s) + G(t, ) 1) (7.65)

Obtain an equation for G(t,s) showing that G is independent of the
end-point values z, and z, and of the forcing function f(t). Show in
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general that, with T' =t — t,,
h sinwt sinw(T" — s)

. - fort < s
m wsinwT
G(t,s) = (7.66)

h sinws sinw(T —t)

fort>s

m wsinwT

GENERAL RESULTS FOR QUADRATIC ACTIONS

Evidently if the action S is a quadratic form, transition elements of many
functionals can be determined readily. This suggests that we extend
our consideration into a somewhat more general class of functionals.
The technique to be used is the same as that described in Sec. 3-5.
For example, we note that with a quadratic action § we can easily
evaluate the transition element of exp{(i/h) [ f(t)z(t) dt}, where f(¢)
is any arbitrary function of time. The transition element of such a
functional can be written as

<e(i/h) f f(t)z(t) dt> — (7.67)

Tp .
/// X*(xb>e(2/h)[5+ff(t)$(t) dt]w(wa) D (t) dzg day

If the original action S is gaussian, then so is the action
ty

S'=8+ ft)z(t) dt

ta
Thus the path integrals on the right of Eq. (7.67) can be carried out by
the methods of Sec. 3-5. If S/, is the extremum of the action S’, then
the factor exp{iS,,/h} can be extracted as a factor for the path integral
of Eq. (7.67). The remaining factor is a path integral over the paths
y(t), which run from zero to zero during the allowed time interval. (We
set z(t) = Z(t) + y(t), where Z(¢) is the classical path corresponding to
the extremum of the action.)

The integral over the paths y(t) does not depend upon the function
f(t), since this function appears in the action S’ multiplying only a
linear term in z(¢), and we have seen (Eq. 3.49) that the remaining path
integral involves only the quadratic parts of S’ which are not more than
the quadratic parts of S. This means that the path integral on the
right-hand side of Eq. (7.67) can be reduced to an exponential function
multiplied by the transition element (1). The result is

(oo {2 [ sttt} ) = e {26su-s} (7.68)

ta
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Once the extremum 5., has been evaluated, the extremum S, can be
obtained from it by setting f(¢) identically equal to zero. The action of
the forced harmonic oscillator, described by Eq. (3.66), is a special case
of this action S7,;.

Problem 7-9 Use this result to show that if S corresponds to a
harmonic oscillator

ty
g=" (2% — w?z?] dt
9 to
then
i [t 7 mw
- ¢ — (1 hd
(e {5 [ 1ot} = emp {1 oted—
2&75 b ; QSCa b .
—_— t t—t,)dt t ty — t) dt
|2 [ ftysmute— ey e+ 222 [ (9 st -

2 ty rt
57 / f(t)f(s)sinw(ty, — t)sinw(s — t,) ds dt} }
ta Jta

where z, and x; are the initial and final coordinates of the oscillator.

From the transition element given by Eq. (7.68) we can obtain the
transition element of x(t) itself by another method. Suppose we differ-
entiate Eq. (7.68) with respect to f(¢). The result is

(sew {3 [ r0emar}) = 2 e {15 - 5

58", i
— ot e { (S-S} (1.60)
Therefore, by evaluating both sides when f(¢) = 0, we obtain
65,
z(t 1 7.70
(z(t)) = (1) 5f() (7.70)
We can continue this process to get the second derivative as
}) s oo {550}
z(t)z(s)) = (1) | = | —rv=s~ expq = (S, — S¢
) =0 (5) s =@ (a0}
o 628 55, 65!
= (1) | = cl + cl cl:' 7.71
0 [F s + s 7

Actually, since S7, is quadratic only in f (see Eq. 3.66), the transition el-
ement of a factor of any number of 2’s can be directly evaluated in terms
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of 5!,/6f(t) and the quantity 62S%,/0f(t)df(s), which is independent
of f. This explains the form of Egs. (7.64) and (7.65) and permits the
transition element of a factor of three z’s to be written down.

Problem 7-10 Show, for any quadratic functional, if we write
(z(t)) = z(t)(1) and (z(t)z(s)) = [2(t)Z(s) + G(¢ 8)](1), that

(z(t)z(s)z(u)) = [Z(H)2(s)Z(u)
+ 3G (s, ) + 2(s)G(t,w) + F(w)G(E, 8)](1)

Find the transition element of the product of four z’s. [Suggestion:
Since 5!, — S¢ is quadratic in f and zero for f = 0, it must have the
mathematical form S, — S = 5 [[ f(t)f(s)G(t,s) dtds + [ Z(t)f(t)dt,

where G and Z are some functions.]

TRANSITION ELEMENTS AND THE OPERATOR NOTATION

In this and the following sections we shall see how transition elements
look in the conventional notation of wave functions and operators. This
will help the reader who is familiar with that form of expression to relate
the results of path integral calculations to other results that he already
knows.

If F is a functional only of z at a single time, say, the function
V (zg) at time tj, we know from Eq. (7.10) how to evaluate its transition
element. Similarly, if F' depends on the value of z(t) at two different
times, Eq. (7.15) tells us what to do.

Let us consider next the case that F represents the momentum at
time t; and make use of the approximation that the time axis is cut up
into slices of length €. Thus

F= mf”itlg—f-’i (7.72)

Then we have

(x|m

The right-hand side of Eq. (7.73) can be written as

Tp+1 — Tk
€

8} =2 Woiali)s - Kexlb)s (7.73
S

m {/ X*(z,t + €)x(z,t +€) dx — /X*(x,t)mw(w, t) dz (7.74)

€
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Now making use of the wave equation

Y(z,t+¢€) =P(z,t) + 6@é =) — —Hw (7.75)
Xt + €) = X*(z,1) + eagf = X° + S [HX)" (7.76)

from Prob. 4-3, where H is the hamiltonian belonging to the S. There-
fore, to first order in €

/X*(m, t+e)zp(z,t+e)de = /X*(x, Oz (z,t) de (7.77)
— % [/ X*(z,t)z[Hy(z,t)] doe — /[HX(:c,t)]*mw(x, t)dz

By Eq. (4.30) this last integral can be written as [ X*(z, t)[Hzvy(z,t)] dz,
or more simply we have

(Xm|e) = — [ X* (2 H — Ha)p d (7.78)

h
using the operator notation. This is the same as
: 2
B0, [ h2,
i 656
where we have used the result of Prob. 4-4. The operator (h/:)0/0z is
called the momentum operator or, more specifically, the operator repre-
senting momentum in the x direction. We already see why. Construct-
ing the transition element of ma is equivalent to putting the operator
(h/3)0/0x between X* and v, just as constructing the transition element
of z is equivalent to putting = between X* and 1. These relations can be
understood, perhaps with greater clarity, if we go over to the momentum
representation. If

o0 N
X(p)z/ X(z)e { PPz gy

(7.79)

vi) = [ wlwem 0/ as (7.80)

are the momentum representations of X and 1, one can show that
w1 O%(2) / e dp

[ @i % a - [ e (7.81)

Problem 7-11 Show this.

Another way to see this relation is the following. Consider the tran-
sition amplitude given by

XIIW / / xbatb K(xbatbaxa7 a)w(xcn ) daja dmb (782)
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Now suppose the z, origin is shifted left by a small amount A. Calling
the new variable z/,, we have

To =, — A | (7.83)

Using this new variable rather than the old z, will not alter the transi-
tion amplitude of Eq. (7.82). It becomes

o= [ [ X* (@, )

. N-1

i i
X exp {ﬁ ;:2 Slriv1, tiyr; Tis t] + hS[$27tQa — At }}
x Pzl — A, t,) Dx(t) da, dap (7.84)

where the path integral for the kernel has been written out explicitly,
using the methods of Eq. (2.22).

Next, we expand S[zs, to; 2, — A, t,] and ¥ (z, — A, t,) in Taylor series
and keep only the first-order terms. The exponential function becomes

. N-1
; i
eXp{ﬁ E SlTig1, bigr; iyt ]+h5[$2:t2>$ H}
=2

(7.85)

0S[za, to; zl, 14
X {1 hA 5z, }

We may drop the brime notation in the integral defining the transition
amplitude, since z’, is a variable of integration. The form of Eq. (7.84)
now becomes

X[1[) = // K (b, a)(a) da dzy — —A// K(b,a) (7.86)

8S|[xa, t2; Ta, ta] h 09(2a;sta)
[ br, VTl YTy, | el

where we retain the notation that point zo is spaced along the path z(t)
only by the short time interval e from the point , = =1 and t2 = £, +¢€.

The first term on the right of Eq. (7.86) is identical to the transition
amplitude on the left. This means that the remaining term must be zero.
But this remaining term is a combination of two transition elements.

Thus
OS[xa, ty + € g, ta) B h Oy (za,ts)
<>< o >_. <>< e (7.87)

In the convention of Eq. (2.22) we use the classical action along each
of the short segments of the path. Thus the action S[b, a] appearing in
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Eq. (7.87) is the classical action for the initial path element. Its negative
derivative with respect to x, is the classical definition of the momentum
at z, (see Eq. 2.11). So we can write

icatt) = (x[1] 3 22 )

! 1 Oz,

which is the same result as that obtained in Egs. (7.78) and (7.79).

Sometimes working with a complicated S that results perhaps from
the partial elimination of interacting parts, we would like to identify
the functional p(t) which corresponds to the momentum at time ¢. The
work of the preceding paragraph suggests a general definition. The
first-order change in the transition amplitude (X|1]v), if all coordinates
corresponding to times previous to t are shifted by —A, is this A times
{(X|p(t)|®). From this principle the momentum functional may be found
for an arbitrarily complicated S. In a like manner, the hamiltonian or
energy functional can be defined by shifting the time variables, as we
shall describe in Sec. 7-7.

(7.88)

Problem 7-12 Show, if g is any function of position only, that
d — g
x| W) = {x 9(zry1) — g(zk) W
dt €
Z‘ oo
=-3 X*(gH — Hg)Y dx (7.89)
Consider the case that ¢ is a function of the time as well. Show that the
transition element of dg/dt is equivalent to the transition element of the
operator —(i/h)(Hg — gH) + 8g/bt.
Problem 7-13 Show that
. U e
(Xmifs) =~ [ X (o — Hp)pda (7.90)
and argue for any quantity A, given in terms of an operator or otherwise,
that dA/dt is equivalent to —(i/h)(AH — HA) + 6A/0t.

Next we consider an expression F' involving two quantities evaluated
in rapid succession, such as

F= mwmk (7.91)
This evidently gives
(X|Fly) = m/ / “(@,t + € )zK (z,t + 6y, )y (y, t) dy do

—— X (z,t)2%Y(x,t) dx (7.92)

€ - 00
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where t = t;. In developing Eq. (4.12) from Eq. (4.2) we saw
o i€
| K@i+anorwa = f@) - ) (7.99)
-0

so that the first integral in Eq. (7.92) is

m / (2.t + )z (1 - %H) (3, 1) do (7.94)

Expressing X* by Eq. (7.76) and using the hermitian property of H, we
find that this integral is

m/ X*(z,¢) (1 + hH) (1 - %H) 2(z, 1) dz (7.95)

=T / (z) dz + 3%73 _Oo X* () (Hz — 2 H)z(z) dz

Thus finally

<X mkai¢> = zm/ (z,t)(Hz — zH)zy(z,t) dx

€
the last step following from Eq. (7.78).

This is an example of the general rule: In writing the integral defi-
nition of the transition element for a set of quantities corresponding to
a succession of times, the corresponding operators are written in order
from right to left, according to the order in time of the original transi-
tion element. If there is a finite time interval At between them, a K,
or alternatively the operator et(G/ML At must be inserted. (For an ex-
ample, see Prob. 7-16). As the time interval ¢ between two successive
quantities approaches zero the K approaches a Dirac delta function and
the rule results.

:/_ X*(z,t)pz(x,t) dz (7.96)

Problem 7-14 Show that the transition amplitude of
(m/€)(zps1 — Tx) f(Tr+1) is equivalent to that of (f - p).

Problem 7-15 Show that the rule works for two successive
momenta, that is,

L+l — Tk T — Tk—1
<X 1m + m
€ €

w> = [ [ @i nazay (o)

I
=1 [ [ Xt it dady



7-6 The perturbation series for a vector potential 189

(x

if t; =t and tx = s, provided t; > t,. What happens if ¢; < ¢;7?

Problem 7-16 Show that

> // (z,t)zK(z,t;y, )T?aaw(y,s)dyd:c

(7.98)

Lg+1 — Tk
zm=l Tk

Notice that the square of the momentum p? corresponds to pp, or
two successive velocities times mass multiplied together (as in Prob.
7-15). It does not correspond to the simple square of velocity at one time,
(X|m*(zp41 — )% /€2|); for that goes to infinity as mh /ie when € — 0,
as we have seen in Sec. 7-3, particularly in Eq. (7.49). The difference
between this expression mh/ie and the left-hand side of Eq. (7.97) is in
fact p? in the limit. That is,

otz

m“‘“:b<X11W> -+ <X ]mxkﬂe_ wkmm'Ic *:‘k—l

($lc+1 - xk)2
2

¢> (7.99)

Problem 7-17 Prove this, using Eq. (7.40) with

Tp41 — Tk
F=m=2tl =k
€

THE PERTURBATION SERIES FOR A VECTOR POTENTIAL

The singular behavior of the transition element of the square of the
velocity, as shown in Eq. (7.49), has as a consequence the fact that
many expressions involving velocity must be translated with care. For

example, the lagrangian for a particle of charge e in an electromagnetic
field is

L(%,%,t) = %;X]Q —ed(x,t) + §X~A(x,t) (7.100)

Let us take ¢ = 0 and ask for the effect of the vector potential A consid-
ered as a perturbation. That is, with Sy = (m/2) [|x|*dt,
o = (e/e) [%-A(x,t)d¢t, we develop a series for use in a perturbation
treatment and solve for the resulting transition elements. Thus

i

<eia/h>5'o - <1>So + .T:L‘<O—>So o —1_-<0_2>50 T (7'101)

252
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The first-order term is ie/fhc times the expression

< /t " A D) dt> (7.102)

We wish to translate this to operator notation. In defining o for a
discontinuous path (a series of steps of time length €) we might at first
expect to write either

e
g = -C*Z(Xk_;.l - Xk)'A(Xk;,tk) (7.103)
k
or
c
o= EE(xk+1 — Xp) A(Xpt1, trr1) (7.104)
k

Either one, in the limit of a continuous path, gives the integral for o.
But if we look at a particular component of A, say, A;, we find that
Ag (X1, tr+1) differs from Ag(xy,tx) by approximately

0A,
(X1 = Xk) VA +e— (7.105)

which, when multiplied by xx.1 — X) again, might be expected to be of
second order in e for each k, thus leading to a term of first order in ¢
when the sum over k is performed. But our paths are not continuous
and the transition element of the mean square of zx1+1 — 2 is of first
order. In fact (see Prob. 7-6)

he
) A ——
(Tpt1 — Tk) ;
(Th+1 — T1) (Y41 — Y6) = 0
he
(yks+1 Yk) im

etc., to first order in ¢. Hence Eq. (7.103) differs from Eq. (7.104) by
approximately

—Z V- A(xp, ty) = /V A dt (7.106)

a zero-order term. So it is imperative to decide which form is correct.
The general answer to such a question was given in Chap. 2. There
the rule given was that S is replaced by >, Sei[Tk+1, tk+1; Tk tr), Where
S.; is the classical action to go from one point to a neighboring point.
It is not necessary to calculate this action exactly, but only sufficiently
closely to resolve ambiguities. Equations (7.103) and (7.104) are not
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sufficiently closely calculated for this purpose, but the classical action
for a short interval is very close to

m|xEs1 — Xkl? e Ak+1)+ Ak
Scl[k"‘“l»k’]:'é‘i A+1€ d +E(Xk+l“xlc>°( ( ; ()>

(7.107)

Therefore, the correct expression for o is the average of Egs. (7.103) and
(7.104), so that the transition element of Eq. (7.102) is

<Z(Xk+1 — Xg) 5 [A (X1, tior1) + Alxg, tk)]> (7.108)

k

Leaving the sum over k for later evaluation (as an integral over time)
the result is the operator (1/2m)(p-A + A-p) (see Prob. 7-12).

That is, in an electromagnetic potential, the first-order term in the
perturbation expansion Eq. (7.101) has the same form as the first-order
term given in Eq. (6.11), but with the quantity V replaced by the oper-
ator —(e/2mc)(p-A + A-p).

This conclusion is not true for the second-order term in Eq. (7.101).
The second-order term requires our finding

1) ([feamoa])- o

_% (%>2;;< :<xk+1 ) (A(/c+ 1) +A(k)>]

2
[ A +1)+A>)

X | (K1 — %5)- ( —
Nothing special happens for the terms with 7 # &, and we obtain in fact
precisely the second-order term expected by comparison to Eq. (6.13)
with V' replaced by the operator —(e/2mc)(p-A + A-p). But when
j =k, the coincidence of the two velocities gives a new term. In view of
Eq. (7.49) and Prob. 7-6 we get an additional quantity

_% (%>2<§~:§Z]€:<A(k+12)+A(k>>2> (7.110)

which is equivalent to —i(e?/2hmc?) [[A(x,t)-A(x,t)]dt and has the
same effect as the first-order action of a potential (e?/2mc?)A-A.
Thus the perturbation expansion for the action of a vector potential
has the same form as Eq. (6.17). The potential V' is replaced by the
operator —(e/2mc)(p-A + A-p) + (e?/2mc?)A-A. We have shown it
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to second order in A, but a little consideration shows it is true to any
order.
The hamiltonian for a particle in a vector potential A is

1
H=— <p _ ?-A) , (p - ?-A) (7.111)
2m c c
It differs from that of a free particle, namely (1/2m)p+p, by just this
operator —(e/2mc)(p-A + A-p) + (e?/2mc?)A-A. This is a much easier
way to arrive at the result we have just obtained.

THE HAMILTONIAN

Using what we have so far derived, it would be very easy to write
down the transition amplitude for the hamiltonian. We take the tran-
sition amplitude for the square of the momentum, divide it by 2m, and
add the transition amplitude for the potential. In this way the hamilto-
nian itself at the time t; could be written as

o= (””f“ - 5”’“) (”’“ _Emk‘l) + Vizg) (7.112)

2 €

while in operator form we have the transition element of the hamiltonian
as

o0 2 o0
(X|H ) = / X* {—Q—- + V(a:)} Yvdr = / X*H1 dx (7.113)

Although this method for defining the transition amplitude for the
hamiltonian gives a perfectly correct result, it is somewhat artificial,
since it does not exhibit the important relationship between the hamil-
tonian and time. Therefore, we shall next consider an alternative def-
inition of this transition element based upon an investigation of the
changes made in a state when it is displaced in time. This approach will
also enable us to define Hj given only the form of S, no matter how
complicated.

To carry out this investigation, we break up the time axis into in-
finitesimal intervals, just as we did in defining path integrals. Now,
however, it is important to point out that the subdivision of time into
equal intervals is not necessary. Clearly, any subdivision of time into
equal intervals is not necessary. Any subdivision into instants ¢; will be
satisfactory; the process of taking limits is characterized by having the
largest spacing ;41 — t; approach zero.
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For simplicity, our system will consist of a single particle moving in
one dimension. The action is represented by the sum

S = Slmis1, tigr; T, bi) (7.114)
3
where
tit1
S[$i+17ti+1§mi:ti} = / L(x’,x,t) dt (7115)
t;

The integral in this expression is taken along the classical path between
z; at t; and z;41 at t;41. For our one-dimensional example we can write,
with sufficient accuracy,

2
m [ Z; !
S[$i+1,ti+1;xi,ti} - {-2— (*}-ﬂ————z> - V(a;z) (ti—H - ti) (7116)

tiv1 — t;

The normalizing factor associated with an integral over z; at the time
t; is the same one we have used before, namely

. ‘ s 1/2
A:(%m(t%“ m) (7.117)

m

The relation of H to the change in a state with displacement in time
can now be studied. Consider a state 1(t) specified within a space-time
region R. Now imagine that at the same time ¢ we consider another
state 1¥s(t), specified within another region Rs. Suppose the region Rs
is exactly the same as R except that it is earlier by a time 4, that is,
displaced bodily towards the past by a time §. All the apparatus required
to prepare the system for Rs is identical to that for R but is operated
a time & sooner. If the lagrangian I depends explicitly on time, it too
must be displaced; i.e., the state 15 is obtained from the L used for the
state ¥ except that in writing Ls we use the time variable ¢ + 6.

Now we ask: How does the state 15 differ from 7 In any measure-
ment the chance of finding the system in some fixed region R’ is different
depending on whether the region of origin was R or Rs. Consider the
change in transition amplitude (X|1]1s) produced by the shift in time 4.
We can consider this shift as effected by decreasing all values of ¢; by
for ¢ < k and leaving all ¢; fixed for ¢ > k.

If the reader looks ahead at this point, it may appear to him that we
are headed for trouble. Clearly, it is our intention eventually to take a
limit as all infinitesimal time intervals are decreased to zero. However,
with the present setup, at least one time interval f;; — f; has a lower
bound, so that it cannot be indefinitely decreased. This difficulty could
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be straightened out by assuming the time shift § to be itself a function
of time. We can imagine that it is turned on smoothly before ¢t = ¢ and
turned off smoothly after ¢ = t;. Then keeping the time variation of ¢
fixed, we can let all time intervals proceed smoothly to zero, including
trr1—tr. We would then investigate the first-order effect of the time shift
by letting the magnitude of § approach zero. The result obtained by this
more rigorous process is essentially the same as that of the procedure
we are using in our present example.

Returning now to our investigation of the effect of the time shift we
see that the action S[z;11,%:i+1;2i,t;] as defined by Eq. (7.115) will not
change so long as both t;41 and ¢; change by the same amount. On
the other hand, S[zky1,tk+1; Tk, tx) changes to S[Ti+1, tht1; Tyt — 9.
Furthermore, the factor A associated with the integration over xj, is also
altered and becomes

. B 1/2
A= (271”&71(7%4.1 tr + 5)) (7.118)

m

We use Eq. (7.2) to define the transition amplitude. Keeping in mind
that the path integral depends on both the action S and the normalizing
factor A (both of which are altered by our time shift) we can write the
change in the transition amplitude to first order in § as

i0
DL

(7.119)

0S8 k+1, tht1; Tho, L) h
Bt 2 (trrt — tr)

(XI1[) — (X[1[s) = <><

the second term coming from the change in A. We wish to define the
functional corresponding to the hamiltonian in quantum mechanics as

o — 08 Zy1, tht1; T L) h
Ot 2i(tkt1 — tr)

The first term on the right-hand side of this last equation is the defini-
tion of the classical hamiltonian. The second term is necessary in the
quantum-mechanical definition in order to keep Hj finite as the time
interval tgy1 — tr goes to zero. This last term is a consequence of the
change in the normalizing factor A due to the time shift J.

Applying this result to the specific one-dimensional example indi-
cated by Eq. (7.116), we can write the operator Hy as

2
m [ Te+1 — Tk h
Hy="2 (2170 ) +V (x

& 2 (tk+1—tk> QZ(tk_{_l——tk) ( h>

_ % (M> (M—l> +V (1) (7.121)

te+1 — Uk Iy — tg—1

(7.120)
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The second of these equations is based upon the results obtained in
Eq. (7.54). By writing the product of velocities as the product of two
successive velocities, we can do away with the apparently extraneous
term A /(20(tgr1 — tx)).
Using the relation ts =t — ¢ for all values of £ < ¢, we have
N o

Y(E) = plte) + o5 = s +05- (7.122)

connection the function ¢ defined in the two regions R and Rs. Thus the
cycle of relations connecting operators to the Schrédinger equation and
to path integrals can be closed with the result obtained by combining
Egs. (7.119), (7.120), and (7.122):

o i
_ 2N = (X H ) — :
5<x]1} Bt> X Hil) 5 (7.123)
which leads us back again to the Schrédinger equation
oY i
T = _H A2
T - Y (7.124)

For arbitrarily complicated actions we can find an expression for the
hamiltonian (i.e., a functional corresponding to the energy) by asking for
the first-order change in the transition amplitude (X|1|¢)) when all times
previous to t are shifted by —d and writing this change as (X|H (¢)|v)é.
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THE problem of the harmonic oscillator is perhaps the simplest in quan-
tum mechanics. We solved it completely in Prob. 3-8 when we found
that the kernel for the motion of a harmonic oscillator is

me )1/2 (8.1)

2mih sinwT

imw
X exp {m[(ccf +z2) coswT — be:ca}}

K(zp,T;4,0) = (

If we are to make full use of this, we should look at all sorts of problems
which involve harmonic oscillators, either exactly or approximately. It
is the purpose of this chapter to describe several such problems, both
those involving single oscillators and those involving systems of interact-
ing harmonic oscillators. We could carry this program to extremes and
include all kinds of classical vibration problems (plates, rods, etc.), but
such systems are so large that it would be a waste of time to analyze the
quantum-mechanical corrections. Instead, it would be better to look at
systems on the atomic scale. For example, we might analyze the oscilla-
tions of the molecule CO. In so doing, we find that the potential energy
between the carbon and oxygen atoms is not exactly quadratic. Never-
theless, for the lower-energy states the potential is so close to quadratic
that a pure harmonic oscillator treatment is a good approximation for
many purposes.

In a much more complicated polyatomic molecule, when the excita-
tion energy is not too high, the travel of the atoms is small compared
with their spacing. In this case again the potential energy is very nearly a
quadratic function of the coordinates. Thus the system is approximately
equivalent to a set of coupled harmonic oscillators. A solid crystal is,
from one point of view, a polyatomic molecule of great size. As such it
is a vast array of interacting harmonic oscillators.

As another example we can consider the electromagnetic field in
a cavity. Classically, there are several patterns of standing waves, or
modes, in which the field can vibrate harmonically with a definite fre-
quency. In quantum mechanics, each of these modes constitutes a quan-
tum oscillator.

THE SIMPLE HARMONIC OSCILLATOR

Solution from the Schrodinger Equation. In this section we
shall develop a number of relations describing the simple one-dimensional
harmonic oscillator. We shall begin with the language of the Schrédinger
equation. Problem 2-2 gave the lagrangian describing a one-dimensional

198
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harmonic oscillator as
m, .o 9

=2 - u??) (82)

The corresponding hamiltonian, which we use in the present treatment,
is

b m o o
H= =+ we 8.3
2m 2 (8.3)
The wave equation is then
oy { i [(p? Mmoo
S e | 2 — 8.4
ot ~ REVE 3 <2m TR )y (8.4)

Since the hamiltonian is independent of time, the wave equation is easily
separated, and it yields wave functions of steady states of definite energy
E,,. The time-dependent part is proportional to g~ (i/R) Bnt

Recalling that the momentum operator p corresponds to differen-
tiation with respect to z (see Sec. 7-5), we can write the Schrodinger
equation for the spatial part of the wave function as

h? d? mw?

Hon(z) = ”%@E%(x) t— On () = Engn(T) (8.5)

This equation is easily solved. The result is given in many books on
quantum mechanics.! The eigenvalues for the energy are

B, = hw(n + 1) (8.6)

where n is an integer: 0, 1, 2, .... The eigenfunctions ¢,(z) are

1 mw /4 mw 2
— e —(mw/2h)x
nl®) = Gz (m> Hn (m V % ) ¢ (8.7)

where the functions H,, are the Hermite polynomials

Ho(y) =1
Hi(y) =2y
Hy(y) = 4y° — 2

Y2 dm 2

Hn(y) = (=1)%" Z2e™ (8.8)

11,.I. Schiff, “Quantum Mechanics,” 2nd ed., McGraw-Hill Book Company, New
York, 1955.
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The Hermite polynomials are best defined by their generating func-
tion

2 = tn
o~ 2ty _ Z:)Hn(y)ﬁ (8.9)

We can obtain these results in another manner. The functions On(z)
have been obtained by solving a differential equation, namely, the time-
independent case. However, we already have a solution for the time-
dependent case. From this solution we should be able to derive these
functions directly. It is instructive to carry out this derivation to illus-
trate some of the formulas which have been derived in earlier chapters.

Solution from the Kernel. We have worked out the kernel de-
scribing the motion of an oscillator in Prob. 3-8. And we know from
Eq. (4.59) that this kernel can be expanded in terms of energy eigen-
functions. That is

mw 1/2 imw 0 o
omih sinwT Py r——— T-2
<2m’h sin wT) exp { 2h sinwT (@ + za) cosw xbma]}

=) e WNETe ()87 (za) (8.10)
n=0

Using the relations
isinwT = 1T (1 — g2 T)

coswT = Le™T (1 4 ¢720T) (8.11)

[N VI

we can write the left-hand side of Eq. (8.10) as

1/2 , .
(@g) / e__wT/Q(l . e_zsz)—l/Q (8.12)
.

mw [, o o [14e 2T dapzae”wT

X eXp {“'27{ [(xb +23) <1 o R E— T
We can obtain a series with the form of the right-hand side of Eq. (8.10)
by expanding Eq. (8.12) in powers of e~ Because of the initial factor

e~™T/2 the terms in the expansion will be of the form e~%7/2g—inwT
for n =0,1,2,.... This means the energy levels are given by

En = hw(n+ 1) (8.13)

To find the wave functions, we must carry out the expansion com-
pletely. We shall illustrate the method by going only as far as n = 2.
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Expanding the left-hand side of Eq. (8.10) to this order we have

mw N 1/2 ; ;
() morra(r 4 gomor 4 ) (8.14

mh
x oxp { — o (e +2)(1+ 27T 4 ) — dayag (T + )] )

or

12 -
(m;:) e““"T/z(l %_e-2wT . ')e—(mw/Qh)(mg—Fmi) (8.15)
2w . 1 /2mw)\? )

x |1+ Txbazae”“"T - 5 (-—-——-———h ) riglem 2T

mw :
~—-—-ﬁ-—(x§ +z2)e 2T 4. J

From this we can pick out the coefficient of the lowest term. It is

(@%) 1/2 e__in/Qe—-(mw/fm)(wi—}—mi) — e——(i/h)EoT¢O <$b)¢g (33a) (816)
T

This means that Fg = %hw and

mw

1/4 .
dola) = (T ) et/ (8.17)
We have chosen ¢g(x) to be real. We could make it complex by including
a factor e, where § is a real constant; however, it would make no

difference to any physical result.
The next-order term in the expansion is

(2) V2 T2 g (mus o) (o 0?) 2T
wh . h
= e~ (IMET g (20)47 (24) (8.18)

which implies that By = g—hw and

00 = (2) " ante (8.19)

The next term corresponds to Fo = ghw. The part of the term
depending on z; and z, is

wh 2 K2 h

This must be the same as ¢, (xp)@5(z,). Since the expression in the
brackets can be rewritten as

% (g%*ix,% . 1) (31;-‘:"-333 - 1) (8.21)

1/2 2, 2y [1  2m2w?
(:’_’}_‘ﬁ) o~ (mw/2h) (wh+a?) [-— + e - 2@ 4 a)| (320
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we find

¢2(z) = :}_72' (g%iwz - 1) $o(z) (8.22)

These results are the same as those obtained from the solution of the
energy wave equation, Egs. (8.7) and (8.8).

All of the wave functions may be obtained in this manner. How-
ever, it is a difficult algebraic problem to get the general form for ¢, ()
directly from this expansion. A less direct way is illustrated in the prob-
lem.

Problem 8-1 The amplitude to go from any state ¢¥(z) to another
state X(z) is the transition amplitude (X|1|¢) as defined in Eq. (7.1).

Suppose ¥(z) and X(z) are expanded in terms of the orthogonal
functions ¢, (z), the energy solutions to the wave equation associated
with the kernel K (b, a), as discussed in Sec. 4-2. Thus

P(x) = Yndn(z)  X(@) =) Xngn() (8.23)

Using the coefficients v, and X,, and Eq. (4.59), show that the transition
amplitude can be written as

/ / SCb)K .be)T Ta, )¢($a) daja dxb ZX w e—(z/h)E T
(8. 24)

Next, suppose we choose a special pair of functions () and X(z) for
which the expansion on the right-hand side of Eq. (8.24) is simple. Then
after obtaining the functions 1, we could get some information about
the wave functions ¢, (z) from the expansions of Eq. (8.23). Suppose
we choose the functions ¥(z) and X(z) in the following way

muw\ 1/4 —{(mw z—a)?

U(z) = (———Wh) g (mw/2)(@=e) (8.25)
1/4 )

X(z) = (%7’-7‘;3-) g (mu/2m) (@=b) (8.26)

These functions represent gaussian distributions centered about a and
b respectively. We shall call ¥, = ¥,(a) and X,, = ¥, (b). Determine
the transition amplitude (X|1]v), where ¥(z) and X(x) are given by
Egs. (8.25) and (8.26), and the kernel is that for a harmonic oscillator,
Eq. (8.1). Perform the integrals in Eq. (8.24) to get

exp {—Ed—zj - :r—n--u—}-(az +b% — 2abe"iWT)} = Z@b;(b)i/)n(a)e“(i/h)EnT
n

(8.27)
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From this result show that E,, = hw(n + %) and that

mw\"™/? a” mwa?
Yn(a) = (‘ﬁ‘) T %P {“— m } (8.28)

Use this result in Eq. (8.23) and write for ¢,(z) the form given by
Eq. (8.7) considering the H,(y) still unknown. From this derive the
generating function of Eq. (8.9) for these functions H,(y).

THE POLYATOMIC MOLECULE

In the preceding section we derived the wave functions and energy levels
which describe the simple harmonic oscillator. In this section we begin
our investigation of systems of interacting oscillators with the study of
polyatomic molecules. We begin the analysis by assigning coordinates
describing the position of each atom in the molecule. The position of
any particular atom a will be given by the three cartesian coordinates
Za, Ya, and 24, Whose origin lies at the equilibrium position for the atom.
If the mass of the atom is m,, the kinetic energy of the whole molecule
is given by

1 : 2.
Z é-ma(zcg + 92 + 32) (8.29)
a

where the summation is carried out over all atoms in the molecule.

It will be more convenient for this general discussion to avoid the
vector aspects of this description by making the following modification.
We suppose there are N atoms in the molecule. We shall define n = 3N
coordinates in the following way:

q1 = \/’?m% g2 = /Mqa Ya g3 = /Mg Zq (8 30>
qqa = /Mp Tp s = /Ty Yo

In terms of these new coordinates the kinetic energy is
1 7
KE =2) 4 (8.31)

The potential energy is the function V (g1, ¢s,...,¢,) of all the dis-
placements ¢;. We can expand V in a Taylor series around the equilib-
rium position ¢g; = 0. Thus
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V(g1,¢2- -1 dn) = V(0,0,...,0) + > ¢;V5(0,0,...,0) (8.32)
j=1
1 n T
J=1 k=1
where
ov 0%V

Vi = — Vi = 8.33
7 Oy 7 8 Oy (8.33)

The first term is the potential energy at equilibrium. It is a constant
independent of the g;. We shall assign it the value zero by shifting
the zero-level of potential energy. The second term contains the factor
V;(0,0,...,0), which is the potential gradient or force associated with
the coordinate ¢; and evaluated at equilibrium position. This factor is
therefore zero. To put this another way, since equilibrium corresponds to
a minimum of potential energy, the first-order change for displacements
about equilibrium must vanish.

The factors Vj(0,0, .. .,0) appearing in the third term comprise a set
of constants whose values depend on the structure of the molecule. Call
these constants v,;z. Now suppose we neglect all higher-order terms.
In this approximation the potential energy involves each coordinate
quadratically. Even if the potential is not a pure quadratic function
of the coordinates, our approximation will be valid for small displace-
ments. It is by this approximation that we represent our molecule as a
system of harmonic oscillators.

Combining Eqgs. (8.31) and (8.32), we can write the lagrangian as

L= % ;:: Z Z’Ujk%'% (8.34)

j=1k=1
Next, we introduce this lagrangian into the path integral which defines
the kernel® describing the motion of the atoms in the molecule,
1 1 n .9 1 n 7
K= [ [[expqz s [ de—5 >0 3 vk [ ¢5(t)ae(t) dt
j=1 j=1k=1
x D (t) Daa(t) - - - Dgn(t) (8.35)

All of these path integrals are gaussian, and thus they can be solved
by the methods discussed in Sec. 3-5. To carry out that solution, we
shall have to find those paths g;(t) which give a stationary value for the

l\Dl»—a
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action integral. Variation with respect to each g;(t) gives these paths as
solutions of

g;(t) =~ Z A0 (8.36)
k=1

This last equation says that the force on any single atom in a particu-
lar direction is some linear combination of the displacements of all the
atoms.

Such systems of interacting oscillators have been analyzed to a great
extent from a classical point of view. Since in many problems of quan-
tum mechanics we obtain the classical action as the first step in solving
the kernel, all of this classical work is of great value to us. One impor-
tant result of the classical analysis is the following. There are special
ways to distort the molecule so that, as time goes on, the motion is of
the simple periodic sinusoidal type. The pattern of distortions remains
the same, and only the amount of the distortion varies sinusoidally with
time. Different patterns of distortion, or, as we say, different modes,
correspond in general to different frequencies. There may be some with
zero frequency, and some groups of modes may all have the same fre-
quency. The important fact is this: Any small displacement motion of
the molecule can be built up as a linear combination of such modes.
This kind of motion is called a normal mode.

If there are N atoms in the molecule, then the molecule has n = 3N
modes of motion. Thus, for example, the molecule CO5, has nine modes,
as shown by Fig. 81, where the motion of each atom is indicated by an
arrow. Only modes 1 to 4 are periodic (i.e., have a non-zero frequency)
and the direction of motion during the first half-cycle is indicated. For
the second half-cycle, reverse all arrows.

0O O 0o ® O ® 0O O ®

© 0 -0 ® O ® 0O 0 O
O O o-® O ® O -0 ©
12 3 4 5 6 7 8 9

Fig. 8-1 Normal modes of the COz molecule. The symbol (-) means motion
out of the plane of the paper, and (X) means motion into the plane. Modes 1
to 4 are periodic; modes 5 to 7 are continuous translations; and modes 8 and
9 are continuous rotations.
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We shall next derive the mathematical description of the modes.
This derivation is, of course, part of classical physics rather than quan-
tum mechanics. Consider a particular mode of frequency w. All of the
coordinates g;(t) move together and at the same frequency. There must
be some special set of initial displacements a;, different for each mode,
such that if all initial velocities are zero, the subsequent motion of any
coordinate can be written as

¢;(t) = a; coswt (8.37)

Substituting this equation into Eq. (8.36) gives
n
w?a; = Zvjkak (8.38)
k=1

This last formula is actually as set of n equations for the n unknowns
aj. Since it is homogeneous, it has a solution only if the determinant of
coefficients vanishes. Thus we require

2

U11 — W V12 Vin
2
V21 Vg — W™ « Van
=0 (8.39)
.2
VUn1 Un2 VU, — W

This equation has n solutions for w?. For a particular solution, say w,
we can get solutions for the set of equations (8.38). We shall call these
ajo. The sizes of the solutions a;, are determined relative to each other,
but the overall magnitude of the whole set is arbitrary. We shall choose
this magnitude so that

a3, =1 (8.40)
j=1

n
j:
We can repeat this process for all of the n modes, = 1,2,...,n. We
determine n values of w,, and for each value of o we obtain the solutions
for the n constants a;,.

Any possible motion of the system is a linear combination of these

modes. We can write an expression for a general type of motion as

gi(t) = Catja cos(wat + 5a) (8.41)

a=1

Here the constant of amplitude C, and the constant phase §, depend
on the initial conditions. That such an expression does represent the
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motion of the system is easily verified by substituting Eq. (8.41) into
Eq. (8.36).
It is convenient to use the complex notation for Eq. (8.41). That is,

g;(t) = Re {Z C’aajaei‘”atewa} = Re {Z caajaei‘”at} (8.42)
a=1

=1

The complex constants ¢, depend on the initial conditions, and they
can be determined as follows. If the initial positions and velocities are
¢;(0) and ¢;(0), respectively, we have

= Re {Z ca&ja} = Z Re{catajn (8.43)
=1 =1

= Re {Z icaajawa} = — Z Sm{catajawa
=1 a=1

Since the constants aj, are all real, this pair of equations determines
both the real and imaginary parts of c,.

We can solve Egs. (8.43) in a simple way by using an important
property to be expressed in Eq. (8.48), which we now derive. For any
particular o the constants a;, satisfy

w? S0ia = Zvjkaka (8.44)

If we multiply this equation by a;g and sum over all values of j, we find

ws Z%a%ﬁ = Z Zvjkakaajg (8.45)

k=1 j=1

Since the coefficients v, are symmetrical, the left-hand side of Eq. (8.45)
will be the same if o and § are interchanged. This means ~

n
(we = wB) D ajais =0 (8.46)
j=1

Thus if the frequencies w, and wg are different, it must be that

> ajeais =0 (8.47)

If the two frequencies are the same, then the constants a;, are not
determinate. Instead, we have the freedom to make an arbitrary choice
which can be made in such a way that Eq. (8.47) is satisfied for o # S.
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Thus finally, making us of the normalization established in Eq. (8.40),
we can write

> 60058 = dap (8.48)
j=1
where 4 is the Kronecker delta.

We can now easily find the real part of ¢,, from Eqgs. (8.43). Multiply
the first of Eqgs. (8.43) by a,s and sum over values of j. All terms on
the right-hand side vanish except that for o = 3, which gives

n
Re{cg} =) a;54;(0) (8.49)
j=1
In a similar manner we can ﬁnd
1« ,
Smics} = "o > a;645(0) (8.50)
i=1

Thus a complete description of any arbitrary motion of the system can
be determined from a knowledge of the normal modes of the system and
the initial conditions of the motion.

NORMAL COORDINATES

We can analyze the motion of the system in another way. Let us choose a
new set of coordinates Q4 (t), which are a particular linear combination
of the old coordinates, namely

Qalt) = ajag;(t) (8.51)
j=1
Alternatively, the old coordinates can be given in terms of the new by
t) =Y ajaQal(t) (8.52)
a=1

Using Eq. (8.48), we can write the kinetic energy as

1, n_

— 9 Z qJ2' - Z Z Z am%ﬁ@a@ﬂ Z Q2 (8.53)
j=1 _7 1 =1 B=1 a:l

The potential energy is

1 n n 1 n n
IR

j=1 k=1 lk=la

Z VikGjatksQa@p (8.54)

18=1

NE

Il
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From Eq. (8.38) we have

Z VigQrp = w%ajg (855)
k=1

which means that the potential energy can be written as (using Eq. 8.48)

Z Z w5 QRaQp Z (jaljp = Z wa Q2 (8.56)

a—lﬁ 1

Thus the lagrangian of Eq. (8.34) can be written in terms of the new
variables as
1,
L=5) (Qh-wi@d) (8.57)
a=1
The lagrangian in this form represents a set of harmonic oscillators
which no longer interact. That is, the variables are separated. Each os-
cillator has unit mass and its own particular frequency w,. The equation
of motion for a particular oscillator is

Qa(t) = ~w2Qa(t) (8.58)

This means that each mode oscillates freely at its own frequency inde-
pendent of any other mode. By comparing Eqgs. (8.49) and (8.50) with
(8.51) we see that the real part of cg and the imaginary part of —cgwg
are just the initial coordinate Qg(0 ) and the initial velocity Qg(0), re-
spectively, of the 8 mode. Thus the complicated molecule is equivalent
to a simple set of independent harmonic oscillators.

This new set of coordinates @, which permits us to describe the
system as a set of independent oscillators, is called a set of normal
coordinates. Using the lagrangian given by Eq. (8.57), we can write the
path integral describing the motion of the system in terms of normal
coordinates as

K= / /exp{ Z/[QZ() WRQ2 (1)) d }mmw---@@n(t)
(8.59)

This last result can be obtained directly from Eq. (8.35) by the ex-
plicit substitution ¢;(t) = >, ajaQa(t). The exponent simplifies just as
in the classical case, while Dgq; -+ - Dq,, = DQ1 - - DQ.,, at least within
a constant factor. (Since the transformation of coordinates is linear, the
jacobian is constant. Any such constant can be absorbed within the
definition of the normalizing factors for the path integral D@ --- DQ,,.)
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This form of the path integral can be broken down into a product of
path integrals. Thus

n

k=T] [ew{33 [120)-u2@20) it} DQu(0 (5.60)

where each path integral now describes only one mode and each mode is
a simple one-dimensional oscillator, for which we have already obtained a
solution. In this manner any problem of interacting harmonic oscillators
can be analyzed.

Since the path integral for the kernel can be separated into a product
of path integrals, it follows that the wave function for the system in a
given energy state can be written as the product of wave functions of
each mode as discussed in Sec. 3-8.

As shown in Sec. 8-1, the energy wave functions for each sepa-
rate mode are proportional to e (/MErt where E, is the energy of
the mode. A product of such wave functions is then proportional to
exp{—(i/h)(3_,, Bn)t} From this it follows that the total energy of the
system of oscillators is equal to the sum of all the separate energies.
The energy in the a mode is hiwg (Mg + %), where m, is an integer. The
energy of the whole system is then

E = hwi(mq + ) + hwa(mo + 2) + -+ + hwn(mn + 3) (8.61)

where mq, ma, ..., my are all integers (including zero). All independent
choices are allowable because the excitation of oscillator 1 and oscillator
2 can be in different degrees.

If ¢, (Q) is the harmonic oscillator wave function for the mth energy
eigenstate, then the wave function for the complete system is

Smy (Q1)Pma(Q2) O, (Qn) = [ | bme (Qa) (8.62)
a=1

Each ¢, (Qs) is as given in Eq. (8.7) with w replaced by w,. In this

way classical physics, whereby we determine the normal modes, and

quantum mechanics, whereby we determine the energy levels and wave

functions for a single mode, are combined to give a complete solution
for the energy levels and eigenfunctions of a polyatomic molecule.

We can express the wave functions in terms of the original coordi-

nates ¢;(t) by using the transformation equations (8.51). For example,
n

1
the lowest energy state of a system, which has the energy 5 Z hwey,

a=1
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has the (unnormalized) wave function

n 2 n
oo w2 [ 4t

a=1 a=]1
1 n Vo T
= exp ~57 Z Z Z Waljalkadidk (8.63)
a=1j=1 k=1

That is, the wave function is an exponential function of the quadratic

1 n mn
form -3 Z Z M;xq;qx where the matrix element My, is

j=1k=1

1 n

Mj = = O; Wa ok (8.64)

Problem 8-2 Show that the matrix

Tik = E ——
Wa

o4

is the reciprocal square root of the v;; matrix. That is, show

Z Z TitTimVmk = Oji (8.65)

[==1 m=1

It may happen that some of the frequencies w, are zero. For example,
for the molecule CO5 the modes 5 to 9, as pictured in Fig. 8-1, all have
frequency zero. They correspond to a translation or a rotation of the
whole molecule, motions for which there is no restoring force. Since
there is no restoring force, the assumption that the coordinates Q). are
small is not generally true. A more exact analysis of the translation or
rotation kinetic energy must be undertaken. Since such motions are not
of interest in the present discussion, we shall assume that these modes,
and their coordinates, either do not exist or are never excited, so that we
have been dealing with modes for which w, # 0. If for particular values
of o the solutions w2 come out negative (so that w, is imaginary), the
system is in unstable equilibrium for motions in this mode, like a pencil
balanced on its point. Instead of being simple harmonic, the motion
is exponentially divergent, and again the coordinates (), do not stay
small. This case again is of no interest in the present discussion, and we
shall assume that there are no such modes.
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THE ONE-DIMENSIONAL CRYSTAL

A Simple Model. We can think of a crystal as a large polyatomic
molecule spread out in a three-dimensional array. We can begin learning
about it by first studying a simpler one-dimensional line of equal atoms
equally spaced, as in Fig. 8-2. Let the mass of each atom be m and
let the displacement of the jth atom from its equilibrium position be
q;/+/m. We suppose that the motions are restricted to lie along the line
of the array, i.e., longitudinal motions only. Next, suppose each atom
interacts only with its two neighbors, and that the potential energy of
interaction between a pair of adjacent atoms separated by a distance
R is V(R). That is, we suppose the atoms are connected together by
a set of springs. The equilibrium separation gives a minimum value
to the potential. We shall assign this minimum the value 0. Suppose
AR is the difference between the equilibrium displacement and some
particular displacement. We can expand the potential in a power series
in terms of AR, in a manner analogous to that of Eq. (8.32). We shall
restrict our attention to those displacements which are so small that all
terms higher than the second order in this expansion can be neglected.
Between the jth and (j+ 1)st atoms the change in separation away from
the equilibrium separation is (g;+1 — ¢;)/v/m = AR; j+1. We shall call
the second derivative of the potential with respect to the displacement
mv? (the same for all atoms in the string). Then the potential energy
associated with this pair is

Vigr1 = 5v°(gj+1 — 45)° (8.66)
and the lagrangian can be written as
L 2 N-1
L= 5 Zlqu ) z:l (gj+1— ¢5)° (8.67)
j= j=

If the first and last atoms are unattached, then the term for j = N in
the expression for potential energy must be omitted.

— — O OO T O TR0 — —

Fig. 8-2 A model of a one-dimensional “crystal,” with mass particles evenly
spaced along a line and springs connecting neighboring particles.
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Based on this lagrangian the classical equations of motion for the
atoms along the line are

i;(t) = v? (g1 (8) — g5(8) — (g;(t) — ¢5—1(1))]
= V2[gj4+1(t) — 2¢;(t) + ¢j-1(t)] (8.68)

for all j except the end points j = 1 and 7 = N. Now this fact that
the end particles have to be given separate consideration is just a mi-
nor annoyance for most problems. Usually we are interested in the gross
properties for a large solid and are not concerned with surface or bound-
ary effects. In such cases the main results desired are really independent
of the actual boundary conditions (e.g., whether or not the end atoms
are left free or are tied down, etc.). To avoid this problem, theoretical
physicists use a trick of assuming a special set of simple boundary con-
ditions, called periodic boundary conditions, so that these end points do
not require special consideration in the analysis. Unfortunately, these
special boundary conditions occur in actuality only rarely, if at all, but
for phenomena which are independent of boundary effects the trick is
useful.

The idea is to imagine that the string of atoms goes on beyond N,
but a displacement of the (N + j)th atom is always exactly equal to that
of the jth atom. Thus the boundary condition is

v () =a(t)  dva(E) = a(t) (8.69)

This boundary condition would be right if our string were tied in a circle
like a pearl necklace. However, in three dimensions there is no such
picture to represent the boundary condition, and it must be considered
completely artificial.

The value of this particular boundary condition is this. Most gen-
eral ways of terminating the string (e.g., tying the last atom to a rigid
wall, leaving the last atom free, etc.) result in a reflection of any wave
traveling down the string. Only if the last atom is tied to another string
of atoms of identical characteristics will no such reflection occur. Thus
the boundary condition is analogous to tying a transmission line to a
characteristic impedance in order to avoid reflections. The characteristic
impedance is equivalent to an infinity of more line. In the present case
we accomplish this end by tying the string to itself. We call these bound-
ary conditions periodic, because anything the happens at the point £ in
the string is repeated again at the point N +k and again at 2N + k, etc.
With this boundary condition, Eq. (8.68) for the motion of the atoms is
valid for all of the atoms.
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Solving the Classical Equations of Motion. We assume that
the displacements ¢(t) are periodic with frequency w. Then we must
solve
—w?q;(t) = V[gj1(t) — 2¢;(t) + g1 (t)] (8.70)

We could write down this set of equations in a determinant, and it turns
out that the determinantal equation so obtained can be evaluated by
theorems in mathematics. But this just means that the equations can
be solved directly, and it is easier to solve them that way.

We shall restrict the symbol ¢ to mean +/—1, and not use it for an
index. Normal mode solutions are of the form ‘

g;(t) = Re{Ae T EI=wDY — Relqet) (8.71)

where K is a constant taking on a discrete set of values. This solution
can be verified by substitution into Eq. (8.70). The frequency is given
by

w? = 127 — 2 4 ] = 4p? sin? éi | (8.72)
This gives the values of w in terms of K, but not all values of K are
allowed. The periodic boundary condition implies that K = 27a/N,
where « = 0,1,2,..., N — 1. (The case @ = 0 is just a translation, and
we can omit it if desired. Furthermore, the case given by o/ = N + «
is the same as the case given by «.) Thus for any particular choice of «
we have the frequency

T

=2 i in = .
Wo = 2v |sin — (8.73)
and the amplitude for the jth coordinate at that frequency is
Ojo = Ae™ 2™ /N (8.74)

The constants a;, determined in the last equation are complex. They
could be made real by combining solutions for o and —a (or « and
N — «). However, it is more convenient to leave them in the complex
form. It is also sometimes convenient to consider both positive and
negative values of o, and so if N is odd, for example, to consider the
range of o to be —%(N — 1) to +3 (NN — 1) rather than 0 to N — 1.

The relative displacements of the atoms in the string depend on the
size of a. The situation for two values of «, one with « small and the
other with & = N/2, is shown in Fig. 8.3.
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o small

displacement g;
o

o=N/2

displacement ¢

Fig. 8-3 The displacement of atoms along a string is plotted as the ordinate
against the equilibrium positions j equally spaced along the abscissa. In the
upper case the wavelength is long compared to the spacing between atoms (o
small). In the lower case & = N/2, and the displacements no longer give the
appearance of a smooth sine wave.

Although the relative magnitudes of the various constants a;, are
determined by Eq. (8.74), the overall magnitude, determined by the
constant A, is still arbitrary. We establish this with a normalizing equa-
tion analogous to Eq. (8.48). Thus choose A so that

N
D Gatjs = bap (8.75)
J=1 ‘
which implies that
1
A= — (8.76)

VN
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We are now in a position to represent the various modes with their
normal coordinates as

Zayaqy (t) =

g;(t)e12med/N (8.77)

%l
Mz

Il

j=1

where an arbitrary motion is g;(t { _5_ coéajoéez‘*’cx , in analogy

o=0
with Eq. (8.42). These normal coordinates are also complex, but we can

ensure that the lagrangian derived from them is real by writing it as
N-1

> (Q1Qn — w2QLQs) (8.78)
a=0

Perhaps this use of complex coordinates (), needs a word of expla-
nation. Since ¢;, the physical coordinates, are real, Eq. (8.77) implies
Q% = @Q_, so that, although two real numbers are required to spec-
ify each complex coordinate @, only N independent real numbers are
needed for all of them. If one prefers real coordinates, one can define
instead two real quantities as coordinates by writing

L=1
2

- -}(@; - iQ3)
o= 7= (Qa 8.79
Qo = f(Q +Q-a) (8.79)
s - "o _
Qa - \/_Z_(Qa Q‘a) (880)
A term such as the kinetic energy is expressed in real variables as
1@ + (2] = Q@0 = Qu Qi (8.81)

(The factor £ reappears in Eq. (8.78) because we sum there over all a,
plus and minus, counting thereby each term twice, Q* ,Q_, = Q. Q%)
Thus quadratic expressions derived previously for real quantities appear
now as products of one complex number by its conjugate (for example,
Eq. 8.75).

Problem 8-3 Show that QF, Q5 are normal coordinates corre-
sponding to standing wave normal modes cos(27aj /N ) and sin(2roj /N),
in the sense that (for N odd)

B 1 (N=1)/2
g;(t) =/ |596(0) + > {Qfx(t)cos

a=1

2rayg 2rayg

N
(8.82)

— Q3,(t) sin
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Problem 8-4° Show that the ground-state wave function for the
lagrangian of Eq. (8.78) can be written

N-1
1
Py = Aexp {-5-7% > waQ;Qa} (8.83)
a=1

(where A is a constant) by starting with the wave function in terms of
the real variables Q¢ and Q2.

Problem 8-5 A transition element which employs the same wave
function as both the initial and final states is called an expectation value.t
Thus the expectation value of F for the ground state ®g of Eq. (8.83) is

(Bo|F|B) = / / / B3 F®, Q1 dQs- - dOn (8.84)

(The integral over complex variables is defined as equal to the corre-
sponding integral over real normal coordiantes Q¢ and Q%.) Show that
the following expectation values® are correct (for a # 0):

(D0|Qq|Po) = (Po|Q4[P0) =0

(Qo|Q2| o) = <®O’Q*21®0> =0
(D0]|Q5Q4[P0) = @olli@o) (8.85)
(Po]Q5Q5]P0) = 1f a#p

Thus with the lagrangian written in terms of normal coordinates
we have reduced the system to a set of independent simple harmonic
oscillators. The quantum-mechanical part of the solution follows in a
straightforward manner just as it did for the case of the polyatomic
molecule. All that we need to know is the quantum-mechanical solution
for an independent simple harmonic oscillator.

Problem 8-6 Show that the constants a;, are the same even if the
coupling is not just to the nearest neighbors but extents with strengths
Ak to atoms k spaces away. Assuming Ay falls rapidly enough for large k,
find the values of the frequency w, when such a coupling is present, i.e.,
when the potential energy, instead of being given by Eq. (8.66), is given
by a similar equation, but one which contains the relative displacements
of all pairs of atoms, each one multiplied by the appropriate Ag, that is,

= (%/2) Y > Melgjn — ¢5)°
i &

lCompare this definition of ezpectation value with the definition of the expected
value of an operator given in Sec. 5-3, particularly in Eq. (5.46).
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THE APPROXIMATION OF CONTINUITY

The particular modes which we have determined here are those in which
each atom oscillates with a phase difference behind the one next in line.
There is a wave of oscillation passing down the line of atoms. If the
phase difference between adjacent atoms is small, then the wavelength
is long.

Of special interest is the behavior of the atoms in the long-wavelength
modes. If the wavelength greatly exceeds the spacing between atoms,
this spacing is unimportant. In this case the motion can be very well de-
scribed by the fictitious “continuous medium” concept. A line of atoms
can be replaced by a continuous rod with certain average properties,
such as the mass per unit length p = m/d. More physically, a real rod
is actually a discrete set of atoms. In this section we shall develop the
approximation of continuity, wherein a line of atoms is replaced by a
continuous string.

For a particular mode of motion the phase difference between adja-
cent atoms is 2ma/N, so that a wavelength contains N/a atoms, or if d
is the equilibrium separation distance between neighboring atoms, the
wavelength is A = Nd/a. The wave number is

2r  2mo
k= = Ng (8.86)

The wave aspect is made more clear in the mathematical represen-
tation of the motion by a slight change of notation. We shall refer to
each mode by its k value instead of by its « value. Then a summation®
« over the modes means a sum over discrete values of k. These values
are the integers multiplied by 27 /L, where L = Nd is the length of the
string. Suppose z; = jd is the equilibrium position of the jth atom.
Then the equations describing the motion of the atom become

1 ez
Qjk = N ks (8.87)
N
Q= =3 gyehe (8.88)
v &
1 o
U= TN Z Qe (8.89)
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and
kd

wg = 2v |sin (8.90)

We now assume that the separation between atoms is very small com-
pared to the length over which disturbances change. Using the symbols
we have already defined, such situations as this are described by kd < 1.
If we call the product vd = ¢, then for kd small we have w ~ kc. In this
situation we can think of the coordinates g; as being functions of posi-
tion along the line of atoms. That is, we can specify the displacement
of the jth atom, as shown in Fig. 8-3. For long waves the displacements
q(x;) and g(z;41) are nearly equal, and we can consider the function
g(x) as a smooth continuous function defining displacement as a func-
tion of equilibrium position along the line. The normal coordinate Q(k)
is a Fourier transform of ¢(z). That is, Eq. (8.88) can be replaced by

L
Q) = g /O o(z)e=*e gy (8.91)

This replacement is based on the approximate relation

L
S )jz%-/o( ) do (8.92)

j=1

which becomes more valid as the spacing between discrete points be-
comes very small.
A similar relation, namely,

27 /d
> >W~2€;/O ()dk (8.93)

k=1
leads to the inverse transform
L 27r/d

Q(x): 27T\/N 0

To make these quantities of more direct physical significance, let the
actual displacement of the j atom be u;. That is, ¢; = v/mu;, where m
is the mass of one atom and is equal to pd. Let the Fourier transform
of u be U. Thus

Q(k)et*® dk (8.94)

L
U k) = / w(z)e= dg (8.95)
0
while the inverse transform is
u(z) = / T U )ets 2 (8.96)
) = N o )
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The new normal coordinate is then U (k), and it is related to the previous
normal coordinate Q(k) by

Uk) = %@(k) (8.97)

The expression for the kinetic energy in terms of u(x,t) can be
worked out with the help of Eq. (8.92) to be

L 2
_p [T (o
KE. = £ /0 ( m) de (8.98)

To determine the potential energy in terms of all the new variables,
we need to express the difference in the displacements of two adjacent
atoms as a continuous function of position. Using our approximation of
continuity, we can write

ou
gi+1— ¢ = Vm[u(zjt1,t) —ulz;, t)] = vmdo (8.99)
That means that the potential energy is
2N [F o\’ pc® [F [ou\®
V=—— 2 =) do="—= — 1
2T /. md (6;1:) T = ; (5:13) dx (8.100)

In the last equation we have used the constant ¢ = vd. This constant
is actually a measure of the elasticity. We can define it physically in
the following manner: Suppose we stretch the line of atoms, which has
length L, by a fractional increase of amount ¢, that is, to the new length
L(1 +¢). (We are considering a static stretch, not a vibration.) This
means that we make the separation between each pair of atoms equal to
d(1 + ¢€) instead of d. Thus the difference in displacements of adjacent
atoms becomes

gj+1 — 45 = de (8.101)

Using Eq. (8.66), this means the potential energy put into the string by
the stretching is

1/2 2

V= SEdmN = %—62[4 (8.102)
Thus the force that is needed to stretch the string is, in the limit of
small ¢,

v
= pc’e (8.103)
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This last equation gives the stress in the string, while the strain (stretch
per unit length) is of course e. Thus we have

stress

= pc? = elastic constant (8.104)

Combining Egs. (8.98) and (8.100), we can construct the lagrangian
as

L 2 2 L 2
Ji ou pc ou
L== — | dx— — — | d .
2/0 (8t> T A ((%) x (8.105)
The fundamental modes which we are considering have the form
e "% and the normal coordinates are U(k,t). The reader can show

that, for a long string, the lagrangian can be expressed in terms of these
normal coordinates as
? dk

P /00 oU (k,t)
2/ 2

ot

We can consider the system described by this lagrangian as a set of
harmonic oscillators, one oscillator for each value of k. In our present
approximation of continuity, k£ is a continuous variable with an infinite
number of values. We can reintroduce the picture of discrete atoms by
remembering that the integral over k is really a sum over discrete values
of k, where the various discrete values of k are spaced a distance 27 /L
apart, with L the length of the string, and the number of such values is
equal to the number of atoms in the string.

We can get equations of motion in terms of the continuous variables
by finding the extremum of the action integral fOT L dt. Using the form
of L given by Eq. (8.105), the resulting equation of motion is

Ou 0%
PaE =P 53

2 [e’e]
pe” 2 7(k. 02 28
. /_Oolc]U(A,t)( o (8.106)

(8.107)

Following a line of argument demonstrated by Eq. (8.99), we can see
that this equation of motion is analogous to the previous equation of
motion which we derived, namely, Eq. (8.68). Equation (8.107) has the
solution

u(z,t) = a(z)e™" (8.108)
in analogy with Eq. (8.71), where

2
—wla(z) = 22 dfé? (8.109)

in analogy with Eq. (8.70), and
a(z) = e~ (8.110)
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in analogy with Eq. (8.74).

Combining Eqs. (8.109) and (8.110), we see that w = kc. This is the
analogue of Eq. (8.90), and, as a matter of fact, in the limit of small &,
Eq. (8.90) reduces to this relation.

The motion described by Eq. (8.108), with the value of a(z) given
by Eq. (8.110), is that of a traveling wave moving with velocity c. That
is to say, c¢ is the speed of sound along the line of atoms. Actually, a
real system shows dispersion; that is, w is not exactly proportional to k.
For wavelengths which are of the same order as the atomic spacing this
lack of proportionality becomes important, as shown by Eq. (8.90).

QUANTUM MECHANICS OF A LINE OF ATOMS

The behavior of the atoms in a string can be described in terms of modes
of motion. Each mode is a harmonic oscillator. The energy state of any
particular mode is determined by the quantum number for that mode.
Each mode is identified by its wave number k or its frequency w. A
mode of frequency w can have the energy values %hw, %hw, ghw, e
or in other words 0, fiw, 2hw, ...above the ground state energy %hw.
For these cases we would say that there are 0, 1, 2, ... phonons of wave
number k (or frequency w) present.

It is possible to have several different modes excited simultaneously.
For example, we could have (1) the mode of wave number k; excited
to its first level above the ground state, (2) the mode of wave number
ko excited to its first level also, and (3) the mode of wave number k3
excited to its second level above its ground state. The state of the
complete system would then have the total energy h(wi + wo + 2ws)
above the ground energy. We would say that there are four phonons
present: one phonon of wave number k;, one of wave number kg, and
two of wave number k3.

The ground state of the entire system has the energy

ﬁwk

Egnd - “2— (8111)
k

Using the approximation of continuity (see Eq. 8.93) and letting
w = kc, this becomes

L [P ke
Egna = o /O — - dk (8.112)

If the upper limit k.. on the integral over k goes to infinity, then the
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integral diverges. However, the form w = kc used in this expression is
valid only for long waves (i.e., small values of k).

We can make a better determination of the ground-state energy by
using the correct expression for w and establishing a reasonable upper
limit for the integral over k. Thus, using Eq. (8.90) for wy, we can write
the ground-state energy as

kmax

kd
Egng = Z hv |sin —é-] (8.113)
k’:“"kxnax
where
[ -g (8.114)
This can be rewritten as
N/2 o N/2
Ega= Y. hv [sin 7\]—} =2 Sm { 3 eV (8.115)
a=-N/2 a=0

For a very large N this sum can be approximated by an integral to give

Egna = th—i—\:— = 2:52[, (8.116)
This result shows that the energy is proportional to the length of the
string, but apparently it has no limit as the spacing d approaches zero.
That is, the ground-state energy is infinite for a continuous medium. Of
course, for real matter the energy is finite.

It is very convenient to measure, instead of the total energy, the
excess energy above the ground state. There are two reasons for this:
(1) Really, the ground-state energy is not known, nor is it usually in-
teresting to the physical problem in question. For example, the true
ground-state energy includes all of the energy of the electrons attached
to the atoms. (2) When dealing with the excitation of only long waves,
the approximation of continuity is very useful, and it gives a good ap-
proximation to the excitation energies. However, this approximation
gives an invalid result for the ground-state energy, since it neglects the
separation d (i.e., treats d as 0). Thus we must avoid the necessity of
evaluating the ground-state energy if we are to use the approximation
of continuity.
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THE THREE-DIMENSIONAL CRYSTAL

There is no difference in principle between a realistic three-dimensional
crystal and the one-dimensional example which we have been consider-
ing. However, the detailed evaluation of the various modal frequencies
is much harder. Results can be obtained in terms of the wave number k,
which is now a vector with components kz, ky, and k.. The frequency,
written in terms of these components, is generally very complicated.
There is more than one solution for each value of k because of the pos-
sibility of various polarizations (directions of vibration). Furthermore,
a real crystal often consists not of an array of atoms equally spaced,
but rather of an array of unit cells, each unit cell consisting of a group
of atoms in some characteristic geometrical arrangement. If there are
several atoms (say p) in such a unit cell (and this example can be illus-
trated with a one-dimensional model), then there are 3p frequencies for
each value of k.

In the three-dimensional crystal we can still use the approximation
of continuity to good advantage. In this approximation the true lattice
structure of the crystal generally makes itself felt through the existence
of different properties in different directions (e.g., anisotropic compress-
ibility). The symmetry of the lattice is reflected by the symmetry of
the elastic constants. Furthermore, the fundamental modes have vibra-
tion directions (polarization directions) which are not necessarily either
parallel to or perpendicular to the direction of propagation of the wave.

For the present discussion, we shall assume that our substance dis-
plays the same elastic constants in all directions. (In general, it is not
necessary for any crystal, even one as symmetric as a cubic crystal, to
do this.) Then the waves are of two kinds, longitudinal and transverse.
These two kinds of waves have different wave velocities, which we shall
label ¢y, for the longitudinal and ¢ for the transverse. For each k there
are three modes. One of these has the frequency wy = cpk (where k is
the absolute magnitude of k). Since, by hypothesis, there is no direc-
tional effect, the frequency is a function only of the absolute magnitude
of the wave number and does not depend upon its specific components.
There are two transverse modes (i.e., modes in which the direction of
motion of the atoms is perpendicular to the direction of motion of the
wave), both of which have the frequency wr = crk.

Every separate mode, and that includes every separate direction of
polarization, behaves like an independent oscillator.
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Suppose we are dealing with a crystal of volume V. Let us compute
the number of modes whose wave numbers lie in the k-space volume
element d’k = dk, dky dk, centered about the point k. We assume
the crystal is rectangular with edge lengths L., L,, and L,. We use
the results obtained from the one-dimensional example to see that the
discrete values of k, are spaced apart a distance 27/L,. So, in the range
of wave number dk, there are dk, L, /27 discrete values of k. Applying
this same reasoning to the other directions, we find that the number of
discrete values of k included in the interval is
dk, dk, dk, d3k
—~——(—§;[-r3—>’-§-——LxLyLz = Wv (8.117)
This same result is obtained (in the limit of large crystals) for any shape.

For the general case the modal frequency wy is, as we have mentioned,
a very complicated function of k with several branches (values for the
same k), but its determination is a problem of classical physics; then
the forms of oscillation in the fundamental modes are known, as are the
normal coordinates describing these modes. The quantum-mechanical
problem is then reduced to the solution of a simple set of oscillators,
and all the properties can be worked out easily. The excitation of each
mode is called the excitation of a phonon.

As a very simple special example, we shall consider the longitudinal
modes of oscillation in an isotropic solid (i.e., sound or, in particular,
longitudinal sound). We can start as we did in the one-dimensional
example with the atoms in the crystal discretely spaced and later pass
to the long-wavelength limit, or approximation of continuity.

A complete solution would show us all the effects of dispersion, the
complicated branches, and the transverse waves. It is a very interest-
ing study. However, one need not carry out all of the steps in order to
obtain the proper quantum-mechanical form of the continuity approx-
imation. One can make use directly of the results of classical physics.
The entire procedure, starting with discretely spaced point masses, then
passing to the long-wavelength limit, is just as useful and just as valid in
quantum mechanics as it is in classical physics. The lagrangian has the
same form so long as one restriction is imposed, i.e., that the potential
can be adequately represented by a quadratic function of the displace-
ments. The reason for the similarity between the results of the classical
and quantum-mechanical approach is that the procedure consists only
of various linear transformations, e.g., transforming to normal coordi-
nates followed by certain approximations, such as the approximation of
continuity. These transformations and approximations can be done in
quantum mechanics exactly as they are done in classical physics.
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The equations derived from classical physics are as follows. Suppose
u(r,t) represents the displacement of a particle whose equilibrium po-
sition is at r. We assume that we are working in the long-wavelength
region, so that the approximation of continuity applies. A plane-wave
mode is easiest to describe in terms of the Fourier transform given by

Ulk, ) = / f /V a(r, He=r gy (8.118)

where r is a spatial vector having the components z, y, 2. The normal
coordinates of the various modes depend on the relationship between
the direction of U and the direction of the wave vector k. That is,
the coordinate U, (k,t) of the vector U does not necessarily represent a
normal mode. For an isotropic material the three modes of a given k
have the following normal coordinates:

k

Uo(k,t) = E-U(k, t) (8.119)
(that is, the component of U in the direction of k) and

Ui (k,t) = e;-U(k,t) (8.120)
U2 (k, t) = eg~U(k, t) (8121)

where e; and ey are two unit vectors perpendicular to k and perpendic-
ular to each other. For the present study we shall restrict our attention
to just that part of the kinetic and potential energy which arises from
the longitudinal modes given by Eq. (8.119) and omit the transverse
oscillations.

Using the results of classical physics, the lagrangian for the longitu-
dinal modes can be written as

d3k

SN oy

Here we have introduced the speed of sound ¢ = w/k, which is a function
of the direction of propagation. This is a direct generalization from the
one-dimensional example. In terms of the original variables u(r,t) the
lagrangian is

S [(R) -] o

The first term on the left-hand side of this equation is the kinetic en-
ergy, given by one-half the mass times the square of the velocity. The
second term is the energy of compression given by V -u, which is the

(8.122)

— c*k*|Uo(k, t)lz}
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compressional strain. No energy of sheer strain is included here because
we have disregarded transverse elastic waves.

Variation of the lagrangian with respect to u produces the classical
equations of motion as

1 6%u
c? Ot?
If we define a compressional strain function equal to the divergence of
u, that is,

= V(V-u) (8.124)

o(r,t) =V - ulr,t) (8.125)
we have the result

16%

2 = Voo (8.126)

which is the classical wave equation.
The Fourier transform of Eq. (8.124), using the kernel e~*'* and
taking the component of the result parallel to k, gives

1 8%Us(k,t)
2 Ot? N
This is the equation of a single harmonic oscillator, and it shows us that
Up(k,t) is indeed a normal coordinate.

The quantum-mechanical results from the lagrangian given by
Eq. (8.123) can be obtained easily. The energy levels of the mode in
question are given by nfi(kc) above the ground level. Let us ask for the
amplitude to go from a given initial set of coordinates u(r,0) to a given
final set of coordinates u(r,T). It is

Klu(r,T),T;u(r,0), (8.128)

/{ //// [() zw.u)z} dsrdt}m,t)

The path integral of Eq. (8.128) is carried out over the paths u(r,t)
defined in terms of all three components of the vector r, as well as
the time £. It is subject, of course, to the condition that the function
u(r,t) take on a given form at both the initial and final points. This
is an interesting extension of our original path integral idea. Up to
now we have dealt with integrands which were functionals of one (or
perhaps a few) function z(t) of one variable ¢, and we have carried
out the integration over all such paths, or functions. Now we must
integrate a functional of the function u(r,t) of four variables z, y, 2, and
t and carry out the path integration over all values of this function. We

—E*Ug(k,t) (8.127)
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can accomplish this by the regular techniques which we have described
before, for our integrand is still a gaussian functional.

The first step in the solution of the path integral is to find the path
which leads to a stationary value for the integral appearing in the expo-
nent, the one which satisfies Eq. (8.124), or, more conveniently, the wave
equation given by Eq. (8.126). We must impose the required boundary
conditions at the times ¢ = 0 and ¢t = T. Satisfying the boundary con-
ditions is not a difficult problem; however, it is a little different from
the usual problem in classical physics in which the coordinate and its
derivative are given at t = 0, that is, u(r,0) and (0u/0t)=o.

We could proceed along this line and solve the problem. However,
we have learned from previous examples that it is much easier to trans-
form the problem into normal coordinates before carrying out the path
integral. Such a transformation gives us (using Eq. A.11)

U (T)
K= eXp{ﬁ'iVZ/ U1 = K22 |UL ]dt} DU (k, 1)

U1(0)
(8.129)
where the boundary values are given by
Uo(T) = Up(k,T) = ///u(rT —iker g3y
(8.130)

Uo(0) = Up(k,0) /// (r,0)e" T @3¢

This is once more the simpler type of path integral, where the path is
described in terms of only the one variable ¢t. Since the path integral can
be written as a product of path integrals, each one defining the motion
of a normal mode, we find that we have already solved the problem. The
result is (see Eq. 8.1)

1/2 .
pkc ipkc
K = __thRe .
I;I (QWihV sin ch> =P { SRV sin kT (8.131)

X ( [U¢(k,T) + Ug (k, 0)] cos keT' — 2Uq(k, T)Up (k, O)) }

In the products over the components of k, the x component, for ex-
ample, takes on the values 27m,/L,, where n, is an integer running
from 0 to N, = L,/d. Here d is the spacing between atoms, and the
sample under study has edge lengths L, Ly, and L,. Of course, the
approximation of continuity implies a zero spacing between the atoms,
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which means that the product is unbounded. However, we shall disre-
gard such problems and concentrate only on the form of those terms
showing dependence on initial and final coordinates. Thus, disregarding
the radical which multiplies the exponential term of Eq. (8.131), we can
write this equation approximately as

~ exp { f// = ch (8.132)

3

X ( (U3 (k, T) + UG (k,0)] cos keT — QUO(k,T)Ug(k,O)> (—;l%—l)%}

The dependence of the amplitude on the boundary values Uy(k, 0)

and Up(k,T") is contained in this last result. For any choice of these

functions [and they, in turn, depend on u(r,0) and u(r,T'), as shown by

Egs. (8.130)] the integration in Eq. (8.132) can be carried out, formally,

and a final answer obtained. In this manner all questions about the

quantum-mechanical behavior of the system can be answered, at least
in principle.

QUANTUM FIELD THEORY

Suppose we are dealing with waves or modes which are described by con-
tinuous functions, like u(r,t), for which there is no atomic substructure
or for which the wavelengths are long enough that we can neglect such
a substructure. In this case we say that u(r,t) is a field, i.e., a function
of each point in space. In the example we have just considered the field
is the displacement field of sound. In this terminology the equations of
motion are called the field equations. In the present chapter we have
been dealing only with linear field equations. The lagrangians can be
called the lagrangians for the field. The normal coordinates U(k,t) are
the coordinates for the normal modes of the field. The description of
these modes as quantum oscillators is called quantizing the field. The
resultant theory is called quantum field theory, to distinguish it from
the classical analysis of the equations.

As we have seen, almost all of the effort in quantum field theory is
devoted to solving the classical equations of motion to find the normal
modes, an activity completely within the realm of classical physics. The
“quantization” consists then of no more than the additional remark that
each of the normal modes is a quantum oscillator, with energy levels
(n+ =)Aw. Presented in this way, quantum field theory seems to be just
a spe(ual consequence of the Schrodinger equation, and not an extra
theory at all.
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That is, or should be, the case for any situation in which the field
variables (like sound displacement or pressure) are defined ultimately
in terms of some combination of the basic mechanical variables. These
basic variables describe the position of the particles, atoms, electrons,
and also nuclei, which comprise the material carrying the field. For
example, in the case of sound we assume that Schrédinger’s equation
describes the motion of the constituent parts, or atoms, in a crystal.
Then we easily deduce that the long-wavelength sound waves obey the
classical linear field equations, and we find that the modes are quantized.

In a few cases the classical equations of some field pertaining to
a system are known, even though the quantum-mechanical derivation
starting from Schrodinger’s equation has not yet been made. For exam-
ple, the equations describing the oscillations of a drop of nuclear matter
have been guessed by classical analogy.! In such a situation it is an
excellent guess that the modes of the field will turn out to be quantized
oscillators if and when the complete quantum-mechanical derivation is
worked out. Actually, not many such examples are left. Nearly all cases
have by now been worked out.

Another type of field equation, fundamentally different from that de-
scribed above, exists in quantum mechanics. An example of this type
is Maxwell’s set of electromagnetic equations, a set of linear field equa-
tions. These equations lead to a wave equation which is analogous to
the one we developed for sound, although there are different polarization
conditions. Just as an organ pipe has standing waves, or modes, so an
electromagnetic field in a cavity can be described classically in terms of
fundamental modes of oscillation. It is a natural inference that these
oscillations are also quantized in the sense that each mode can have the
energy levels nhw above the ground level, etc. This is the fundamental
assumption of the quantum theory of electromagnetism. It is not a strict
deduction from the Schrodinger equation for matter, because the elec-
tromagnetic field is not understood as a long-wavelength approximation
of an atomic medium. Today, we do not think of any particular medium,
but take the equations of Maxwell for granted. We simply assume they
are to be quantized in the simple direct manner described above. We
shall discuss this example in more detail in Chap. 9.

The assumption of quantization for the electromagnetic fields turns
out to be consistent with all experiments carried out so far, although
there are some theoretical difficulties. These difficulties are associated
with the extension of the scheme to modes of very short wavelengths.
There are various effects which lead to diverging integrals if the integra-

IM.S. Plesset, On the Classical Model of Nuclear Fission, Am. J. Phys., vol. 9,
pp. 1-10, 1941. '
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tions are carried towards zero wavelength. The corresponding difficulties
do not really arise in a vibrating crystal because if we wish to carry the
analysis into the very short wavelength region, where the wavelengths
are comparable to the atomic spacing, we must drop the approximation
of continuity. Then in the case of a crystal we find that there are only
a finite number of modes in any finite volume, while in electrodynamics
the number of modes in any volume is infinite.

When the various modes of a field are excited, we say there are
“things” present which have different names for different cases. For
sound or crystal vibrations we call them phonons, for the electromagnetic
field photons, for meson field theory mesons, etc. Even electrons can be
represented as being excitations of a field, but it is a field of a very
different kind from what we have been discussing. It is called a Fermi
field; the particles obey the exclusion principle, and the lagrangian is
quantized not by representing it as a set of harmonic oscillators, but in
a different way. Fields quantized as modes of harmonic oscillators are
called Bose particles; they obey Bose or symmetric statistics. This just
means that if one has two particles, one of wave vector k; and one of ko,
there is only one state. There is no new state where the first has ko and
the second has k;. This is because for our field there is only one state
with k; and ko each excited to the first level. It has energy hwi + hws,
and it is meaningless to ask: After an exchange, which excitation is
which? In the next chapter we discuss this in more detail for the case
of photons of the electromagnetic field.

Problem 8-7 1t is believed that neutral particles of spin zero (like
neutral pions) can, when free, be represented by a field ¢(r,t) with a
lagrangian

L= %/ {(%?)2 — A (V) + <%§—2>2¢2} d°r (8.133)

where p is some constant. Show that this field has quantized states
corresponding to waves e’*'*, where the energy of excitation is

hw = +/(Rkc)2 + (uc?)? (8.134)

If hk = p is considered as the momentum of each excitation the energy

is
E = /Pl + (4e)? (8.135)
This is the relativistic formula for the energy of a particle of momentum

p and mass u. (Note: For p? small it is approximately

| , P
E = T
pe +2M+
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the rest energy uc? plus the kinetic energy p?/2u.)

We interpret the state of the field when the mode k; is excited to
the second quantum level, ko to the first, etc., as the state of a system
containing two particles with momentum fik;, one with hks, etc. The
ground state is considered the state in which no particles are present,
and it is called the vacuum state. Excitation or deexcitation of the field
oscillators corresponds to creation or annihilation of particles, and this
is the way that such processes are represented in relativistic quantum
field theory.

THE FORCED HARMONIC OSCILLATOR

In this chapter we have dealt with the simple harmonic oscillator or
with systems that could be reduced to a set of such oscillators. But the
oscillators have been free, not interacting with anything else. We must
develop our analysis further if we wish to deal with such linear systems
in interaction with other systems or driven by external forces. Exam-
ples of such systems include polyatomic molecules in varying external
fields, colliding polyatomic molecules, crystals through which an elec-
tron is passing and exciting the oscillator modes, and other interactions
of the modes with external fields. We shall not discuss the problem of
interaction in general; instead, we use as a prototype the example of
the interaction of atomic systems and charges with the electromagnetic
field. We do this in the next chapter. Other cases may be analyzed by
direct analogy.

These problems involve two aspects: (1) the resolution of the field
into its component independent oscillators and (2) the interaction of
each oscillator with external potentials or other systems. The resolution
into oscillators has been exhaustively studied so far in this chapter.

To prepare the complete machinery for such problems, it remains
only to analyze the behavior of a single oscillator disturbed by an exter-
nal potential. We shall put these pieces together in the next chapter.

In this section we go back to the study of a single harmonic oscillator,
but coupled linearly to some external potential or disturbance. The
lagrangian for such a system is given by

2
L(s,3,t) = %:@2 - M—;-xz L)z (8.136)
where f(t) is the external force. We assume for convenience that it is
turned on only during a certain time interval 7' fromt =0to t =T, so
that the oscillator is free initially at ¢ = 0 and free finally at ¢t =T'. In
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Prob. 3-11 we completely solved this problem, obtaining the amplitude
K(b,a) that the oscillator goes from point x, at ¢ = 0 to point z, at
t =T'. But for the present applications it is convenient to find as well the
amplitude G, that the oscillator initially in energy state n is found at
time 7' in energy state m. This representation is often more convenient
than the coordinate representation.

In Sec. 8-1 we determined the wave functions ¢, (z) for the free har-
monic oscillator, and in Prob. 3-11 we evaluated the kernel describing
the motion of a forced harmonic oscillator. This means that we can
determine the amplitude G, by direct substitution into

G = /M BT / / G (25) K (0, T 70, ) () de dmy (8.137)

For the case m = n = 0 this integral is a gaussian somewhat lengthy
to evaluate but presenting no special problems. The result® is

T ot
Goo = exp {-271]1\/_&0 /0 /0 F) f(s)e ™ (=3) gg dt} (8.138)

If m and n are not equal to 0, then the integral is somewhat more
complicated. However, we can use the same sort of trick that we used
in Prob. 8-1. We shall ask for the amplitude that a forced harmonic
oscillator goes from the state ¥ to the state X, where these two states
are defined in Prob. 8-1. This amplitude is (using Eq. 8.28)

F(b,a) = Z Zamnw (b)), (a)e~ /MERT (8.139)

m=0 n=0

= exp {—-—-—-—-—(b2 +- az)}

E : z : —i(m+1/2)w1

m=0 n=0

If we can work out F'(b,a), we can get G,y through multiplying F by
exp{(Mw/4R)(b* + a?)} and developing the resulting expression in a
power series in g and b. That is, we want first to solve

M\ /2
F(b,a) = (%) (8.140)
% /OO /OO e——(]%w/2h)(wb—b)2K<xbjT; xmo)e-(Mw/zfz)(xawa)Z dz, dzp

where K(zp,T;x,,0) is the kernel for a forced harmonic oscillator,
Eq. (3.66). The variables appear only quadratically in the exponent
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of this integrand, so that the integration can be performed easily. Some
of the resulting algebra is a little lengthy; however, eventually one finds

F(b,a) = exp {-———— — = (a% + b? — 2abe~ T (8.141)

M , T pt ‘
+1 -é—h(i)—(aﬁ+bﬁ*e‘mT)_ 27‘1]1\401/0 /O f(t)f(8>e—w(t—s) dsdt}

where

t)e "t dt (8.142)

1 T
ﬁ:\/Qth/o f
* 1 T

v =, 1

The value of Ggo can be obtained easily from Eq. (8.141) by setting
a = b = 0. The result is the same as Eq. (8.138). Next we multiply by
the exponential function, as described below Eq. (8.139), and find, by
putting

Mw Mw ., _.r
TR e YT gy

that

t)e Tt dt (8.143)

Z Z Gmn = Goo exp{zy + 1Bz + 1By} (8.144)

m=0 n=0

By expanding the right-hand side in powers of z and y and comparing
terms, we obtain the final result

_ \/G—O%;Z -—r)"r‘ e f‘;),r' Pl(iB)" T (487)™ (8.145)

where [ is the smaller of m or n.
This completely solves the problem of a forced harmonic oscillator.
We shall discuss it further and make use of it in the next chapter.
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IN this chapter we shall discuss the interaction between charged particles
and an electromagnetic field. We have seen one example of such an
interaction in Sec. 7-6, where the electromagnetic field variables entered
into the potential term of the lagrangian. The electromagnetic term
introduced in that section is the vector potential A. Section 7-6 deals
only with the motion in a definite given field. It does not tell us anything
about how the field A arises or how it is affected by the moving particles.
That is, the formulation of the problem does not contain any analysis
of the dynamics of the field. Such an approach, using given potentials,
is only an approximation. It is valid when these potentials arise from
such large pieces of apparatus that the motion of the particle does not
affect the potential.

In this chapter we shall be concerned not only with the way in which
potentials affect the motion of the particle, but also with the way in
which the particle affects the potentials. We shall start with the classical
approach and use Maxwell’s equations to describe the dynamics of the
electromagnetic field. These equations express the field in terms of the
charge and current density of the matter present.

We have found in preceding chapters that the quantum-mechanical
laws which correspond to some classical system can be easily determined
if only we can express the classical laws in the form of a least-action
principle. Thus we have found that if the extremum of some action
S, varied with respect to some variable z, corresponds to the classical
equation of motion, then the quantum-mechanical laws are expressed
as follows: The quantum-mechanical amplitude for any given situation,
corresponding to the action S, is the path integral of ¢S/ integrated
over all possible paths of the variable z which fit the conditions of the
situation.

It is vital to our present approach that classical electrodynamics,
as expressed by Maxwell’s equations, can be written as a principle of
least action. An action S exists which can be expressed in terms of
the vector and scalar potentials A and ¢. The determination of an
extremum for this action, by variation of the field variables A(r,t) and
#(r,t), leads to a formulation of electrodynamics equivalent to Maxwell’s
equations. Hence, quantum electrodynamics results from the rule that
the amplitude for an event is

b
K(b,a) = / eSASI/R DA (r,t) Do(r, t) (9.1)

where the path integral is over all values of A and ¢ at each point of
space and time, subject to the boundary conditions at the initial and
final points of the event (cf. Eq. 8.128).

236
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CLASSICAL ELECTRODYNAMICS

Maxwell’s Equations. We shall begin our study of electrodynam-
ics from the customary classical fundamentals, i.e., from Maxwell’s equa-
tions. We shall assume the magnetic permeability and dielectric constant
are those for free space. Then, with E as the electric field vector, B as
the magnetic field vector, ¢ as the speed of light, p as the charge density,
and j as the current density, Maxwell’s equations are

V- -E=4np (9.2)
V:-B=0 (9.3)
10B
E=——— .
V X 5 (9.4)
1 [OE
B=-{—+4nj :
V X c<8t+ m) (9.5)
These equations make sense only if charge is conserved, that is,
Op
V.ej=——L .
i=—7 (9.6)
Equation (9.3) implies that B is the curl of some vector A:
B=V XA (9.7)

This relation does not fully determine A; we still may specify its diver-
gence. We choose

V.-A=0 (9.8)

This choice is not recommended if it is desired to keep the full relativistic
four-dimensional symmetry of the equations in evidence. (It is not that
the results using Eq. (9.8) are not relativistically invariant; for the results
are independent of the choice of V - A. It is, rather, that the invariance
does not appear obvious at first glance.) In our case we shall deal with
matter in the nonrelativistic approximation anyway (for we do not have
a simple path integral for the Dirac equation). We wish to illustrate
the properties of the quantized electromagnetic field, and the results are
least cumbersome with the choice of Eq. (9.8).

Substitution into Eq. (9.4) shows that E+(1/c) A /Ot has zero curl,
so it must be the gradient of some scalar potential

10A
E=-V¢——— (9.9)
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From Egs. (9.2), (9.8), and (9.9) we see that
V-E=-V2¢=dnp (9.10)

If there is no charge and no current density, the equations are easily
solved. In Eq. (9.10) p = 0,50 ¢ = 0 and E = —(1/c)0A/0t. In
Eq. (9.5) with j = 0 this gives [note: V x (V X A) = V(V +A)-V?A]

VZIA- S—— =0 (9.11)

Thus, each component of A satisfies a wave equation.
If we assume A is a running plain wave, that is,

A(r,t) = a(t)e™” (9.12)

the equation for the amplitude ay is & = —k?c?ay, which implies that
ay is a simple harmonic oscillator with frequency w = kc for each compo-
nent direction of a. Actually there are only two independent transverse
waves; the component of ay in the direction of k must be zero. This is
the implication of Eq. (9.8), which can be rewritten as

k-ag =0 (9.13)

Thus the field in free space is equivalent to a set of free harmonic oscil-
lators with two transverse waves for each value of k.

Problem 9-1 Show that E, B, and k are mutually perpendicular
for this plane-wave solution.

Solution with Charges and Currents Present. We shall expand
the solutions for A, ¢, and the current and charge density in plane waves,
writing

3
A(r,t) = \/47rc/ak(t)eik‘r d’k

(2m)3
3
P(r,t) = / ¢k(t)eik'r£%—l)% (9.14)

3

, 3k
e2k-r d

o) = [ e s

Problem 9-2 Explain why the charge density corresponding to a
single charge e located at the point x(¢) = (x(t),y(t), 2(t)) at time ¢ is

p(r,t) = ed(ry — z(t))d(ry —y(t))o(rs — 2(1)) = e63(r — x(t))




9-1 Classical electrodynamics 239

Show that
pic(t) = ee™ X (9.15)

Explain why the current density is j(r,t) = ex(t)d3(r —x(t)). If we have
a number of charges e; located at x;(t), the values of py and ji are

=Y e RO = Tex(t)em i) (9.16)

If the expansions of E and B are

iker __C_lf_k_ iker d_ak_

E(r,t) = | Ex(t B(r,t) =

(I‘, t) / I ( )8 (27?)3 (I‘ ) /Bk(t)e (271_)3
then, using Eqgs. (9.9) and (9.7), the expansion coefficients satisfy
Ex = —ik¢x — vV4rax and By =+vVdrci(k X ay)

From Egs. (9.8) and (9.10), the coefficient of expansion of V- E is
ik-Ex = k%¢y, so we have

kngk — 47TPk (917)

or ¢y = 4mwpx/k% The function ¢y is completely determined in terms
of the charge density py; there are no dynamic differential equations to
solve, involving, for example, ¢x.

Problem 9-3 Prove that the relation ¢y = 4mpy/k? simply means
that ¢y at any instant is the Coulomb potential from the charges at that
instant, so that, for example, if p comes from a number of charges e; at
distances R; from a point, the potential at the point is ¢ = ). e;/R;.
This is just the content of Eq. (9.10).

Equation (9.5) still remains to be solved, that is,
ik x By = 'Z'Ek + —10—47rjk (9.18)
But (using k-ax = 0)
ik x Br = —V/4n ck x (k x ax) = VAT ck’ay

and Ey = —-iquk — V4w ay, and using Eq. (9.17) to express di as
drpne /K2, we get

g
a + kQCQak =4 (Jk ! k§k> = V47Tj£{ (9.19)
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where we can call j. = jk —ikpk/ k2 the transverse part of jx. The law of

conservation of current, expressed by Eq. (9.6), says that px = —ikeji,
80

g . kkx

i = Jk — (kg ) (9.20)

which means that jj is jk less its component in the direction of k.
Clearly, k-j,. = 0.

We have certainly reduced Maxwell’s equations to a very simple form
— agside from the instantaneous Coulomb interaction between particles,
we have no more than the equations for two transverse waves for each
value of k, the amplitude of each being a harmonic oscillator driven by
the component of current in the corresponding direction. That is, if
we choose two directions perpendicular to k, say 1 and 2, and call the
components of ay in these directions a; x and as ik, Maxwell’s equations
are

a1 x + k2c? a1k = V4T j1 k (9.21)
ag k + k2c? azx = VAT ja (9.22)

where j1 i and jo i are the components of ji in these directions. (Why
do we not need to say “of j.”7)

The Least-action Principle. The hypothesis of quantum elec-
trodynamics® is that the oscillators defined in Egs. (9.21) and (9.22) are
quantum oscillators. To carry out the quantization, we must find the
principle of least action which gives these defining equations of motion
as well as the equations of motion of the particles in the field. The action
is
S=51+8+ 53 (9.23)

where
=Y % / I%;|2 dt (9.24)

is the action of all the particles, disregarding the field (if there are non-
electric forces between the particles, they are to be included in S7),

// [p(r (r,t) —-—-J(I‘ t)-A(r ,t)} d3r dt

_ -Zez / { Bxi(8),1) — ) A(x(t),t)} dt (9.25)

11t should be pointed out here that some physicists use the term “quantum elec-
trodynamics” to include electron-positron pair theory. In the present chapter we do
not cover such problems. So for us, quantum electrodynamics means the quantum
theory of the electromagnetic field.
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is the action of interaction of field and particles, and

21 33
871'// — B*]d’r dt
10A°
e

is the action of the field. The variables are A(r,t), ¢(r,t), and x;(¢).

IV x AF} d3r dt (9.26)

Problem 9-4 In Sec. 2-1 we discussed the mechanisms for obtaining
the mechanical equations of motion from the form of the action S by
obtaining the extremum S, under the condition 65 = 0 for variations
of the coordinates, dx. Show how Maxwell’s equations can be derived
from the action S defined in Eq. (9.23) by requiring §.5 = 0 for first-order
variations of A and ¢.

Since the dynamic equations are simplest in terms of the variables
ay, it is worthwhile to express the action in these variables. Substitution
of the expansion given in Egs. (9.14) into S3 gives

1 W o | dkdt
83—5//-ak+zk\/éﬁ c“lk x ag| L

1 I K2 L. . d3k dt
= '2‘ // Igbklzzl?r' + Ay ey — kgcgak-ak] W (927)
and S becomes

~// [P—kqﬁk“m.j—k‘ak} %r)i? (9.28)

Upon substitution of ¢y = 47 pi/k?, the terms in ¢y in Sy and S5 add
to give

A7 Ok pP—k d3kdt / _eigj
_ 2
S 2 // k2 (2m)? ZZ |x; — Xal (5-29)

using Eqs. (9.16), since [(4m/k?)e’™® T @k /(2m)® = 1/r. This is just the
Coulomb interaction between the charges, which is usually considered
in analyzing atoms when electromagnetic radiation effects are neglected.
That is, we shall include this interaction in the action Syt of the matter,

Sinat = St + Se _/Z -@x% Z ]Xefjxi (9.30)
? ")
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and write S = Smat + Sint + Srad. We have thus divided the action
of the electromagnetic field S into two parts; one contributes to an
instantaneous Coulomb interaction, and the remainder we shall call the
radiation field S;aq. (The radiation field takes care of all corrections to
the instantaneous field, such as, for example, that the total effects are
retarded and act no faster than the speed of light.) The action of the
radiation field is S5 less the terms involving ¢i. That is,
3

Srad = ';“ //(df,kal,k — k*c®a} 1.0y g + G5yl ) — k*c*a3 ag).) %‘%

(9.31)

which is just the action of the radiation oscillators. The action of inter-
actions of these oscillators with the particles is

d®k dt
1nt - \/—‘ // ]1 ~ka1 k +]2 ka2 k) ( ) (932>

Clearly, the variation of the total action of S with respect to the ai
and ag ) gives the equations of motion (9.21) and (9.22).
Written more explicitly, the action Siy is

d3k dt
Sint = V4 Ze] // 51713&1 k + S(Izjag k)ezk x(t) 2 =27 ( ) (9.33)

where z; and o, are the components of x; in the direction transverse to
k. Thus all the laws of nonrelativistic mechanics and of electrodynamics
are contained in the proposition that S, the sum of Egs. (9.30), (9.31),
and (9.33), is stationary for variations in the paths of the variables x;(t),
a1 x(t), and ag k(t). Quantum electrodynamics results from integrating
e*S/" over these paths, and it is described in the next section.

Problem 9-5 The momentum in the field is given by

1
4re
In the absence of matter (so ¢y = 0), show this is i [ k(aj-a, ) d®k/(27)>.

E x Bd®r

THE QUANTUM MECHANICS OF THE RADIATION FIELD

We begin by discussing the quantum mechanics of the radiation field in
empty space. There is no matter present, so the total action is that of
the radiation field alone

S = Srad (9.34)
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as given by Eq. (9.31). It is evidently the action of a set of harmonic
oscillators. We have seen some examples of expressions like Eq. (9.31) in
Chap. 8. We make the assumption discussed in Sec. 8-8 that quantum
electrodynamics results from considering these as quantum-mechanical
oscillators.

The modes of our system are running waves, two for each value of
k (polarization 1 and 2) with frequency w = ke. For one of the modes,
say a1 x, the available energy levels are

Eix = (nix+ %)ﬁkc (9.35)

where n4 x is any positive integer or zero.

If n; x = 1, we say there is one photon present of polarization 1 and
momentum hk; in general, we say ni i such photons are present. The
energy of a single photon of this kind is Akc.

Later on when we consider the interactions of matter with the radi-
ation field, we shall find that the matter absorbs or emits one photon
at a time of energy Aw. Of course, this is the same as Planck’s original
hypothesis.

It is quite striking and surprising that the states n of the oscillators
can also be described by imagining that there are n “particles” or “pho-
tons” present. It is clear, of course, that the energy values agree. But
there is one further subtle point that must be noted before the oscillator
states can be completely successfully described as particles. Suppose,
for example, that just two of the n; differ from zero, say, nq, = 1, np = 1.
This single state we may wish to represent by saying that we have one
photon in level a and another in level b. But at first sight this way of
speaking might seem to imply that there were two states available, both
of the same energy. For we could also expect to be able to put the first
photon in level b and the second in level a. The way out of this can be
seen when we consider the example of alpha particles. Suppose we have
two alpha particles with coordinates x and y, and say the x particle is
in a level represented by f(z) and the y particle is in a level g(y). Thus
the wave function for the system would be

Y(z,y) = f(z)9(y) ( (9.36)

a function of the two variables z, y. But another state might have y in
the level f and z in g, leading to another state of wave function

Y(z,y) = g(x)f(y) (9.37)

which differs from the first. But if the particles are truly identical, like
alpha particles, the two states are indistinguishable. As we described in
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Sec. 1-3, it turns out to be a rule of quantum mechanics (not derivable
from the Schrodinger equation) that for alpha particles the amplitudes
for two cases which differ only by exchange of the alpha particles must
always be added. The only allowed wave function is in this case

Y(z,y) = f(z)g(y) + g9(z) f(y) (9.38)

(suitably normalized: if f and ¢ are orthonormal, the factor is 1/ V2 if
f = g and they are normalized, it is 1/2). In general ¥(z,y) = ¥ (y, )
for alpha particles and for other particles obeying Bose statistics. There
is, for such particles, only one state: one particle in level f, the other in
level g.

It turns out that all the results are consistent if, when we consider
oscillator excitation states as representing numbers of photons, we also
say that photons are Bose particles. Then the single state ng, = 1, np =1
represents the situation that there are two photons, one in a, one in b.
Exchange does not produce a new state.

For electrons of parallel spin or other Fermi particles we must sub-
tract the amplitudes when the identity of the particles is reversed.

Y(z,y) = f(z)9(y) — 9(z) f(v) (9.39)

The wave function ¢¥(z,y) = —9(y,z) is antisymmetric in general for
Fermi particles. This is, of course, also just one state. But for Fermi
particles, two identical particles cannot occupy the same level. If we
put f = g into Eq. (9.39), we get zero. Two photons, like two alpha
particles, can occupy the same level; for photons it corresponds to the
n = 2 oscillator levels.

There is one particular situation with matter present which, in the
ideal case, can be handled nearly as simply as the matter-free case. That
is the case of a cavity resonator (or a wave guide) where the walls may be
idealized as perfect conductors. Then classically, as is well known, there
are a number of possible oscillator modes with more or less complicated
distributions of electric fields. The classical action is then reducible to a
set of free oscillators, but the variables now represent the amplitudes of
the various modes, rather than the amplitudes of plane running waves.
These oscillators are then analyzed as quantum oscillators, and we speak
of the number of photons in each mode.

THE GROUND STATE

Vacuum Energy. The state of the electromagnetic field of lowest
possible energy, which we shall call the ground state or the vacuum state,
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is that in which there are no photons in any mode. This means that
the energy in each mode is hw/2, where w is the frequency of the mode.
Now if we were to sum this ground-state energy over all of the infinite
number of possible modes of ever-increasing frequency which exist even
for a finite box, the answer would be infinity. This is the first symptom
of the difficulties which beset quantum electrodynamics.

In the present case, for the vacuum state, the trouble is easily fixed.
Suppose we choose to measure energy from a different zero point. Since
there is no physical effect resulting from a constant energy, the result of
any experiment we perform will be insensitive to the arbitrary choice of
the zero point in energy. Therefore, we assign to the vacuum state the
energy zero. Then the total energy in any state of the electromagnetic
field is given by

E= Z njhwj (940)
J

where the sum is taken over all the modes j of the field.

Unfortunately, it is really not true that the zero point of energy can
be assigned completely arbitrarily. Energy is equivalent to mass, and
mass has a gravitational effect. Even light has a gravitational effect, for
light is deflected by the sun. So, if the law that action equals reaction
has qualitative validity, then the sun must be attracted by the light.
This means that a photon of energy fiw has a gravity-producing effect,
and the question is: Does the ground-state energy term fw/2 also have
an effect? The question stated physically is: Does a vacuum act like a
uniform density of mass in producing a gravitational field?

Since most of the space is a vacuum, any effect of the vacuum-state
energy of the electromagnetic field would be large. We can estimate its
magnitude. First, it should be pointed out that some other infinities
occurring in quantum-electrodynamic problems are avoided by a par-
ticular assumption called the cutoff rule. This rule states that those
modes having very high frequencies (short wavelengths) are to be ex-
cluded from consideration. The rule is justified on the grounds that
we have no evidence that the laws of electrodynamics are obeyed for
wavelengths shorter than any which have yet been observed. In fact,
there is a good reason to believe that the laws cannot be extended to
the short-wavelength region. Mathematical representations which work
quite well at longer wavelengths lead to divergences if extended into the
short-wavelength region. The wavelengths in question are of the order
of the Compton wavelength of the proton; 1/27 times this wavelength
is h/mye~ 2 x 10714 cm.

For our present estimate suppose we carry out sums over wave num-
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bers only up to the limiting value kmax = mpc/h. Approximating the
sum over levels by an integral, we have, for the vacuum-state energy per
unit volume,

Ey /’vm hkcdmk?dk _ hcki,,
0 2 (2m)3 82
(Note the first factor of 2, for there are two modes for each k.) The

equivalent mass of this energy is obtained by dividing the result by c?.
This gives

(9.41)

unit vol -

mo 15 3
—_— =2 %1 9.42
unit vol x 10 g/ o ( )

Such a mass density would, at first sight at least, be expected to
produce very large gravitational effects which are not observed. It is
possible that we are calculating in a naive manner, and, if all of the
consequences of the general theory of relativity (such as the gravitational
effects produced by the large stresses implied here) were included, the
effects might cancel out; but nobody has worked all this out. It is
possible that some cutoff procedure that not only yields a finite energy
density for the vacuum state but also provides relativistic invariance may
be found. The implications of such a result are at present completely
unknown.

For the present we are safe in assigning the value zero to the vacuum-
state energy density. Up to the present time no experiments that would
contradict this assumption have been performed. As we progress further
into the field of quantum electrodynamics we shall find other divergent
integrals which are more difficult to circumvent.

Vacuum Wave Function. The wave function for the set of oscil-
lators is just the product of the wave functions for each mode. For the
ground state the wave function of the oscillator 1, k is (see Eq. 8.83)
proportional to exp{—(kc/2h)as , a; , }, where

a1x = al,k/'v Vol

and “Vol” represents the volume of the normalizing box (see Sec. 4-3).
Thus the wave function for the entire system in the ground state, or
vacuum state, is, within a normalization constant,

ke, . _ e
@0 = eXp {*" Z —é—ﬁ(al’kal,k + 0:2’1(012’1{)} (943)
k
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Problem 9-6 Show, using sine and cosine modes and real vari-

ables, that this expression using complex variables is indeed correct
(cf. Prob. 8-4).

Problem 9-7 Show, for the vacuum state, the expectation value
of i 1.8y o is (h/2kc)dk,q and that of &, 18, o is (h/2kc)d_x,q. Develop
a formula for the expectation of (aj 1@, )" for integral r and explain
thereby how the expectation of such quantities as (a7 18 )" (@ 481 )°
can be got for q # k. Show that the expectation of (@, ,)* or (@)
vanishes. Show that the expectation of the product of any odd number
of @’s is zero and that you can compute the expectation value of any
product of @’s or a*’s for the vacuum state.

Problem 9-8 For the state for which there is just one photon
present in level 1, k, all of the factors in the wave function are ¢q except
one, which is ¢;. But for an oscillator ¢1(z) = v2x¢o(z). The wave
function representing an excited running wave is a linear superposition
of the state with the cosine mode excited and i times the state with
the sine wave excited, so show that the unnormalized wave function for
just one photon present in level 1, k is aj ; ®o. The normalization® is
J ®8a, 1@ Do da, or the expectation of @, y af ) for the vacuum, which
we have seen in the preceding problem is i/2kc. Hence the normalized
one-photon state is y/2kc/h a7, ®o.

INTERACTION OF FIELD AND MATTER

To deal with the interaction of the radiation field with matter is
not difficult in a formal way. Evidently from the action expression of
Egs. (9.30), (9.31), and (9.33) we see we must deal with the matter
system interacting with the radiation oscillators and must calculate am-
plitudes from

Aaplitade = [ [ [/exp {2 (S + S + S | T1 D D s Dz
ik
(9.44)

The coordinates of the radiation oscillators can be integrated out imme-
diately; for they appear only in quadratic expressions. We shall do this
integration in the next subsection (starting at Eq. 9.60).
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Emission from an Atom. Part of the complication in this problem
is simply the confusion produced by so many coordinates and states. So
we shall begin by dealing with a simple problem just to get more used
to what is involved. We shall solve the problem of the probability of
emission of light by a single atom, using perturbation theory (assuming
the interaction Siy of light and matter is small and expanding it only
to the first order).

If Sint is neglected, the radiation and matter are independent sys-
tems. Let the states of the atom alone have energy En for various values
of N with wave functions ¥y (x), where x represents the x; of all the
particles of the atom. The state of the radiation can be defined by giv-
ing the values of all the integers ny k and ng k. The energy levels of the
combined system are

E=Ey+ Y (n1k+nax)hke (9.45)
k

The wave function for this state is a product

U = @bN(x)<D(n1,k, nz’k) (9.46)

where ®(nq k, n2 k) is the wave function for the radiation field (a product
of harmonic oscillator wave functions).

To deal with atomic radiation of a photon, we consider as the initial
state that the atom is in some level M and no photons are present (all
n1x and ng k equal 0). This wave function is

\Ila - wM(X)(I)O (947)

with ®g from Eq. (9.43). In the final state the atom is in another level
N, but now a photon is present, say of momentum hq and polariza-
tion 1. According to Prob. 9-8 the wave function of the radiation alone
is proportional to aj ®o; the complete final wave function is

2
Uy = YN (%) “%Eaik,q@o (9.48)

Now to find the transition probability per second (to first order) we
see, according to Eq. (6.79), we shall need the matrix element V3, of the
perturbation potential between these states. The perturbation action is
Sing as defined in Eq. (9.32), and the corresponding potential is

V=—Vir > ji il (9.49)
k
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where 51,1( = j1 k/V Vol depends on the atomic variables, as in Prob. 9-2.
This matrix element is

‘ 2 C £ e - _ |
‘/Z-)a, = - // w}k\f \/ —%_@bafl’q \% 4WZ]1}_kal’k¢M®O dXIkIdal,k/ (950)
k
[ 8mqc . = L i
= — - Ek:/wm,_kwM dX/(I)Oal,qal’kiﬁOIJdal,k, (9.51)

because only the currents j depend on x. The expectation values of the
a’s for the vacuum state were worked out in Prob. 9-7, that is,

* — - —
/(I)Oal,qalakq)o g dal’k/ =0

unless k = —q, in which case it is /2gc. Let us write the matrix element
[ Wi dx as (§)nas. Our matrix element is therefore

Voo = =270/ qc (J1,q) N M-

The probability of transition per second is then (see Eq. 6.94)

2m 2w\ =
(5) (22 Bualionss (s B + hao (9.52)

Ordinarily we are not interested in the problem of exciting one par-
ticular photon but would rather see the probability of emission of any
photon (of polarization 1) into some small solid angle dQ2. We must
sum q over all values which correspond to this direction. The number
of values of q per unit volume is dq/(27)3, or if q is in the specified
direction, we require the integral of ¢? dg d2/(2m)3, so that we find that
the probability of a transition per second is

dP 2m)? dq dS2

The integral on ¢ gives

aP w .

i mljl,q@\m ds? (9.54)

for the rate of emission of light of polarization 1 in direction q into the
solid angle d€2. The frequency emitted satisfies
En — En

- (9.55)

W = qgc =

Problem 9-9 For a complicated system moving nonrelativistically

(i) v = Y _(eser-xie™ ) vy (9.56)

)



250 9 Quantum electrodynamics

where e; is a unit vector in the direction of the polarization of the light
and e; and x; are the charge and position of the ith particle. Assume
the wavelength of the light is very large compared with the size of the
atom, i.e., that the absolute square of the wave function describing the
position of the ith electron falls to 0 over a distance small compared with
1/k. Show that we can then approximate e~ "% by unity and write the
matrix element as

(J1,x) Ny = Wwer By (9.57)
where
My = Z(eixi)NM (9.58)

The function pyy, is called the matriz element of the electric dipole
moment of the atom, and the approximation used to derive Eq. (9.57)
is called the dipole approzimation. Show that the total probability to
emit light in any direction per unit time is

dP 4w '
0 é‘ﬁ‘gg[MNMlg (9.59)
(Integrate Eq. (9.54) over all directions, remembering that e, is perpen-

dicular to k and that there are two possible directions of polarization.)

Elimination of Electromagnetic Field Variables. Since the
radiation field is represented by a quadratic action functional, we can
integrate out all its coordinates. We shall do so here. We must integrate
all the variables aj k, a2 x in Eq. (9.44). We must specify the initial and
final states of the radiation field. First we shall take the simplest case
that initially and finally we have a vacuum, the oscillators all going from
0 to 0 photon number. Our amplitude can be written

Amplitude = / (/) Smas X (x)I 1 Dx; (9.60)

where

X(xi) = // (/M) Sinet5:d) [ Doy Dag (9.61)
k

is a function of the x;’s which appear on the right-hand side of the equa-
tion in the current variables j. Since the action is a sum of contributions
>k (S1x + Sa,x) from each mode, where

S1k = / {\/;Gik&l,k + J1 107 i) (9.62)

1.y . k2c? . _ hkc
+ ia;,kal,k B 07 k81 — 9 dt
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clearly X is a product of corresponding factors. The integral for one
typical mode,

?: ' - - —
X1k Z/exp{ﬁ/ [ﬁ(h,k%,k + J107 k)

1w . kzcz_* _ hkc _
+ alkalk 5 Nk T 5 dt » Dk

2
ity tb o
= exp { ﬁl‘,c / / -71 k t)]l k\$8 ) —chit_‘s] dS dt} (963)

is a type of path integral which we have already done many times, ex-
cept for the complication of complex variables, which can first be re-
duced to real variables. In fact, this is exactly the problem discussed in
Sec. 8-9. The interaction function f(t) of Eq. (8.136) is here related to
VT J1x(t), and w = ke. The final expression of Eq. (9.63) is equivalent
to Eq. (8.138). The product of such factors for each k and polarization
gives X = el/" where

N T b rte ; Tk = Tk —ikcl|t—s
F=i Y & [ Gk 0706) + Fapc i) dsat
- ke e, Ji,
(9.64)

Thus the problem of a vacuum-to-vacuum transition is completely
solved in terms of a path integral over the matter variables alone:

Amplitude = / et/ h)(smat+1)n Dx; (9.65)

We shall discuss a number of consequences of this result. (The case that
the initial or final state is not a vacuum is described in Sec. 9-7.)

It appears that the net result is simply this: The matter acts not
with Smat but with a modified action S, ., = Smat+I. The modification
results from a reaction with the electromagnetic field. This is not true in
a strictly classical sense, for the action I is a complex number. It can be
shown that the classical physics which results from using the principle
of least action, with the real part of S ., only, is exactly equivalent to
the combination of Maxwell’s equations and Newton’s laws. But it does
not correspond to the case that Maxwell’s equations are solved by using
just retarded waves. (In fact, a restriction to retarded waves cannot
be represented by any principle of least action in which only matter
coordinates appear. Instead it corresponds to using half the advanced
and half the retarded solution.!) Our full quantum-mechanical complex
expression for I is correct, and we shall now look at its consequences.

1J.A. Wheeler and R.P. Feynman, Interaction with the Absorber as the Mecha-
nism of Radiation, Rev. Mod. Phys., vol. 17, pp. 157-181, 1945.
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First-order Perturbation Expansion. The integral over the x’s
is too complicated to do exactly, but in the expression for the currents
in I the charge e of the particles occurs. Thus I is proportional to
2, which in dimensionless form, for the electron’s charge, is the fine-
structure constant
e? _ 1
he  137.039
a small number whose exact value and meaning are unknown except
experimentally. Thus we may expect that the effect of I is small. We
already know that the Schrédinger theory gives atomic levels, for exam-
ple, quite accurately. There can be only small errors arising from the
neglect of I. Let us look at the effect of I in first order in e?, corre-
sponding to second order in e on the original action of Eq. (9.32). Let
us take the transition amplitude Aysas as defined in Sec. 6-5, where the
matter system begins and ends in state M. If I is neglected, the zero
order is

O _ o~(/m)EnT (9.66)

AMM
The first-order term is (where x represents all of the x; variables)

. ts '
AvMm = + Wiy (xp) e MSme I (x4) Dx(2)
ta

ty ]
pnuii e Z w& (Xb)e(z/h)smat

h <= Js,

. vis tb tb - Tk - % —ikelt—s
XZEE/t /t i )77 1(8) + Joxc (B)T5k(5)Je™ eIl ds dt

% 37 (xe) Dx(t) (9.67)

Now terminate the integral on s at ¢, and double the result.® The evalu-
ation of a similar expression was worked out in Sec. 5-1. For the present
example, with large values of T', we get

Mint' =~ (AE)Te(/MENT
where
27
AE=-) %'k—c[(.h WMN G NM + (G0 M (G0 vaa]

N
(o]
N / o(6/R) (B~ Ex—hbe)r g

_2/27‘%’ 31k Inarl? +T(Jgk)NM[ a3k

E]V[ —_ EN hkc + 1€ (271')3 (968)
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This has a real and imaginary part and can be written as

AE = 6E — ZZ’V

The real part 0F represents a small shift in the energy levels of the
atom, called the Lamb shift. Such a shift was discovered experimentally
by Lamb and Retherford. This is

§F = Z/QZCE (Joc) v n]?]

1 d®k
P. .
<P <EM By hkc> (27)3 (9.69)

and the imaginary part is

3 =2 [ B G+ e

d3k
(2m)?

The amplitude that the atom remains in the upper state with no
photons emitted goes as exp{—(i/h)(Ey +dE —ihv/2)T} and the prob-
ability as e=7T". That is, the probability to remain in state M decreases
exponentially with the decay rate ~. Physically it should decrease be-
cause the atom in state M can emit a photon and fall to a lower state
N. Comparison with Eq. (9.53) shows that v in Eq. (9.70) is indeed the
total rate of transition from state M to all lower states V.

X 7T5(EM - EN - hkc) (9.70)

A SINGLE ELECTRON IN A RADIATIVE FIELD

The Energy Correction. In order to study the electromagnetic
energy correction JF, we shall consider the simplest case: that in which
the matter system has only one moving charge (e.g., a hydrogen atom
with an infinitely heavy nucleus or a free electron in empty space) whose
coordinates we shall call x. Thus jix = exe . We have here a case
where ji contains X, and in considering second-order terms we must take
appropriate care, as discussed in Sec. 7-3. There is an additional term
to 0F from the squared velocity term %?. Expressing % in terms of the
momentum operator p, as in Sec. 7-5, we obtain

0F = — Z/QWﬁ Ipre”® XXy + Ip2e™ ™%, Pk
m2 EM EN hkc (271')3

& [ 2nh K
mJ ke (2m)3

(9.71)
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Problem 9-10 Why do we not need to be careful to write
%[ple“ik'x + e~ Xp,] in the matrix elements?

Let us take the simplest case of a free electron at rest. Any 6Eg we
get for energy in the field will represent a correction to the rest energy, or
as can be shown from the relativity theory, to the mass, dm = §Eg/c?.
This is the so-called electromagnetic mass correction. For a free partlcle
at rest, the states are plane waves. If the momenta in M and N are py
and py, the matrix element (p1e™"*)y )/ is zero unless py = pa —Fk,
in which case it is p;y. Thus for an electron at rest initially, the matrix
element is 0 and §Eg is just the last integral of Eq. (9.71), which is
infinite!

Difficulties at Short Wavelengths. This in not the whole of it.
When, at Eq. (9.29), we eliminated the term 4mpxp—x/k® in S., we
pointed out that this represented the interaction between point charges

Z 2 P

but neglected to point out that the infinite terms ¢ = j must also be
included in the sum. Indeed, for a single particle px = ee ™, so

4| p|? /k? = 4me? /k? and the term is
3k
6, = 4me? / 2lp) k.

The infinities here and in § Er above do not cancel, and we are left with
a real difficulty; our integrals over momentum k diverge quadratically.
Quantum electrodynamics gives nonsensical results.

It is true that we are using a nonrelativistic treatment of the charged
particle. The relativistic treatment of the matter (quantum electrody-
namics is not altered) does not rid us of the divergent results, although
the order of infinity may be changed. For a particle of spin 0, like a 7 me-
son, the order is unchanged; it is still a quadratic divergence. Here there
is presumably an experimental value of the mass correction available. As
far as is known, through other interactions, the sole difference between
charged and neutral m mesons is the charge, i.e., the different way they
couple to the electromagnetic field. So presumably the mass difference
of the charged 7 meson with a mass m, of 273.2 electron masses and the
neutral m meson of 264.2 electron masses, that is 9.0 electron masses, or
0.034m,, or 4.6 MeV, represents energy in the electromagnetic field.
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If we arbitrarily stop our integrals at some higher momentum kp,,x
(which is not a relativistically invariant procedure), we get an energy
he? (kmax)?/2mm.c from the last term of Eq. (9.71), which is the largest
term if ks /c is very much larger than the 7 meson mass m,. If this
equals 0.034m,c?, then (e?/2nhic)(Akmax/mxc)? = 0.034, or

b A 5.4myc ~ 0.8mye
max 7:& 7:1,

where m,, is the mass of a proton. (The relativistic theory gives
AE = 0.034m,c* with a cutoff at about the same energy.) It is for
this reason that we conclude that our present-day formulation of quan-
tum electrodynamics (or of the “particles” with which photons interact)
is faulty. The fault lies in the way we deal with energies beyond proton
mass or with corresponding frequencies, or wave numbers. The difficult
arises with modes whose wavelength is less than about 47 x 10~ cm.

For the electron of spin %— the Dirac theory shows that the electron
should have a certain magnetic moment. It turns out that with such a
magnetic moment the negative magnetic energy almost perfectly cancels
the positive electric energy. The difference still diverges, although only
logarithmically. If a cutoff is applied to integrals over wavelengths, at the
wavelength limit suggested above, the correction to the electron mass is
only about 3 per cent, but there is no way to test this, for we do not
recognize a neutral counterpart to the electron.

For the proton the anomalous magnetic moment is so high that the
magnetic energy exceeds the electric energy and the correction can be
negative. The neutron is a magnet, too, so its correction is also negative.
Since the proton moment is higher, the fact that the neutron is heavier
than the proton might be explained. If the integrals are cut off at an
energy of the order of a proton mass, the difference comes out correctly,
but this is too crude a way to calculate such an accurately known energy
as the 782.61+0.40 keVT equivalent to this mass difference. These mass
differences (of proton and neutron, of charged and neutral 7= meson,
of positive, neutral, and negative sigma mesons, and of charged and
neutral K mesons, etc.) present a serious challenge to modern physics
and possibly point to the failure of quantum electrodynamics to give
us a complete theory for calculating electromagnetic effects. We do not
know whether it is truly quantum electrodynamics or our assumptions
about the distribution of charge inside the particles which are at fault.
Only when we have a more complete theory of these particles and their

TPage 354 of F. Everling, et al., Atomic Masses of Nuclides for A < 70,
Nucl. Phys., vol. 15, pp. 342-355, 1960.
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interactions will we be able to determine the limitations, if any, of our
present theory of quantum electrodynamics.

THE LAMB SHIFT

According to the Schrodinger equation, the second level of the hydrogen
atom is degenerate. The 2s and 2p levels occur at the same energy.
Likewise, for the Dirac equation there is a degenerate pair 2s;,, and
2p1/2. But Lamb and Retherford found in 1946 that there is indeed a
small separation (about 1 part in 3 x 10°%) with the 2s1 /5 lying higher
by a frequency of 1,057.1 megacycles.

Although theorists reasoned that such an energy difference might
arise from effects of the term I, the infinities of the divergent integrals
confused all attempts to calculate the difference until the work of Bethe
and Weisskopf in 1947. They reasoned as follows:

First, since

1 1 Ey — En 1

= — 72
Ey — En — hke  hkc Epy — En — hke  Rkc (9.72)
the energy (9.71) was expressed as the sum of three terms,
§E =0E 4+ 6E" + 6E" (9.73)
where
sE — 2T / Ly Bu Ey)(Ipre”™* Ry + Ip2e”™>[}ay) d°k
m2c® J k? 4 Ey — En — Rkc (2rm)3
(9.74)
2me? ! —ikex|2 —ikex |2 d’k
0E" = _77’2,202 /]—CT?’_ ;(Iple ]N]\/[ + ]p2e }N]\/I) (27()3 (975)
2me?h [ 1 d%k
E/ll — . )
d me k (2m)3 (9.76)

The term 6E" and the infinity from the Coulomb term JE. are
independent of the state of the electron. They would (it was hoped)
be made finite in some future theory. It would contribute some ém to
the rest mass of the electron. If mg is the mechanical mass, the true
experimental mass would be m = mg + dm, where émc? = 6E"' + §E,.
In the total energy (including the rest energy of the particles and the
binding energy) of the hydrogen atom, such a rest-energy correction to
the energy is, of course, expected, but we have already included it when
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we measure all binding energies relative to the free-particle ionized state.
The 0m term is thus identified, because it is the only term for an electron
at rest, and it is independent of the motion or state of the electron.

The term 6 E” could be simplified, for the sum over N could be taken
to give (p7 + p3)amam (by the law of matrix multiplication). When k is
integrated over all directions, this becomes %(p-p) MM, and

8 d3k
SE" = (p p My 8me? / = (2’R~ (9.77)

2m  3mc?

Again it was hoped that some day this term would be finite. It exists
even for a free electron. It is interpreted as follows: The mechanical
kinetic energy p?/2mg would be altered (if the mass is altered) to the
expression

2 2
LRS- (1 - @> (9.78)

2m  2myg mo

and the term 6E” must represent —(p?/2mg) dm/mg. But we have al-
ready taken this term into account; for we calculate the Schrédinger
energy levels with p?/2m, where m is the experimental mass. The term
is identified because it is the only extra term for a moving free electron
and it is proportional to the kinetic energy.! Finally, even though these
terms may be interpreted wrongly, when we calculate the difference of
the values of 6 E for the 2s and 2p states, the terms will drop out, be-
cause E"" and 6 F, are the same for all states and 6 E” is also the same,
since (p?/2m) s turns out to be the same for the two states 2s and 2p.

In the remaining term 0E’ the argument was made that the dipole
approximation would suffice. Then the matrix elements are independent
of k, and since

1 . d°k 1 hkmaxc

— _ 1 ; .
/ k2 Ear — En — hke (2m)3  27%he  Ear — By (9.79)
we get

2

! © 2 2 nkmaxc

= rm2hed Em—En)3 e 9.
22 Tm2hed EN: [( M N)31PNMl nEM . (9.80)

Since the states and the matrix elements are known for hydrogen, the
sum can be worked out. The only question is the value of fikyaxc. Bethe

1The §m implied by Eq. (9.77) is (8we?/3¢?) f(l/lcz)d3k/(27r)3 and is not equal
to the 6m obtained from §E/c? for a static electron. This is because we are limited
to a nonrelativistic approximation. When a fully relativistic analysis is carried out,
the two ways of calculating dm agree.
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argued that the nonrelativistic approximation is at fault here and that,
if the full relativistic calculation were made, Akmaxc would turn out to be
of the order mc?. Putting hkmaxc = mc? gave about 1,000 megacycles,
so Bethe knew he was on the right track.

The remaining problem was to make a relativistic calculation with
the Dirac wave function and states. Only in this way could a precise
determination of the effective kmax be made. This turned out to be quite
confusing, for it was hard to identify the various infinite terms. It would
not do to simply cut them off at some maximum momentum and take the
difference; for this is not necessarily a relativistically invariant procedure
because it deals with momentum and energy in different ways. (One
consequence of this has already been pointed out in the footnote.) One
method for resolving the confusion was developed by Schwinger, who
showed how the relativistic symmetry could be kept clear throughout
the calculation and the infinite terms identified. Another method worked
out by Feynman was to give a relativistically invariant procedure to cut
off the infinite integrals. Here we shall illustrate the latter method.

The total effect of the electromagnetic field, which this time includes
the Coulomb interaction, is represented by an extra term I + S in the
action. The relativistic invariance of an expression for I like Eq. (9.64)
will not be self-evident, since that formula is expressed in terms of k
and ¢ instead of either r and ¢ or k and w. Let us represent [ in terms
of wave number k and frequency w variables. First note that, in light of
Eq. (A.10),

o ikelrl —i 2ike
[_Ooe elrle™ T dr = — (9.81)

, *° 2ikc : dw
—ikclt—s| _ __ iw(t—s) 22
¢ [_ 22— 2 — e 21 (9-82)

Suppose we define
il = [ gltjerae
/ / r,t)e T —wt) g3 gt (9.83)

Then I becomes (for long time intervals T')
= ap [ 0 ) S
k2c? — w? — e (27)4
The relativistic symmetry of this expression in k and w is already

clear; for k?c? —w? is invariant to the Lorentz transformation. The cur-
rents, however, do not appear in a relativistically symmetrical manner.

(9.84)
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We would have expected an invariant combination like j-j — ¢2p?, since
j and c¢p form a four-vector. But if we define

plk,w) = /pk(t)e”*“m dt
= //p(r,t)e“i(k'r‘“’t) d°r dt (9.85)

the Coulomb portion of the action, Eq. (9.29), is

[ Bl [ Gl e
2m)* k2¢? — w? (2m)4

(9.86)

the last resulting simply by multiplying numerator and denominator by
2 _

c? — w?/k?. But the law of conservation of current
9p
9P . :
5 j (9.87)
becomes
wp(k,w) = k-j(k,w) (9.88)

Alternatively, if we call j3 the component of j in the direction of k,
wp/k = js and we have altogether

I+ 8= (9.89)
/ 171 (&, w) 2 + gk, w) 2 + |73 (k, w)|? — c2|p(k, w)|? d3k dw
k2c2 — w? — e (27)4

The sum of the three j terms is just j*(k,w)-j(k,w), and the four-di-
mensional invariance is evident.

A suggestion is now made that in view of our present ignorance,
convergence of the integrals can be made artificially by supplying an
additional factor such as

A? ’
(k%z —w? 4+ A% — z'e)

in the integrand of Eq. (9.89), where A is some very high frequency. For
small values of k and w this factor is unity, whereas for high values it cuts
off the integral. Furthermore, such a factor clearly does not destroy the
relativistic invariance of the expression. All physical quantities are to
be calculated by assuming I + S, contains this cutoff factor. If they are
insensitive to A for large A (like the Lamb shift), the theoretical value
is to be trusted. If, on the other hand, the result depends sensitively
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on A (as does the charged and neutral m meson mass difference) no
quantitative meaning can be given to the result, for the cutoff function
is arbitrary and is not completely satisfactory. This is the present state
of quantum electrodynamics.

Problem 9-11 Show that the cutoff function is not completely sat-
isfactory by arguing that v calculated in the manner of Sec. 9-4 would
be altered by the cutoff, yet the probability of emission of a real photon
would not be so altered because for such a photon w = kc and the mod-
ifying cutoff factor is exactly 1. Thus the balance of probability would
not result (i.e., the probability that the atom emits plus the probabil-
ity that it does not emit would no longer add to unity). The difficulty
suggested by this problem has never been solved. No modification of
quantum electrodynamics at high frequencies is known which simulta-
neously makes all results finite, maintains relativistic invariance, and
keeps the sum of probabilities over all alternatives equal to unity.

Problem 9-12 Transform I + S, into space coordinates by using

/ ei(k-r—wt) d3k dw B 1 i
k2¢2 — w2 —ie (2m)4  (2m)2¢ (r? — 22 + ic)
_ 1 2 _ 242
= 47rc(5+(r c“t?) (9.90)

(Note: The function i/[m(z + i€)] is often written as é.(x), and we have
introduced that convention here.) Then find

1 . .
I+5:=5 //[J(rlatl)'J(FZatZ) — cp(r1,t1)p(ra, ta)]
X 5+(II‘1 — I‘2[2 - CQ(tl - t2)2) d3r1 dtl d31'2 dtz (9.91)

THE EMISSION OF LIGHT

In Sec. 9-4 we found an expression for the amplitude that the matter
system would do something when interacting with an electromagnetic
field, as shown in Eq. (9.60) and the following development. This deriva-
tion was restricted to the special case that the field is both initially and
finally in the vacuum state with no photons present. The result was that
the action Smat in the path integrals must be replaced by an effective
action S .. = Smat + . In a more general case, photons are present,
both initially and finally. As an illustration suppose that initially no
photons are present but in the final state there is just one photon of



9-7 The emission of light 261

momentum hq and polarization 1. The only change which this makes
in our previous calculation is the change in the integral defining X, that
is, Eq. (9.61). We shall now use

X — / / el (G5 [ Day i Day, (9.92)

where the path integral is carried out between a vacuum initial state
and a final state consisting of a vacuum plus one photon. Then every
oscillator, except 1, q, goes from the initial state n = 0 to the final state
n = 0, so the factor X x for all these oscillators is unchanged. Only the
contribution from the single oscillator 1, q is altered; for it now becomes

1 Tk = %
X{’q:/exp{%/ {\/’E(jl,qa’l,q_{"]l,qa'l,q)

1.y . q*c? hqc

“‘]’“ ial,qdqu - -—2—-@?,:1@1,(1 - “5—] dt} CDa/l,q (9.93)

This expression is the same as Eq. (9.63) except that the oscillator path
is taken between the state n = 0 and the state n = 1 instead of n = 0
to n = 0 as in the previous expression. We worked out the behavior of
a forced harmonic oscillator in Sec. 8-9, and we can use the results of
that section to write

t
X[, = (z\ [ 2T / G dt) Xiq (9.94)
’ hgc te

where X 4 is the n = 0 to n = 0 factor previously calculated. There-
fore, evidently the complete factor X’ is simply the original factor X
multiplied by

o [t i
4 | —— i g9t dt
’ hqc /ta Jla

and we find for the amplitude

2 . o
Amplitude = 44/ ﬁ—;% /e(’/h)(Sm“H) J1,q€"% dt Dz (9.95)
23

The perturbation theory expression which we previously evaluated
(at Eq. 9.50) is equivalent to the transition element

29 IS t .
z’,/% / e(1/1) S / 1,469 dt Dz (9.96)
ta

so we see that the net result is the same as that given by the perturbation
theory except that the transition amplitude must be calculated with the
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effective action S} ,; = Smat + I instead of with just Smat. The effect
of I is to change the energy levels a bit, as we discussed, but also to
make the energy values complex. The result is that the emitted light
gives a spectral line with a little width, which is called the natural line
width. We shall not go any further into the details of this calculation but
leave the subject and the generalizations to a number of photons both
entering and leaving the system to those who wish to study quantum
electrodynamics specifically in more detail.

SUMMARY

Review of the Approach. In this chapter we have a consider-
able amount of analysis of the quantum electromagnetic field. It is
worthwhile looking back again to see the central ideas and results. The
separation of the Coulomb interaction and the use of running waves are
technical ways of accomplishing our ends, but the essential result is the
formula of Eq. (9.89) (or its equivalent, Eq. 9.91). Let us review this
result from the more general point of view exemplified by the ideas of

Eq. (9.1).
Suppose we have a system which can be described by an action
S = S1[x] + Sa2[x, A, ¢] + S3[A, ¢] (9.97)

where S [x] is the action of the matter alone, S3[x, A, @] is the interac-
tion of matter and field, and S3[A, ¢] is the action of the field alone, and
where x stands for all the coordinates of the matter, while A, ¢ describe
the field. Then the amplitude for any event results from evaluating a
path integral like

K= /exp {% (S1[x] + Sa[x, A, @] + S3[A, qﬁ])} Dx DA D¢ (9.98)

subject to the boundary conditions of the problem in question. In this
summary we shall assume that conditions for the field are that initially
and finally no photons are resent (i.e., ground state to ground state for
the field), and we abbreviate this set of conditions as gnd-gnd. Later on
we shall consider the consequences of integrating x first and A, ¢ last.
What we have done so far corresponds instead to integrating A, ¢ first
and reserving the x integral as a subsequent step.

Usually S3[x, A, @] is linear in the field variables A, ¢ and can be
written as

Se== [ [ 1otr,0000,8) = 300,00 Ar,0)/c) v (9.99)
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where p and j are the electric charge and current density, which depend
on the x only. The integral over A, ¢ is then easily performed because it
is a gaussian integral. It is the burden of Eq. (9.91) to tell us the value
of this integral, namely,

gnd . .
| ew {% [Sg[A,cb} - [ [wo-sas0 d?’rdt} } DA D = /M7
gnd
(9.100)
where J, which we called I + S, in Eq. (9.91), is

1 . .
J = %//[J(Flatl)ﬂ(rz,tz) — p(ry,t1)p(rs, t2)]
X 5-{—([1'1 - 1‘2[2 — c2(t1 — t2)2) d3r1 dt1 d3r2 dtz (9.101)

for any functions p, j of r, t. The expression for Eq. (9.101) as an integral
over momentum space appears in Eq. (9.89).

In the applications of Eq. (9.98) these p, j are some function of x
and X, so we obtain the result that

K(gnd, gnd) = /exp {—% (S1[x] + J[X])} Dx (9.102)

where J[x], a functional of x(¢), is given by Eq. (9.101) with the correct
p, j substituted. This summarizes the results for gnd- gnd transitions. We
express the modifying effect of the field on the action of the particles by
the addition of J[x| to Si[x]. The central formula for electrodynamics
then is the general result of Egs. (9.100) and (9.101).

General Formulation of Quantum Electrodynamics. It is also
of interest to pursue these matters in a different direction, by integrating
over the matter coordinates first, and leaving the field variables for later.
We shall limit ourselves to a brief general description of what results from
this procedure. If in Eq. (9.98) we contemplate integrating x first, the
factor e(#/")5s ig a constant and can be left out. We can therefore write
Eq. (9.98) this way: If we define

7iA, 61 = [ e { £ (516 + Safe, A, 6] | Dx (9.103)
then
K= / e(/MSIASITIA ] DA D (9.104)

This K gives us the amplitude that the particle goes through a cer-
tain motion and the field undergoes a certain transition. Like all other
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amplitudes, it is the sum over all possible alternatives. Each separate
alternative is constructed as the amplitude T'[A, ¢] for the motion in a
particular field A, ¢ times the amplitude e(t/M)Ss that the field is A, ¢.
In carrying out the sum, we sum over all possible fields A, ¢.

This law, given by Eq. (9.104), is the general fundamental rule for
all of quantum electrodynamics. It is a correct formulation even when
the functional T'[A, ¢], the amplitude for the motion of the particles in
an external potential A, ¢, cannot be represented as a path integral.
For example, for a relativistic particle with spin (described by the Dirac
equation), the quantity T'[A, ¢| cannot be described by a simple path
integral based on any reasonable action. However, it is possible to cal-
culate T[A, ¢] by other means, for example, from the Dirac equation.
After the form of this functional has been derived, the amplitude K can
be worked out, in principle, from Eq. (9.104).

In stating the law of quantum electrodynamics in the form of
Eq. (9.104), we have isolated the behavior of the electromagnetic field
from the behavior of the particle (or system of particles) on which it
acts. That such an isolation can be carried out is an important result.
For example, the functional T'[A, ¢| may represent the behavior of a nu-
cleus whose properties are not completely known. However, if we know
only the behavior of the nucleus in an external field, then we can solve
quantum-electrodynamic problems involving nuclei.

Of course, to use Eq. (9.104) strictly, 7" must be known as a functional
of A, ¢ for all A, ¢, but this much information is rarely available. Even
if it is available, the path integral over A, ¢ may not be easy. But in
practice the formula is very useful. Sometimes 7" can be approximated
by an exponential, linear in A, ¢, of exactly the form of Eq. (9.99). Then
the result is obtained directly from the general formula of Eqgs. (9.100)
and (9.101). More often, T can be represented by a sum, or integral, over
such exponential forms with various p, j and the result of Eq. (9.104) is
a corresponding sum or integral over expressions containing (/7 with
J in Eq. (9.101) involving the corresponding p, j.

In most practical situations 7" can be expressed as a power series in
A, ¢. The first few terms can be found from the theory of the matter
considering A, ¢ as a small perturbation. Subsequent substitution into
Eq. (9.104) and integration over A, ¢ gives a corresponding perturbation
expansion (in powers of e? /hic) for K. The necessary path integrals such
as

/ e(i/MSs ISl A, (p) 41) A (ra, 1) DA D

—= ~ih65¢,j 5.{.(’1‘1 - 1'2]2 - Cz<t1 — t2)2>
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can be discovered by expanding the general formula of Egs. (9.100) and
(9.101) on both sides in powers of p, j and comparing corresponding
terms. We shall not go further into these matters here, but refer the
reader to the literature (e.g., sec. 8 of R.P. Feynman, Mathematical
Formulation of the Quantum Theory of Electromagnetic Interaction,
Phys. Rev., vol. 80, pp. 440-457, 1950).
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Statistical Mechanics



IN preceding chapters we have discussed transitions in which a system
goes from one known state to another. In most physically realistic sit-
uations the initial state is not completely known. The system may be
in one or another state with different probabilities associated with each.
In this case the final state is equally uncertain, being that set of states
resulting from the various possible initial states with the corresponding
probabilities. Or we may not be interested in the probability to go to
just one specified final state, but rather the chance to end up in any one
of a set of such states.

An especially interesting case of statistical uncertainty of states is
that corresponding to thermal equilibrium at some temperature . A
quantum-mechanical system in thermal equilibrium can exist in one or
another energy state. The results of quantum-statistical mechanics show
that the probability that a system is in a state of energy E is propor-
tional to e~ E/FT  where kT measures the temperature in natural energy
units. (The conversion factor k, known as Boltzmann’s constant, is
1.38065 x 10716 erg/K, or 1 eV per 11605 K.)

In this book we shall neither derive nor discuss this exponential dis-
tribution law. We emphasize that the energy E is the energy of the
entire system. If an energy level is degenerate, then each state at that
particular level has equal probability. This means that the total proba-
bility for the system to have the particular energy value is enhanced by
a factor corresponding to the number of states in the degenerate level.

The exponential law given above is not yet a true probability distri-
bution, since it has not been normalized. The normalizing factor can
be written 1/Z, so that the probability that a system should be in the
state of energy E, (assumed nondegenerate for the time being) is

1
Dn = -Ze—ﬂEn (10.1)
where 8 = 1/kT. This means
Z=Y e ftn (10.2)

An equivalent normalization consists of defining an energy F' such
that

pn, = e PE—F) (10.3)

F is called the Helmholtz free energy. Its value is, of course, dependent
on the temperature T, although the various energy values E, do not
depend on T'. It is evident that

Z =ePF (10.4)

268
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THE PARTITION FUNCTION

The physical properties of a system in thermal equilibrium can be de-
rived from the exponential distribution function. Suppose A is the mea-
sure of some property and that its mean value in the nth energy state
is

A, = / 6 A, dl (10.5)

where the integral is taken over the configuration space of the system.
Then the statistical average for A for the whole system is

A=) "puA, = —é- > ApeFE (10.6)

For example, the average or expected value of the energy itself is

U=> pnB, = %Z E,e PEn
V(] n

— ZEne“ﬁ(En_F) (107)

If the normalizing factor Z is known as a function of the temperature,
the sum of Eq. (10.7) can be easily evaluated. From Eq. (10.2) we have

0z o0z
‘ﬁEn T . == f 2_._.__
E;Ene 35 KT o (10.8)
This means that
kT2 82 ,0lnZ OF
V=Zar =" 5 =F T3
_ 0(BF)
=55 (10.9)

We have written the derivatives with respect to the temperature as
partial derivatives because other variables, such as the volume of the
system or any external fields, which determine the energy levels are all
held fixed.

It is interesting to see what happens to the expected value of the
energy if some other variable such as the volume is changed. Suppose
the system is in a particular state ¢, and we make a small change in
the value of a certain parameter, say o. Using a first-order perturbation
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principle, we find that the first-order change in energy is equal to the
expected value of the first-order change in the hamiltonian. That is,

E, + AB, / o5 (H + AH)$, dT
AE, = / 65 AH¢, dT (10.10)

Using the language of classical physics, we would say that the ratio
—AH/Aa« is the “force” associated with the parameter . In case this
parameter is the volume, the force is the pressure. That is, we define
the concept of force by

force x change in parameter = —change in energy
or
O0H
) = e 1
fa= -2 (10.11)
As an example, then, if P = pressure and V = volume,
—~PAV =AF (10.12)

We write the expected value of the force as
_ OH OH OEn
fo = ‘(‘5&) =2 (a‘&) =2, (10.13)

_ 1 OE, o~ En/kT _ kT O (Z e'En/’“T> _ kT 02

74 Ba Z da 7 Ba
so that
_ 10lnZ2
"= 550 (10.14)

where § and other parameters are held constant. Using Eq. (10.4), we
can write this as

5 oF

o — | —— 1 .

J o (10.15)

If the parameter « is the volume V so that f, is the pressure P, we have
oF

P=— .
57 (10.16)

When the volume is changed by an infinitesimal amount for a sys-
tem at a constant temperature, two things happen simultaneously. First,
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each energy level shifts slightly. Second, for the system to stay in equilib-
rium at a constant temperature 7' (maintained by a bath, for example),
the probability associated with each energy level changes slightly (be-
cause the energy of that level changes). If the only effect were a change
in the energy of each level, then the change in the total energy of the sys-
tem would correspond to this change averaged over all the levels. From
our foregoing discussion this is the negative of pressure times the change
in volume. However, to keep the temperature fixed, some readjustment
of the probability of each level must occur. Thus the total energy must
make an additional change which we will call d@Q. This additional en-
ergy comes from the external system (the bath) which maintains the
temperature, and it is called the heat exchanged. Thus

dU = —PdV +dQ (10.17)

We can find d@ easily from the expression for U given in Eq. (10.7).
When V is altered by the change dV/, then each energy level E, un-
dergoes the change dFE, and the Helmholtz free energy changes by an
amount dF'. Thus the total energy changes by the amount

dU = dE, e~ A=) (10.18)
+BAF Y Ene B _ 3N ", dE, e #En=F)
V(] Vo2

The first term in this expression is the expected value of dF,,, which is
—P dV, as we have already explained. The remaining two terms consti-
tute d@). These two terms can also be expressed with the derivatives of
the sum in Eq. (10.2), and ultimately in terms of F. In fact, we find

O%F
_ 10.
dQ T(?T 57 av (10.19)
That this is true can be seen also from Eq. (10.17), which gives
a@ oU 0 OF OF
v - av TP v (F"Tb“f> T
O*F
= T ore (10.20)

Equation (10.19) gives the heat exchanged d@ in changing the volume
by the amount dV while keeping the temperature constant. If we change
any other parameter, we shall arrive at an analogous result. For example,
if we change the temperature 7" while holding the volume V' constant,
the heat exchanged is equal to the change in total energy. That is,

ou 0 oF O%F
dQ = T dT = o7 (F T(‘?T) dTl = T8T2 ar (10.21)
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In general, then, we have the result

O%F O%F 02 F
dQ = —T (amvdv+ 5750 ot Eﬁ;ng>

The right-hand side of Eq. (10.22) is of the form T times the total
change in a quantity S = —(0F/8T), which is called the entropy. That
is,

(10.22)

dQ = TdS (10.23)
OF

S=-%5= (10.24)

U=F+TS (10.25)

It is evident that all the standard thermodynamic quantities — inter-
nal energy, entropy, pressure, etc. — can be evaluated if a single function,
the partition function Z, is known in terms of the temperature, volume,
external field, etc. The thermodynamic quantities are obtained simply
by differentiating Z or, equivalently, the free energy F.

The determination of some physical quantities, even for a system in
thermal equilibrium, requires more information than only the partition
function. For example, suppose the system is in a configuration space
with a coordinate z and we ask: What is the probability of finding the
system at location z? We know that if the system is in the single state
defined by the wave function ¢, (), the probability of observing z is the
absolute square of the wave function, ¢} (z)¢,, (). Thus, averaging over
all possible states, the probability of observing z is

P(z) = 2 3 61()dn(z)e 0 (10.26)

In the general case, if we are interested in any quantity A, then the
expected value is given by

A= L ZAne_ﬁE" = —;—;/qb;(a;)flgbn(x) dx e PEn (10.27)

It is evident that the expected values of all such quantities could be
obtained if we knew the function

pla',z) =) n(a)gy (x)e 5 (10.28)

This suffices since the function A appearing in the integral of Eq. (10.27)
is an operator which operates only on the ¢, () of that expression, and
not on ¢*(z). Using the quantity p(2’,z), we can imagine A to act on =’
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only, after which we set 2’ equal to z in the form Ap(z’, z), and finally
integrate over all values of x. This process is called finding the trace of
Ap.

From the definition of p(z’, x) it is clear that

P(z) = () (10.29)

and since the probability P(z) is normalized, so that the integral over
all of z gives 1, we have

Z = /p(x;x) dx = trace{p} (10.30)

The quantity p(2’,z) is called the density matriz. [More precisely, it
is called the “statistical density matrix for temperature 7"; the term
“density matrix” also has a wider use for general systems in or out of
thermal equilibrium and is usually used for the normalized version of our
function p(z’, z), that is, for the function we would write as p(z’, z)/Z ]
The general problem of statistical mechanics is to evaluate Eq. (10.28)
to find the density matrix. If we are interested only in conventional
thermodynamic variables, we need only the trace or diagonal sum of the
density matrix, which gives us the partition function Z.

THE PATH INTEGRAL EVALUATION

The formulation of the density matrix given in Eq. (10.28) bears a close
resemblance to the general expression for the kernel, which was derived
in Chap. 4 and given in Eq. (4.59) as

K (2, t; Tasta) = ) ¢ (20) 0}, (w4)e~ /M Eno=te) (10.31)

The validity of this expression is restricted to situations in which the
hamiltonian is constant in time and t; > t,. However, this situation is
implied in statistical mechanics; for only if the hamiltonian is constant
in time can equilibrium be achieved. The difference between the form of
Eq. (10.31) and that of Eq. (10.28) is in the argument of the exponential.
If the time difference t, — t, of Eq. (10.31) is replaced by —ifh, we see
that the expression for the density matrix is formally identical to the
expression for the kernel corresponding to an imaginary negative time
interval.

We can develop the similarity between these two expressions from
another point of view. Suppose we write the density matrix in a way
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which makes it look a little bit more like a kernel, thus, k(zp, up; Ta, Uq)
for p(zp, z,), where

(T, Up; Tas Ua) Zqﬁn 25) 97 (124 ) (e ua) /A1 Bn (10.32)

Then if zp = 2/, 24 = 7, up = BB, and u, = 0, Eq. (10.32) becomes
identical with Eq. (10.28).
If we differentiate k partially with respect to up, we get

Ok(b,a)
— [(up— ua)/h] 10.
S § B, ()05 (Ta)e™ (10.33)

But now recall that E,¢,(zp) = Hd,(xp); so if we understand Hj to
imply operations only upon the variables zp, we can write

Ok(b,a) 1
= ——Hpk 10.34
9a > Hyk(b, a) (10.34)
or, to put the same thing another way,
Op(b, a)
= —H,o(b 10.
e (b, 0) (10.35)

We notice that this differential equation for p is similar to the Schro-
dinger equation for the kernel K which was developed in Chap. 4 and
given in Eq. (4.25). We can rewrite it here as

0K (b,a)
Oty
We found in Chap. 4 that the kernel K (b,a) is Green’s function for
Eq. (10.36). In the same sense the density matrix p(b,a) is Green’s

function for Eq. (10.35).
With simple hamiltonians involving only momenta and coordinates

we have been able to write the kernel as a path integral. For example, in
a one-particle, one-dimensional situation where the hamiltonian is given

— —%HbK(b, a) forty >t, (10.36)

H=—-——+V(x) (10.37)
the solution for the kernel over a very short time interval
tb - ta - €

is

K(b,0) = ()" exp {% {%}M —v (mb : mﬂ }
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which can be directly verified by substitution into Eq. (10.37) and taking
the limit ¢ — 0. By building up a product of many kernels of the
form (10.38), and summing over paths, and taking the limit as the time
interval € goes to 0 and the number of terms in the product becomes
infinite, we have produced a path integral describing the kernel over a
finite period of time.

We can produce a solution to Eq.(10.34) in the same manner. The
solution for an infinitesimal interval of uy — u, = 7 is given by substi-
tuting € = —in into Eq. (10.38). Thus

k(xp,m;24,0) = (10.39)

1/2 2
m 1 [m (zp — z4) Tp + 24
(i) o {-a [5E5ow (2]}

That this is a valid solution of Eq. (10.34) in the limit n — 0 can be
demonstrated by direct substitution.

The rule for the combination of functions defined for successive values
of u is the same as the rule for the combination of kernels for successive
intervals of time. That is,

k(b,a) = /k(b, c)k(c, a) dz. (10.40)

That this result still holds follows from the fact that Eq. (10.33) is a
first-order derivative in w. This rule can be used to obtain the path
integral to define k(b,a) as

k(Zp, up; Tq, Ug) = (10.41)
N-1 N-1
1 1 m (41 — 7)? dz;
5/ ./exp{ fbizo{z ” +nV(z;) Z];[ .
The normalizing constant a now becomes
i 1/2
a= (27‘ ﬁ") (10.42)
m

and the integral is carried out over all paths going from z, to z; (that is,
for i =0, z; =z, and for i = N, z; = xp) in the interval up — ug = N.

The result of this derivation is that if we consider a “path” z(u) as
a function which gives a coordinate in terms of the parameter u, and if
we call & the derivative dz/du, then

o(xp, 2q) = /exp {_.% /Oﬂh [%ﬁ(u) + V(w(u))} du} Dz(u) (10.43)
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This is a very amusing result, because it gives the complete statistical
behavior of a quantum-mechanical system as a path integral without the
appearance of the ubiquitous ¢ so characteristic of quantum mechanics.
(Incidentally, this is not so for a system moving in a magnetic field.) This
path integral of Eq. (10.43) is much easier to work with and visualize
than the complex integrals which we have studied previously. Here, it
is easy to see why some paths contribute very little to the integral —
these are the paths for which the exponent is very large and thus the
integrand is negligibly small. Furthermore, it is not necessary to think
about whether or not nearby paths cancel each other’s contributions,
since in the present case all contributions add together with some being
large and others small.

The parameter u is not the true time in any sense. It is just a
parameter in an expression for the density matrix p. However, if we wish
to think through analogy, we can consider u as the time for a certain
path, an in so doing we can state the result given by Eq. (10.43) in a
vivid pictorial way. What we are doing is providing a physical analogue
for the mathematical expression. We shall call u the “time,” leaving the
quotation marks to remind us that it is not real time (although u does
have the dimensions of time). Likewise & will be called the “velocity,”
md? /2 the “kinetic energy,” etc. Then Eq. (10.43) says that the density
matrix for a temperature 1/k8 is given in the following way:

Consider all the possible paths, or “motions,” by which the system
can travel between the initial and final configurations in the “time” Sh.
The density matrix p is a sum of contributions from each motion, the
contribution from a particular motion being the “time” integral of the
“energy” divided by A for the path in question.

The partition function is derived by considering only those paths in
which the final configuration is the same as the initial configuration, and
we sum over all possible initial configurations.

Problem 10-1 Show that the density matrix for a one-dimensional
harmonic oscillator is

1/2
;N mw
pla, ) = <2wﬁsinhﬁhw> (1044)
. mw 2 2 o)
X exp{ TN sinh,@hw[(x + z*) cosh fhw — 22 :z:]}

This answer can be compared with the results of Prob. 3-8. Show also
that the free energy is kT In[2 sinh(%iw/2kT")]. Check this latter value by
a direct evaluation of the sum of Eq. (10.2).
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The Classical Approximation. If the temperature is not too low
(how low is too low will be discussed below Eq. (10.49)), Bh is very small.
Thus, in calculating the partition function for which z, = z,, each path
starts from z, and in a very short “time” is back at x, again. In fact,
the paths cannot ever wander very far from z,, because traveling far
away and returning again in the short “time” available requires a high
“velocity” and a large “kinetic energy.” For such a path the exponential
function appearing in Eq. (10.43) becomes negligibly small, and it will
contribute a negligible amount to the sum over all paths. Under these
circumstances the paths z(u) which must be considered in evaluating
V(z(u)) never move very far from the initial point z,. Thus to a first
approximation we can write V(z(u)) = V(z,) for all paths. In this
approximation the potential energy is independent of the path, and the
exponential function dependent on the potential can be taken outside
the integral. Thus for temperatures which are not too low we have

Ta lm ,Bh
(T, ) = =BV @) / expd 3 7 / 2(u)du b Do(u)  (10.45)
Tq 0

In this last expression the path integral is that for a free particle. It
can be solved in the same way that we solved the path integral defining
the kernel for the motion of a free particle in Chap. 3. The result is

Ty m ﬁfb .9
/ exp —éﬁ/o #*(u) du p Dx(u)
mkT mkT (zp — 24)> }
_ _ 10.46
Vimn o {0 a0

If we are interested only in the partition function, we set =, = z, and
find

ImkT
p(xa)xa) = Z—j‘:‘;‘:b‘é‘ e—ﬁv("”“) (1047)

Then, the partition function is the integral of this expression over all
possible initial configurations z,. Thus

Tﬂka / —BV (za)
— [ e ) dx 10.48
onh? ¢ ( )

This is a formula for the partition function valid in the limit of classi-
cal mechanics. It was originally derived, within an uncertain multiplying
constant, as a consequence of classical mechanics by Boltzmann. In more
complicated cases (e.g., more variables) the classical partition function
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is simply the product of two factors. The first of these is the path in-
tegral which one would get by considering all particles of the system to
be free. The second factor is called the configuration integral, and it is
just the integral of e™#V, where the potential energy V of the system
depends upon all of the N variables describing the system. For example,
for N particles interacting by a potential V(x1,Xa,...,Xx), where x; is
the position vector of particle 4, the integral required is

/'--//exp{—ﬁV(xl,XQ,...,XN)} dBxqy d®xq - dPxn

This simple form for the partition function is only an approximation
valid if the particles of the system cannot wander very far from their
initial positions in the “time” (h. The limit on the distance which
the particles can wander before the approximation breaks down can be
estimated from Eq. (10.46). We see that if the final point differs from
the initial point by as much as

(10.49)

the exponential function of Eq. (10.46) becomes very greatly reduced.
From this, we can infer that intermediate points farther than Az away
from the initial and final points can be reached only on paths which
do not contribute greatly to the path integral of Eq. (10.43). If the
potential V(z) does not alter very much as z moves over this distance,
then the classical statistical mechanics is valid.

For a typical solid or liquid at room temperature, with an atomic
mass of about 20, for example, Az is about 0.1 A, while the interatomic
distances and forces range over one or two angstroms. Thus motions
greater than 0.1 A will not contribute to the density matrix, while the
potential function will remain unchanged until motion of about one or
two angstroms has been achieved. It is clear that classical statistical
mechanics is adequate for such materials.

All of the mysterious transformations between solids, liquids, and
gases ordinarily lie in a range where classical statistical mechanics is
valid. The mathematical interpretation of all these processes is con-
tained in the problem of evaluating the integral of e™?V over the coor-
dinates of all the atoms. That this amazing variety and peculiarity of
phenomena comes from just a simple integral is at first surprising, until
it is realized that the integral is a multiple integral over a stupendous
number of variables. Our usual experience with integrals which involve
one or, at most, a few variables of integration does not prepare us for
the almost qualitative differences that can arise when the number of
variables approaches infinity. '
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The fascination of the problems in the theory of the solid states, or
of liquids and of the condensation of gases, lies, like the behavior of
this multiple integral, in the way in which simple descriptions of simple
systems when joined together in enormous multiplicity yield such rich
phenomena. It is a challenge to the imagination to see how the coop-
eration between systems can lead to such results. A rough qualitative
explanation is readily forthcoming for many of these effects, but the
problem of quantitative detail also holds fascination for the theoretical
physicist.

There are important statistical phenomena which occur when the
classical approximation is not valid. In this case the multiplicity of
variables is compounded with the conceptual complexity of quantum
mechanics to raise even greater challenges.

Strictly speaking, Eq. (10.48) does contain a little more information
than was available to the purely classical statistical mechanics. This is
evidenced by the appearance of i in the coefficient in front of the in-
tegral. Classical mechanics could not determine the partition function
absolutely, but only within an unidentified constant factor. Thus the
logarithm of the partition function was determined only to within an
additive constant. That meant that a term proportional to T appeared
in the expression for the free energy, or an additive constant appeared
in the entropy. This constant, which was sometimes called the chem-
ical constant, could be completely evaluated only after the quantum-
mechanical solution was worked out.

QUANTUM-MECHANICAL EFFECTS

There are some cases in which the classical approach is not adequate.
For these cases it is necessary to include changes in the potential function
which result from the motion along the “path.” In this section we shall
calculate the first-order effect of the potential when the motion of the
particle is taken into account.

Instead of approximating V' (z) by the constant value V(z,) in the
expression for the density matrix, Eq. (10.43), we might try a Taylor
series expansion for V(z) around the point z,. However, we would find
that we could save effort and increase our accuracy if we chose to expand
about the mean position given by

Bh
= —,@%/0 z(u) du (10.50)

which is defined for any particular path. We can characterize each path
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by its mean position and carry out integrations over all such positions in-
stead of integrations over initial positions z,, as was done in Eq. (10.48).
In this way the partition function becomes

7= / /w - exp{-% /O . 42 (w) + V(a(w)] du} D'z(u)dz (10.51)

In this expression the paths are chosen to satisfy two conditions: (1) that
T given by Eq. (10.50) is fixed and (2) that the initial and final points
are identical. This implies that the integral over all paths must also
include an integration over all end points z,, and that is the meaning
of the notation D’ in the differential.

Using a Taylor series expansion for V(x) about the point Z, we find

Bh
V(z(u)) du = (10.52)

’ Bh Bh
BRV () + /O (a(u) ~ )V () du+ 5 /0 (3(u) — B)2V" (Z) du + - -

By virtue of Eq. (10.50) the second term on the right-hand side of this
last equation is zero. Thus, by expanding about the mean position, we
arrive at an expression for which the first nonzero correction term is of
second order. Using this expansion and including no terms of higher
order than the second, we have for the partition function

7~ / BV (@) (10.53)

% /m exp {—% /0 . [%332(@&) + —;—(:c(u) —E)QV”(E)} du} D' (u) dz

The path integral in this expression differs from those of our previous
experience in one particular way. The paths over which the integral is
to be evaluated are constrained by Eq. (10.50), which can be rewritten
for present purposes as

Bh
%/O (2(u) — 7) du = 0

The substitution y(u) = z(u) — Z as the path coordinate then gives the
constraint in the form

1 [pn
— u)du =0
o /O y(u)
and the path integral itself is

/:a_f exp {_'17,; /Oﬂh [%yQ(U) + %yQ(u)V”(O)} du} D'y(u)  (10.54)

H

a— &
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The integrand of this path integral is the same as that for a harmonic
oscillator, with the frequency given by w? = V" (0) /m.

We now apply the constraint to this path integral in the following
way. We multiply the whole path integral by the Dirac delta function

Bh
§ (_5%/0 y(u) du)

In order to manipulate the delta function within the path integral, we
express it by its Fourier transform

(@) = /OO dh

— 00

and write Eq. (10.54) as

/ /Q:i;wexp{ /fﬁ [7; 2 vf'(o) 2 7”;@} du} iDy(u)g—fr
(10.55)

In this form, the path integral contains the constraint of Eq. (10.50),
and we can drop the prime on D’ and proceed directly with standard
path integral techniques to obtain the desired solution. We note that the
integrand of the path integral now has the same form as the path integral
for a forced harmonic oscillator if we interpret both m and V”(0) to be
imaginary. However, we are interested only in the case V"/(0) small, and
the approximation of including only the first-order term V" (0) can be
made at any convenient stage.

Problem 10-2 Use the methods of Chap. 3 and, in particular,
Eq. (3.66) to solve this path integral. Remember that paths of interest
in this problem have the same initial and final points and that completion
of the path integral requires an integration over all values of this point.
Finally, carry out the integration over k to get as a solution

Bhw /2 (5212
sinh(fhw/2) 24m

const = const [1 - —V"(z) +- } (10.56)

The partition function which results from the solution obtained in
Prob. 10-2 is written best in the form (valid to first order in V")

[ 2
Z = \/Zj:%]; exp {—ﬁ [V(:z) + %V”(@)} } dz (10.57)

Here the unknown constant has been evaluated simply by comparison
with the classical result of Eq. (10.48). We see from this result that
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the partition function has the same form which we derived under clas-
sical assumptions. The only difference is that a temperature-dependent
corrective term has been added to the potential. This corrective term,
(BR?/24m)V" (%), is clearly quantum-mechanical in nature, as can be
seen from the inclusion of Planck’s constant 7.

Problem 10-3 Show that for many particles (which we identify by
subscripts so that the mass of the ith particle is m;) moving in three
dimensions, the correction to the potential is

2
ﬁ - Z v2 (10.58)

In practice, the results of this calculation are not very useful. In
most problems, e.g., in a gas of colliding molecules, the potential rises
very sharply so that there is a violent repulsion at small distances. In
such a case the second derivative is very large. When this is not so, the
formula may be of some use. It has one advantage in that it may be
easily extended to another order of accuracy.

Problem 10-4 Show that the correction to the partition function
up to the order of h* contains the factor

B (RS (Al G
L= o @+ gm0V @V~ aragee @

The Effective Potential Method. We have seen above that
quantum-mechanical effects might be represented by calculating the par-
tition function exactly as in the classical formula of Eq. (10.48), but
instead of using the correct potential V(z), we use a modified potential
V(z) + (Bh*/24m)V"(z). This suggests that we try to go further and
seek some possibly better effective potential U(z) which, when substi-
tuted for the true V (z) in the classical equation (10.48), would represent
an even better approximation to the correct quantum-mechanical parti-
tion function.

We start out with the exact expression

Z = / e PV(@) (10.59)

X /exp{—é% &% du — ——/ﬁh V(a‘:)]du} z(u) dZ
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The path integral within this expression is related to an average over
paths z(u). To be specific, for any functional g of z(u), the weighed
average of g over all paths starting and ending at the same point, and
with average value Z, weighed by exp{—(m/2h) [ 2% dz}, is

m [Ph
/exp{——-i-f; j a§2du} glz(u)] D' x(u)

Bh
/exp{-§% i zi?Zdu} D'z (u)

We call the denominator B(Z), so the path integral within Eq. (10.59)
is B(z){efl*@1)_ where
1o

flz(u)] = ~F A V(z(w) —V(z)] du (10.60)

If we were to replace this average of an exponential with the expo-
nential of an average, thus
(ef) — i) (10.61)

we know we would make an error of the second order in f or, better,
of the order of the difference between (f)* and (f2). We shall see at
Eq. (11.6) that we can determine the sign of this error, i.e., the left-
hand side is greater than the right. The exact and approximate partition
functions are then

Z = / e V@ B()(ef), dz  and Z' = / e~ PV @ B(z)e!N= dz

(glz(w)))z =

To evaluate the path integral

m ph
(flz = E(la/eXp{-@g i & du} (10.62)

Gh
>< H— | ew) - v

we first change variables to the paths y(u) = z(u) — Z where

1 PP
VO =y =Y = [ ywdu=o (10.63)

so that
1 B8R m Bh .9
-—-ﬁ/o /exp{—-é—ﬁ A U du

x V(@ +y(®) = V(Z)] D'y(u) dt}

D'z(u)

7= 5739
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Second, we define the related path integral

m ph
1(7) = / exp{—ﬁ /D 72 du} V(E+y(t) - V(@) Dyu)  (10.64)

where t is some specific value of u between 0 and Sh. It is clear that

Bh
—%/O I(z) dt}

and that B(Z) is just I(Z) in the special case [V(Z +y(t)) — V(2)] = 1.

At first glance it appears that I(Z) is a function of ¢, but the following
argument shows that I(Z) is in fact independent of t. Suppose each path
in the integral is not of finite length, but is really a Bh-length segment of
a periodic path whose period is 8%, as shown in Fig. 10-1. Consider two
of the family of all such paths, one y(u) and the other y(u+1t1) = y1(u),
as shown in Fig. 10-2. The value which the first attains at v = {1,
namely, y(t1), is reached by the second when its argument is 0, that is,
y(t1) = y1(0). Furthermore, for any other point ¢; there exists in the
family the analogous function y;(u) for which y(¢;) = y;(0), and all such
paths give the same contribution to

Bh
/ § () du
0

Of course, all these statements apply to each path included in the path
integral. Thus we see that we lose nothing by arbitrarily setting ¢ = 0
in the path integral over all paths y(u), which is the same as saying that
the integral I(Z) is independent of t.

Problem 10-5 Using the method outlined above Prob. 10-2, and
Eq. (3.62), show that

V3 m
T Bh?

6 o0 2 2
(), = B, /Wﬁ”;z /_ e W(z+Y)dY + BV (2)

Suppose we call our approximation to the partition function Z’ and
the corresponding Helmholtz free energy F’, so that Z' = e™PF . We
then have

A / e PV@+FH2 B(z) d (10.66)

() = [_ Y om/an) V(Z+Y)-V(z)]dY (10.65)
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y(u) |

APRART
| |
|

Fig. 10-1 All paths which return at u = A to their initial value (at v = 0) can be
considered as Bh-length segments of periodic paths where the period is Bh.

i
)

Fig. 10-2 Suppose one of the “periodic” paths y(u), as shown in Fig. 10-1, has the
value y(t1) at u = t:. Then the collection of all “periodic” paths must contain this
same path slipped left a distance t1, that is, y(u + t1), which will have this same value
at v = 0. The result of a path integral average over all such paths must then be
independent of the selection of the initial point on the v axis.

The factor B(Z) was evaluated in Eq. (10.46), and we have

_ AT / —PU) gz (10.67)
omh?

where

U) =, |2 e~V Om/BR) (3 4 4)) dy (10.68)
2
7GR
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The term V(Z) has cancelled out.

These results mean that we can calculate an approximate free energy
F' in a classical manner (i.e., using an expression like Eq. (10.48)) and
get a good approximate result if we use an effective potential U(Z), as
defined by Eq. (10.68), in place of V(). Incidentally, we note that the
effective potential is temperature-dependent.

The effective potential is a mean value of V(x) averaged over points
near 7 in a gaussian fashion where the root-mean-square spread (or
standard deviation) of the gaussian weighing function is (BR2/12m)*/2,
Furthermore, if we follow through the various inequalities which are
involved in our approximation, we find that the approximate free energy
F' exceeds the true free energy F. The details of this are discussed in
the next chapter, at Eq. (11.9) and following.

Problem 10-6 Show that the relation of Eq. (10.68) becomes the
“corrected” potential of Eq. (10.57) (that is, the argument of the expo-
nent in that equation) if V' is expanded as a Taylor series.

Problem 10-7 Test the validity of the approximation as it applies
to the harmonic oscillator, for which the exact value of the free energy
is
Foocs = kT'In | 2sinh 22 (10.69)

exact = 5 5k T .

Evaluate the approximate value for the free energy by means of the
effective potential U. Show that

2
U(z) = mT“P (acz + %) (10.70)

and that

Fapprox = kT (1071)

| hw 1 [(hw\?
7Y (kT)
Determine the free energy or, better, the ratio of the free energy to kT,
for various values of the frequency. It is suggested that the values of 1.0,
2.0, and 4.0 be used for the ratio fiw/kT. Show that F’ is greater than
F, as expected, and that the errors grow as the temperature falls. Note
that if we are even very far from the classical region (e.g., where the
ratio fiw/kT = 2.0, so that the system has an 85 per cent probability of
being in the ground state) the approximate results are still surprisingly
close to the true results.

Compare these results with those obtained through the classical ap-
proximation in which the free energy is given by kT In(hw/kT"). Your
results should show the values given in the accompanying table.
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[FikT (10 [20 [40 |
2Fexact/hw 0.08265 | 0.8546 | 0.9908

2Fypprox/hw | 0.08333 | 0.8598 | 1.0265
2F lassical/Pw | 0.00000 | 0.6931 | 0.6931

10-4 SYSTEMS OF SEVERAL VARIABLES

If a system has several variables, the formulas describing them are ob-
tained by direct extension of the methods we have already studied, ex-
cept for some special problems which arise from consideration of sym-
metry properties.

Liquid Helium. As an example consider the problem of finding
the partition function for liquid helium. Suppose we have N identical
atoms, each of mass m, confined in some volume. Suppose further that
atoms interact in pairs through a potential V(71 2). This potential is a
weak attraction at large distances and a very strong repulsion at short
distances. Just to orient our thinking, we might imagine V(r) as the
potential for hard spheres. That is

0 r>a
V(T)u{oo r<a a=27A

The lagrangian for such a system has the form
M2 L y :
L= }_; Ril* = 5 2; V(r;5) (10.73)

which means that the partition function is

%, (0) m 8h
2= /], © exp{m% {72/0 il du (10.74)
T3 Z f V(xi(u) = x;(u)]) du } D x(u) d*Nx(0)

Here the symbol D3V x(u) stands for D3x; (u) D3xa(u) - - D3%xy(v) and
similarly d3Vx(0) means d®x;(0) d3x2(0) - - - d®xx (0). The path integral
is performed over paths taken between initial points x;(0) and final
points x;(5h) such that x;(6h) = x;(0).

The form which we have written down in Eq. (10.74) is actually not
correct. The symmetry properties which we mentioned above will affect

(10.72)
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this result. This characteristic is one of the interesting features of the
quantum mechanics of identical particles. In Sec. 1-3 we mentioned that
if an event occurs in two indistinguishable ways, then the amplitudes
for the two ways will add. In particular, when we are dealing with
indistinguishable particles, one alternative way for accomplishing any
event always exists; namely, the interchange of two particles. In such
a case the amplitudes for the particles (1) as interchanged and (2) as
not interchanged must be added. (This addition rule applies to Bose
particles. For Fermi particles the contributions for amplitudes which
arise from odd permutations of particles will subtract from each other.)
Ordinary helium atoms are of isotopic mass 4 and contain 6 particles:
2 protons, 2 neutrons, and 2 electrons. This means that helium atoms
are Bose particles and the amplitudes for interchange of particles add.
(For instance, we say that Bose particles follow symmetrical statistics,
whereas Fermi particles follow antisymmetrical statistics.)

To see how this addition of amplitudes comes about, at least for
helium atoms, we can follow this line of argument: In the final state
the atoms cannot be distinguished from each other. Thus, although the
appearance of the configuration of atoms may be the same finally as it
was initially, the identity of some of the atoms may have been exchanged.

For example, an atom which we shall designate as 1 starts at position
71(0). We have assumed that some atom at least will be in this same
position at the close. Thus, for some atom z(Gh) is equal to z1(0).
However, it may not be atom 1 which ends up in this particular place.
Instead, atom 1 may go to the initial position of atom 2, say z2(0), while
at the same time atom 2 has moved into the initial position of atom 1.
That is, it is possible that atoms 1 and 2 exchange places in the final
configuration.

To describe this situation in the most general terms, let Px; stand
for some permutation among the atoms which are initially at z;. Thus,
for example, in the situation in which atoms 1 and 2 were exchanged
and all others remained where they were, we would have

Paﬁl’—‘xg P:ljz:a?l P£E3:a33 PZCN———LUN (10.75)
In general, the final state can be any permutation of the initial state:
z;(Bh) = Pz;(0) (10.76)

Thus in order to construct the complete amplitude, we must sum am-
plitudes over all the N! possible permutations, since each permutation
represents an alternate possibility. The normalization is correct if we
average over all the permutations. The resulting rules for symmetrical
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statistics mean that Eq. (10.74) must be replaced by

1 Px;(0) 1 |m BhR _ )
Z = i Z//Xi(o) exp {_ﬁ {—-2- ;/O 1% (w) ] du (10.77)
42 Z / V(1) — x5 (w)]) du| b D3N x(u) @V x(0)

where g means a sum over all permutations P.

If WE{J were dealing with Fermi particles, e.g., the isotope of helium
which has three nucleons, we would have to include an extra factor of
+1, positive for even permutations and negative for odd permutations.
There would also be some extra features which depend upon the spin of
the atom in our result.

It is possible to give a more detailed derivation of Eq. (10.77) in the
following manner. For helium-4 atonis the quantum-mechanical ampli-
tude for two atoms which start at positions a and b to get to positions
c and d is

K(c,a;d,b) + K(d,a;c,b) (10.78)

(Amplitudes for alternative final conditions add, since these conditions
cannot be distinguished from each other.) In this expression K(c,a;d, b)
is the complex amplitude for one particle to go from a to ¢ and for one
particle to go from b to d.

Since the particles are indistinguishable, their symmetry properties
imply that the amplitude to find the two particles finally at the points
¢ and d must be a symmetric function of ¢ and d. That is, the wave

function (e, d) must be a symmetric function of the variables x., xg4.
That is

¥(e,d) = ¥(d, c) (10.79)

If the particles were Fermi, the wave function would have to be an an-
tisymmetric function of these positions.
If many particles are involved, the rule is simply extended, that is,

6(1,2,3,...,N) = 6(1,3,2,...,N)
= ¢(1,2,4,...,N)
= etc. (10.80)

The simplest statement of the general rule is that the wave function
must be symmetric (antisymmetric for Fermi particles). Although other
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solutions of Schrodinger’s wave equation exist, only symmetric and an-
tisymmetric ones appear in nature. Hence in the sum defining the par-
tition function in Eq. (10.2), we do not wish the sum over all energy
eigenstates of the hamiltonian H which can be obtained from solution
of Hp,, = E,¢,, but only over those for which the wave function ¢, is
a symmetric function. For example, the density matrix p(z’,z) is de-
fined by Eq. (10.28) with a disregard for the statistics of the IV atoms
involved. How can we reduce this sum to include only symmetric wave
functions?

To accomplish this reduction, we use the following trick. First we
notice that for any function a symmetric function can be produced sim-
ply by permuting all variables and adding together the resulting func-
tions. Thus for any function f(z1,z2) the combination f(z1,z2) +
f(z2,21) is a symmetric function. It follows that for any wave func-
tion ¢(z1,z2,...,2N) the function

¢ (z:) =) ¢(Pxy) { ‘ (10.81)
P

is symmetrical. Now if ¢,,(z;) is a solution to the Schrédinger equation,
then ¢/, (x;) as defined by Eq. (10.81) is also a solution, since the hamil-
tonian H is symmetric for an interchange of coordinates. Therefore,
each interchanged form ¢,(Px) is a solution, as is the sum.

Some of the energy eigenvalues F,, have eigenfunctions ¢,, which are
symmetric, and some do not. Suppose Ei is an energy eigenvalue for
which the Schrodinger equation does not have a symmetric solution.
Then the sum quk(P:c) must vanish, since if it existed it would be

a symmetric solﬁtion for Ej. This result implies that the operation
defined by Eq. (10.81) selects just those solutions to the wave equation
which are symmetric. All other solutions vanish. If ¢, () is symmetric,
then it is equal to ¢,(Pz); and since there are N! ways of permuting
the N atoms, we have

_ [ Nlgp(z) if ¢, is symmetric
; In(Pz) = { 0 if ¢, is of any other symmetry (10.82)

These results give us an answer to our question. We can now select
out of the sum defining the density matrix those particular elements
which apply to symmetric states. Thus
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all
> p(Pr',z) =) "6, (Px') ()e PP
P n P

sym

= N1Y gu(a')gn(a)e =P
= N! p:ym(a}’, ) (10.83)

This is the reason why in Eq. (10.77) defining the partition function for
symmetric statistics we permute all the particles and divide by N!. The
resulting partition function corresponds to

sym

/psym(xOy 330) dSNxO = Zsym = z e_ﬁEn (1.0.84)
n

We note some of the features of Eq. (10.77). At high temperatures,
we should expect a classical solution for the partition function with
no quantum-mechanical effects in evidence. Suppose we disregard the
effects of the potential for the moment and consider the effect of the
motion of an atom from its initial point to some other point a distance
d away. In the path integral of Eq. (10.77), this is a motion from the
initial point x;(0) to the permuted position Px;(0), and the contribution
of that particular permutation to the sum over all permutations is pro-
portional to exp{—mkTd?/2h%}, thus decreasing with increasing tem-
perature or increasing spacing between atoms. Hence, unless the atoms
are extremely close together, no permutation in the sum is important
— even the simplest interchange between two atoms — in comparison
with the identity permutation which leaves all atoms in their original lo-
cations. If we include the effects of the potential which increases steeply
at a radius of 2.7 A from the center of an atom in liquid helium, then
no configurations in which the atomic spacing is less than this value are
important.

Since only the identity permutation makes a significant contribution
to the summations, all that remains for our consideration is the factor
1/N!. In the early days of classical statistical mechanics it was realized
that such a factor was necessary when dealing with identical particles,
but its significance was not clearly understood. Its effect on the chemical
constant is called the entropy of miring when systems of several different
kinds of atoms are studied.

As the temperature falls, the exponential factor exp{—mkT'd?/2k?}
prejudicing against migrations to new final positions becomes smaller
and smaller. This means that at extremely low temperatures new terms
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become important in the summation over permutations. Of course, the
quantum modifications must be included; and we saw they could be
included as a first approximation by replacing the potential V' with an
effective potential U. As the temperature falls, the specific heat of liquid
helium begins to rise slightly near about 2.3 or 2.4 K.

Problem 10-8 The density of liquid helium is 0.17 g/cm3. Give an
order-of-magnitude estimate of the temperature at which permutation
terms should begin to play an important role in the description of liquid
helium.

At first sight, one would not expect very elaborate exchanges of
atoms to ever be important. An exponential factor involving the spacing
must be included each time an atom moves to its neighboring location.
If we call this factor y, then for r atoms to move to neighboring spots
the factor y” must be included, and since y is certainly less than 1 at
any temperature, " could become quite small for large r. We certainly
would think that as r approaches any reasonable fraction of the approx-
imately 10?2 atoms in a cubic centimeter of liquid helium, contributions
from factors like ™ must be infinitesimal. However, this first sight does
not take into account the fact that with r atoms permuting, there is
an enormous number of possible permutations, namely r! ~ erdnr=1),
Thus the small weight of one particular permutation is offset by the
large number involved.

Another question which arises in the description of liquid helium con-
cerns the type of permutations which are involved. Any permutation can
be described by cycles; thus 1-4, 4-7, 7-6, 6-1 is a cycle. Are the im-
portant cycles long or short? A careful estimate shows that at moderate
temperatures, only simple exchanges of two atoms are important. Then
as the temperature falls, cycles of three atoms become important, then
four, and so on. But then suddenly, at a certain critical temperature,
cycles of much greater length L offset by their great number the small
value of y”. At this temperature cycles of importance become very
long, involving nearly all of the atoms inside a container. At this point
the curve of specific heat vs. temperature shows a discontinuity. Below
this temperature the behavior of the liquid is very strange. It flows
through very thin tubes without resistance for low velocities. It simu-
lates infinite heat conductivity in bulk, etc. These odd characteristics
are manifestations of quantum mechanics, particularly the constructive
interference between amplitudes for replacing one atom with another.
Quantitatively, the details of the behavior of the specific heat just at
the transition temperature are not on a very firm foundation. But the
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qualitative reason for the transition is clear.!

The expression analogous to Eq. (10.77) for Fermi particles, such as
3He, is also easily written down. However, in the case of liquid 3He,
the effect of the potential is very hard to evaluate quantitatively in an
accurate manner. The reason for this is that the contribution of a cycle
to the sum over permutations is either positive or negative depending
on whether the cycle has an odd or even number of atoms in its length
L. At low temperature, the contributions of cycles such as L = 51 and
L = 52 are very nearly equal but opposite in sign, and therefore they very
nearly cancel. It is necessary to compute the difference between such
terms, and this requires very careful calculation of each term separately.
It is very difficult to sum an alternating series of large terms which are
decreasing slowly in magnitude when a precise analytic formula for each
term is not available.

Progress could be made in this problem if it were possible to arrange
the mathematics describing a Fermi system in a way that corresponds
to a sum of positive terms. Some such schemes have been tried, but the
resulting terms appear to be much too hard to evaluate even qualita-
tively.

For molecules which are separated by distances in the neighborhood
of 1 A we have seen that the effects of exchange (the nonidentical per-
mutations) are important only when the temperature is down to a few
degrees absolute. In contrast to this, consider the behavior of electrons
in a solid metal. The mass of the electron is so much smaller than
that of a molecule that the critical temperature is much higher. At
room temperature, electrons in a metal are described accurately only
by equations which include the exchange effects of these cyclic permu-
tations. From this point of view, room temperature is very cold for
electrons. The exchange effects are of dominant importance, or, to put
it another way, the electron gas is degenerate. Of course, the electrons
interact by Coulomb’s law, which is quite strong. But since the effects
of the Coulomb attraction are of long range, they tend to average out.
To a fair approximation, the electrons act as if they are independent,
although, of course, each moves in the same periodically varying poten-
tial produced by the arrangement of the nuclei and the average of the
positions of neighboring electrons. From the study of the ideal Fermi
gas neglecting interactions, we can learn a lot about the behavior of
electrons in metals.

However, it is apparent that we cannot learn quite enough, for the su-

1A more detailed discussion of the partition function of liquid helium from this
point of view may be found in R.P. Feynman, Atomic Theory of the A Transition in
Helium, Phys. Rev., vol. 91, pp. 1291-1301, 1953.
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perconductivity of metals occurring below a few degrees absolute would
remain a mystery. This phenomenon, in some metals at least, involves
an interaction in which the slow vibratory motion of the atoms is in-
volved. We conclude this because the transition temperatures for two
different isotopes of the same metal depend on the atomic mass. This
value of the isotopic mass would not be important if the transition were
simply a matter of mutual interaction between electrons, or interaction
of the electrons with an idealized array of fized atoms. The idealization
that the atoms are fixed must be incorrect. But how does the motion of
the atoms produce a sudden jump in specific heat in some metals and
permit electrical conductivity without resistance below this tempera-
ture? This question was first answered in a convincing way by Bardeen,
Cooper, and Schrieffer.! The path integral approach played no part in
their analysis, and in fact it has never proved useful for degenerate Fermi
systems.

The Planck Blackbody Radiation Law. The partition function
for any system of interacting oscillators is easily worked out. Such a
system is equivalent to a set of independent oscillators of frequencies w;.
However, the value of the free energy F' for independent systems is the
sum of the values of F for each of the separate systems, which we find
directly from the sum of Eq. (10.2) to be

. hw
kT In (2 sinh 2kT>

This gives the free energy of a linear system as

F = kTZln (2 sinh Z:;i)

1
= kT In(1— e Pe/kTy L 37 5w (10.85)

The last term in this expression is a ground-state energy of the system.

For an electromagnetic field in a box of volume V, the modes are
specified by the vector wave number K, two for each K. The zero-point
energy is omitted. Thus the free energy of the electromagnetic field per
unit volume is

F d3K
— 2 hKc/kT )
i kT/ In(l—e ) G (10.86)

1J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Theory of Superconductivity, Phys.
Rev., vol. 106, pp. 162-164, 1957 and vol. 108, pp. 1175-1204, 1957.
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The internal energy U is the partial derivative of SF with respect to
which becomes (putting w = Kc¢)

v_ / hw 4K (10.87)
v =7 ) el T ) |
The volume element in K space can be written as
‘ 2
BK =4rK? dK = dm =g duw (10.88)

This means that the energy density in the electromagnetic field in the
range of frequencies from w to w + dw is

241 hwd
(27c)3 ehw /KT — 1

This is the famous blackbody-radiation law discovered by Planck. It was
the first real quantitative quantum-mechanical result discovered and was
the first step in the discovery of the new laws.

Another early quantum-mechanical triumph was the explanation of
the temperature dependence of the specific heat of solids by Einstein
and by Debye. This also comes from Eq. (10.85), but the oscillators
are now the normal modes of the crystal, as described in Chap. 8. For
example, the thermal energy per unit volume of such a crystal is, like
Eq. (10.87) (leaving out the zero-point energy), just

U — wE)  BK
L ehw®)/KT _ 1 (27)3

dw (10.89)

(10.90)

3p modes

where w(K) is the frequency of a phonon of wave vector K. In a crystal,
this is a multiple-valued function (there are 3p values for each K if there
are p atoms in a unit cell), and we must sum over each of the possible
values of w for each K. The K integral extends only over the finite range
proper for the crystal. For light there are two modes for each K, each of
frequency w = K, so the sum gives a factor 2 and Eq. (10.87) results,
the integral on K now going to infinity.

The result of Eq. (10.90), studied in various approximations by Ein-
stein and Debye, gave a good accounting of the main features of the
specific-heat curve, particularly the behavior at low temperatures, which
had been in direct contradiction to the classical expectations. Today,
putting a more complete knowledge of the phonon spectrum w(K) into
Eq. (10.90) yields a completely satisfactory description of that part of
the specific heat of solids due to internal vibration of the atoms.
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REMARKS ON METHODS OF DERIVATION

The presentation of statistical mechanics given in the early part of this
chapter leaves much to be desired. The fundamental law which shows
that the probability for finding a system in an energy state with energy
E is proportional to e~ Z/*T is usually derived by considering the inter-
action of complex systems over long periods of time. But an entertaining
problem presents itself.

We started our discussion of physics in this book by expressing the
laws of quantum mechanics in terms of path integrals (Chap. 2). Just
as a question of curiosity, let us take the point of view that this is
the fundamental law. Then ultimately these statistical properties of a
system whose quantum-mechanical properties are defined by such a path
integral are found to be expressible in terms of the partition function
Z. This function can be defined by a path integral of an obviously
very similar and closely related form, as shown by Eq. (10.77). Yet the
derivation of this result requires noting the wave equation, the existence
of stationary states and eigenvalues, and the argument about interaction
over long periods of time to which we referred, all of which leads to
the expression (10.2) for the partition function in terms of the energy
levels E,. Finally, we proceed to the reverse argument producing the
path integral formulation for Z. Is there any way to derive the path
integral expression for Z for a system in equilibrium directly from the
path integral description for the time-dependent motion? Can we find
a short cut which avoids the mention of energy levels altogether? If it
is possible, we do not yet know how to do it.

One might ask: Why try it at all? It is like showing that you can
swim with your hands tied behind your back. After all, you know there
are energy levels. The only excuse for trying to avoid their mention
would be that in so doing a deeper understanding of physical processes
might result or possibly more powerful methods of statistical mechanics
might be evolved. At any rate, it would be interesting to solve the
problem.

It was the promptings of a similar quest, to get the well-known varia-
tional principle for the lowest energy level directly from the path integral
formulation (instead of indirectly via the Schrédinger equation), which
resulted in the methods described in Chap. 11. Thus the results of
this apparently academic problem were of some use as well as of some
interest.
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Nevertheless, if we prefer, we can suppose our desire for one partic-
ular course in achieving a solution is prompted simply by an academic
interest in the methods of classical physics. Suppose that we have a
system obeying the principle of least action, with the action defined by

k
§=2 / (1) dt / 2(t)e(t + a) dt (10.91)
so that the equation of motion is

mi(t) = —g[a:(t +a) + z(t — a)] (10.92)
Here we have created the curious situation in which a particle is driven
by a force depending on the average value of coordinates that were and
that will be. There are exponentially exploding solutions of Eq. (10.92),
but let us say that only motions for which z remains finite both in the
distant past and in the distant future will be allowed. (Incidentally, it
is likely that solutions which we wish to ignore are excluded anyway if
the action law is stated as 65 = 0 for all variations of path dz subject
to the restraint éz — 0 for t — +00.)

For such a system it is possible to define an expression for energy
which is conserved; for the equations of motion of the system do not
depend on time. (No simple hamiltonian gives the equations of motion.)
Presumably, such a system could possess properties which allow it, for
example, to be perturbed by molecules of a gas and thus achieve thermal
equilibrium. We might ask: What are the averages of various quantities
describing a system obeying the equations of motion of Eq. (10.92) and
appropriate boundary conditions at infinity when it is in equilibrium at
the temperature 77 Perhaps such a problem is not definable, or perhaps
it is easily solved only in this special case because the equations of motion
are linear. But the aim of these remarks is to ask whether the existence
of a hamiltonian and momentum variables is indeed necessary to the
formulation of classical statistical mechanics — or whether a wider class
of mechanical systems can be analyzed, a system in which the equation
of motion comes most simply from the principle of least action, even
though that action involves more than the instantaneous positions and
velocities of the particles in the system.

This question is the classical analogue of our more interesting ques-
tion, namely, how do we proceed directly from the path integral formu-
lation of quantum-mechanical laws of a mechanical system to the path
integral formulation of statistical mechanical laws for the same system
in equilibrium?
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Problem 10-9 Show that the expression

[~

m k t+a
B(t) = Ta(6) + Sa(t)e(t+o) - /t o — Qi) d  (10.93)

defines a conserved energy for the equation of motion (10.92).

In general, for any action functional, like S, that does not involve the
time explicitly (i.e., is invariant for the transformation ¢ — t 4- const)
there is an expression E(T) for the energy at time T which is conserved.
It can be found by asking for the first-order change in the action S when
all paths are changed from z(t) to z(t + n(t)), where n(t) = +¢/2 for
t < T and n(t) = —€/2 for t > T, with constant e. §S is then eE(T) for
infinitesimal e.

Problem 10-10 Discuss the problem of the path integral formula-
tion of statistical mechanics for a particle in a time-constant magnetic
field.
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The Variational Method
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IN this chapter we discuss a method based on a variational principle
for the approximate evaluation of certain path integrals. First, we shall
illustrate the method by some examples. Later, we consider those prob-
lems for which the method may be useful.

A MINIMUM PRINCIPLE

Suppose we wish to evaluate the free energy F' of a system. This problem
can be expressed in terms of path integrals by starting with the partition
function for the system defined in Eq. (10.4) as

Z = e PF (11.1)

In Eq. (10.30) the partition function was expressed as an integral of
the density matrix p(z,z). Then, in Sec. 10-2, a kernel expression for
p(z,x) was developed. It allows us to write

/ /m eS/E D () da, (11.2)

so long as we use the “time” variable uw in the way described below
Eq. (10.43). (Also, S here is the negative of the functional S used in
Chap. 10.)

In Sec. 10-3 we developed a perturbation technique for the evaluation
of the path integral defining the partition function for certain special
cases. We shall now describe another technique, applicable in those
cases where S is real. For ordinary cases without a magnetic field (and
no spin) S is real.

Throughout the remainder of this chapter, we choose units in which
the value of i is 1. Whenever it is necessary to include A symbolically in
order to visualize the quantum-mechanical character of a result, it can
be so included by a straightforward dimensional inspection.

Let us suppose that some other S’ can be found which satisfies
two condltlons First, S’ is simple enough that expressions such as
[ e Da(u) or [Ge® Da(u), for simple functionals G, can be evalu-
ated. Second the important paths in the integral [ e’ Dz(u) and those
in the integral [ ¢5 Dx(u) are similar, that is, S’ and S are similar when
they are both large. Now suppose F” is the free energy associated with

. That is,

e PF = / / S Da(u) da, (11.3)

so that

e Da(u)dz,  _gp_pr
j[fes’jﬂj)x((u))cfixa =T )

300
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Then since e® = e5~5¢5’ | we can write Eq. (11.4) as

[[ 5755 Da(u)dz, B(F—F")
[[e% Dx(uw)dz, ©

This says simply that e ?F~F") is the average value of €5~ where this
average is taken over all paths with the same initial and final point and
the weight of each path is 5. All possible values of z, are included in
the averaging process.

One way to proceed now would be to suppose that S — S’ is small and
that FF — F” is small and then expand both sides up to the first power
in their respective exponents. This method appears dubious because
B(F — F’) is not small if 8 is large. However, comparison of higher-
power terms shows that this is nevertheless a legitimate approximation
to F' — F',

The argument can be made much more rigorous and powerful in
the following way. The average value of e* when z is a random variable
always exceeds or equals the exponential of the average value of z, as long
as z is real and the weights used in the averaging process are positive.
That is,

(™) > el (11.6)

where (z) means the weighted average of z. This follows because he
curve of e” is concave upward, as shown in Fig. 11-1, so that if a num-
ber of masses (weights) lie along this curve, the center of gravity of
these masses — the point with coordinates ((z), (%)) — lies above the
curve. The vertical height of this center of gravity is the average vertical

(11.5)

e()}

x

Fig. 11-1 We assume the weighing factors a; are positive and look on them as different masses
positioned along a string. Then the exponential of the weighted average of z, that is, e{*},
must lie below the weighted average of the exponentials (e?) because of the concave nature of
the curve e®. The value of e{®) must lie on the curve, but (e*), the center of gravity of the
several points, must lie under the dot-dashed line and above the curve.
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position (e®) of the points. It exceeds e!®) the ordinate of the curve
e® at the abscissa position of the center of gravity, which is the average
value ().

On the left-hand side of Eq. (11.5) we take the average value of 55 /
over paths with the positive weight eS', where S’ and S are real. Hence,
by Eq. (11.6), this exceeds the quantity e5=5 where (S — §') is the
average of § — S’ with this same weighting scheme, namely, with the
weight e5’. That is,

_ [[(S ~ 8)e% Da(u) dz,

-5 = 11.7
(S — 8" ¥ Dalu) dza (11.7)
We have then
g~ B(F—F") > e(8—5") (11.8)

This result implies that

F<F - %(5 e (11.9)
Our final result is then

F<F —-§ (11.10)

where

L[S - $)¢¥ Dotu) da,
¢ [[e% Dx(u) dz,

It is very fortunate that we have a minimum principle here. It says
that, if we calculate F’ — § for various “actions” S’, that calculation
which gives the smallest result is nearest to the true free energy F1
The energy F' is actually obtained, of course, if §" = S; but we can
guess that if S and S’ differ in some sense to a first order of smallness,
then the deviation of F’ — § from F' must be of second order.

If only a reasonable general form of S’ can be guessed but certain
parameters still remain uncertain, the calculation of F’ —§ can be made
leaving these parameters undetermined. Then the nearest approxima-
tion to F' will be the lowest F' — § available. That is, the “best” values
of the parameters are those which minimize F’ — §, “best” in the sense
that the resultant F’ — § differs least from the true F'.

(11.11)

It is worth emphasizing again that neither S nor S’ is an action functional in
the proper physical meaning of the term, since both are defined with the variable u
used as the “time” variable. However, operations with path integrals are the same
for these functionals as for proper physical actions used previously.
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This same minimum principle can be used to find an approximate
value for the lowest energy state of the system, Ey. Recall that

e Pl = Z e FBn (11.12)

As the temperature of the system becomes lower and lower, that is, as 3
grows larger and larger, terms involving higher values of energy become
less and less important in this series. Eventually the series for Z is
dominated by the term of smallest energy, e #%o. That is,

lim Z = e FBo (11.13)

B—c0

Now following the line of argument developed in the preceding para-
graphs, we can simply replace F' with Ey. We define Ej; as the result of
the path integral involving the new action S’ and finally derive

Ey<Ej—¢ (11.14)

as an approximation in the limit of large £.

In approximating Fg by this technique, our task is somewhat simpler
than it was for the free energy F. Specifically, we can disregard the
specification that the initial and final points of the paths be the same.
To understand this, we refer back to Eq. (10.28) and note that as (3
becomes large the density matrix p(z’, z) is also dominated by the zero-
order term and approaches ¢y(z)¢g(x)ePF0. Thus the dependence on
x’ and x enters into a multiplying factor but does not affect the nature of
the exponential behavior of the function. It is this exponential behavior
which is fundamental in the evaluation of Ey by this technique.

AN APPLICATION OF THE VARIATIONAL METHOD

As an example of the evaluation of a partition function using this varia-
tional principle, consider the example of a single particle constrained to
move in one dimension. Using the approach developed in Chap. 10, we
write the action for such a particle as

S:-/O'B [i’; 2(u) + V(z(u ))} du (11.15)

So the j;)artition function is

- [ Z /w exp{— /O ’ {%3:&2(1&) +V(2(w))] du} Dz (u) deq

(11.16)
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This path integral is over paths which return to the initial start-
ing points; and after the path integral has been evaluated, a further
integration over all possible starting points is carried out.

In Sec. 10-2 we considered this same problem and pointed out how the
classical approximation may be derived by inspection. In the classical
limit of high temperatures, or high values of kT compared with #, the
value of B# is so small that paths which get very far away from z, do not
contribute. Thus, the potential can be replaced by the constant value
V(z,), and the path integral contributes only a constant, giving

chassmal =€ ~Plaassical — 1/ 5 / —,BV(w) dx (1117)
ﬂ- ~

as shown in Eq. (10.48).

In Sec. 10-3, one quantum—mechamcal improvement was made on the
classical result by expanding the potential about the average position of
the path and using terms up through the second order in this expansion.
Then a still greater improvement was achieved by using an effective
potential U, developed through a particular averaging process. From the
point of view of this chapter, we see that that approach was a special
application of the variational method. To clarify this point, we shall
review the key steps using the notation and concepts of this chapter.

Thus we wish to derive a suitable trial function W (Z), a substitute
for the potential, where 7 is the average position of a path defined by

B
T = %/0 z(u) du (11.18)

Along any particular path, this W(Z) is a constant, so that the new form
of the action along that path becomes

m [P
S'z(uw)] = 3 &% (u) du — BW (%) (11.19)

With this more general form, it is possible to calculate both F’ and
(S —9).

Proceeding along this course, we use Eq. (11.11). Substituting into
this expression, we have

f / { / V(z(u')) du’ -—W(f)} 5 2 Dy (v) da,
// §' W] Dg(u) dz,

(11.20)
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where

/ g
5] = oxp {_g/() 2 (u) du} exp {—BW(Z)}

It is to be remembered that the paths to be used in the path integrals of
Eq. (11.20) are those which have the same initial and final points, and,
as in Eq. (11.16), a further integration over all end points z, is to be
carried out.

Note that the numerator of § is quite similar to the term I(Z) intro-
duced in Eq. (10.64), if we restrict ourselves to paths that have a specific
average value Z and count on integrating over all possible values of T at
a later stage of the calculation. By the same arguments as were used
in the discussion of I(Z), we see that the numerator of § is independent
of /. We can evaluate the path integrals in both numerator and de-
nominator by the methods used in Chap. 10 and take the answer from
Eqg. (10.65), remembering that

Y =gx,—1 (11.21)

Since the denominator is simply a special form of the expression appear-
ing in the numerator, the result is

/ / W (z)le”@® dz da,
/ / e (Za:T) g7 dx,
where

oo — exp { U0, — 02 b exp (oW (@)}

(11.22)

The integral over z, in the denominator in Eq. (11.22) can be eas-
ily evaluated to give (73/6m)'/2. Furthermore, the integral over the
term in the numerator containing the factor W (Z) results in this same
multiplying constant. It will be more convenient for our future work if
we carry out that particular integration in the numerator and further
simplify the resulting expression by defining the function —17(?67 as

7E) = \/@5 f V(z4) exp{ 6g<xa~@)2} iz, (11.23)

The form of V(Z) reveals the quantum-mechanical effect we have
introduced. This function is a weighted average of V(z,) with a gaussian
weighting function just like the function U(z,) defined in Eq. (10.68),
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and the gaussian spread is again (8h%/12m)'/2. For a helium atom at

a temperature of 2 K, this spread amounts to about 0.7 A. At room
temperature, however, it is only about 2 per cent of the 2. 7-A diameter
of the atom. The value of § can now be written as

/OO [W(@)—V"(Eﬂ e PV 4z
§ == (11.24)

0 —
/ e PV @ 4z

The next step is to evaluate W(Z) by the requirement that we obtain
the minimum value for F’ — §, as shown in Eq. (11.10). F” is given by

e PF :/ /aesl Dz (u) dz, (11.25)
oo La m p .9 —
-.:/ / exp ——3/0 ©* du — W (z) ¢ Dz(u) dza
o poo ) Y.
_ / / W) / expd — / 2 du b D'z(u) dz de,
—00d —c0 T fixed 2 0

The path integral is a simple one (see Eq. 11.17) whose value we know
to be 1/m/27f, so that we obtain

e BF — -BW(z)
‘/27r / dz (11.26)

The next step, finding the optimum choice for W (Z), requires us to
determine the effect of a small variation in the function W(Z) on the
value of I/ — § and set this effect equal to 0. Thus, imagining W to be
replaced by
W — W(z) + n(Z) (11.27)
we find from Eq. (11.26) that the variation in F’ is

N f e ﬂW(w) iz (11.28)
and from Eq. (11.24) that the variation in 0 is
/ {n(@) - Bn(@) [W(@) - V@)| } e " da
%= (11.29)

/ e PV @ gz

/ [W(;z») —VE{)"} eV (@) gz / Bn(z)ePV @ dz

i 2
(/ e~ AW (@) da‘:)

_}f‘



11-3

11-3 The standard variational principle 307

Finding a stationary value for the right-hand side of Eq. (11.10) requires
simply that

OF — 05 =0 (11.30)
which will be true if we take
W(z) =V (@) | (11.31)

This, in turn, implies that § is zero and that the upper bound on F has
the same form as the classical free energy of Eq. (11.17). However, the
potential, in this upper bound, has been replaced by V(Z). That is,

—or s [ [T V@ 4
e 2\ 38 Lwe dz (11.32)

where V(—:ﬂ, the effective classical potential, is given by Eq. (11.23).
For large values of 3, the free energy is essentially the same as the
lowest energy level Ep; thus we can interpret Eq. (11.32) as providing
an approximation to Fy. This means that the variational approach has
produced the same result as that obtained in Chap. 10 and shown in
Egs. (10.67) and (10.68).

THE STANDARD VARIATIONAL PRINCIPLE

There is in quantum mechanics a standard variational principle, called
the Rayleigh-Ritz method, which is this: If H is the hamiltonian of the
system, whose lowest energy level is Ey, then with f representing any
arbitrary function in configuration space T,

f f*Hfdl
= [fefdr
This has wide application and is very easily demonstrated. If the func-

tion f is expanded as a series in the eigenfunctions ¢, belonging to the
hamiltonian, i.e., if f =) any, it is evident that

[fHfdD _ 3, |an*E,
Jefdr 3, lanf?

This latter expression is an average of the energy values (with posi-
tive weights |a,|?) which therefore exceeds (or equals) the least value
Ep. The principle expressed in Eq. (11.33) has characteristics similar
to the principle of Eq. (11.14). In fact, Eq. (11.33) is a special case of
Eq. (11.14). (To be more precise, we should restrict this conclusion to

Eq (11.33)

(11.34)
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those cases for which the hamiltonian H is derived from a lagrangian
which does not contain any magnetic field. Under this restriction, then,
the conclusion holds.) To see the relation between these two equations,
we shall consider the following example:

Suppose the action S is connected with a lagrangian such as

L= %%-2 ~V(z) (11.35)
where V() is independent of ¢. (Otherwise, of course, there are no fixed
energy levels to seek!) We shall limit ourselves to the case of a single
variable z, but the general case follows directly. We note here that if
the lagrangian contains the term A — for example, if the lagrangian
represents a particle in a magnetic field — then Eq. (11.33) is still cor-
rect. However, the action S is complex. In this case we suspect that
Eq. (11.14) (or some simple modification of this equation) is still valid.
However, this has not been proved. So, for the present we shall limit
our discussion to a case in which no magnetic field is present. Then in
the limit for large values of 8 we have

e PEo /exp {——% /Oﬂ &% (u) du — /Oﬁ V(z(u)) du} Dx(u)  (11.36)

Now suppose we use for our trial action S’ the form

/ m /6-2 & /
s=-5 [ (u)du—/o V' (2(u)) du (11.37)

which involves some other potential V'(z). This means that

B
S_ g = /0 V' (2(w) - V(2(w))] du (11.38)

B /
; [ 5 [ Vew) - Vi) aue® Datw)

/e "D (u)

If we were to define the mean value of any function which depends on
the path z(u) in such a manner as this, we would find that the value is
nearly independent of u so long as u was not too close to either 0 or S.
Therefore, to a sufficient approximation, we can write

_ V@) - Vie@)le® D) _ o, u
6= o Dal] = (V' (a(t)) ~ V(a()))

(11.39)
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where 4 is a “representative” value of u between 0 and [. Following
the methods developed earlier, we can evaluate this path integral if
we assume that the energy values E/ and the energy functions ¢, (z)
belonging to the S’ are known. If our path goes from z, to xp, for
example, we obtain®

Ze*W—mE%qs'm(xb)fmne*w%qs':<xa>
Z e PEn qb (xa)

(11.41)

where
-/ " @) f (@) (2) da (11.42)

But, if 8 approaches infinity and 4 is likewise large (for example,
= (3/2), all the higher exponentials are negligible compared to the
exponential involving the lowest energy term E{. Thus in the limit

Jim {f) = foo (11.43)

This result can be written as
§ = / ¢'o(2)V' (2)¢' o () dz — / ¢'o(2)V(2)d o(z) dz (11.44)

Of course, to use Eq. (11.14) we must subtract this value from Ej.
If H' is the hamiltonian associated with S’, that is, if

Y S
_ Y 114
H=5-+V (z) (11.45)
then
H'¢'o(x) = By ol2) (11.46)
so that

5_/¢ HqﬁOdaer/gb Vqs’oda;-/qb’;’;V’qb’oda; (11.47)

But the true Hamiltonian can be written as

2 2
H_§—+V_-§——+V’+V Vi=H +V -V (11.48)
m

and this means that

By < / & (@) He o (z) da (11.49)
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where ¢'(z) is normalized and is the wave function corresponding to
the lowest energy state of the hamiltonian H'. The estimate of the
lowest energy level given in Eq. (11.49) involves the arbitrary potential
V'(z) only through the wave function ¢’y(z). Since this potential was
arbitrary, so is the wave function ¢’y(z). Therefore, instead of choosing
an arbitrary potential and finding from it the resulting wave function
and then proceeding to evaluate Eq. (11.49), we could instead pick the
wave function itself and then evaluate Eq. (11.49) without ever bothering
about the potential to which this arbitrary wave function belongs. The
variable function in this process is then the wave function ¢’(z) rather
than the potential function V’/(z). We find, then, that this result is
simply another way of stating the Rayleigh-Ritz method Eq. (11.33)

If the problems such as the one given in this example were the only
ones in which the concept expressed in Eq. (11.14) were useful, then
there would not be much point to this long discussion. But there are
much more complicated integrals for which Eq. (11.14) can be used in
a way that, at least as far as we can tell, is not so easily transformable
into Eq. (11.33). We shall describe such an example in the next section.

SLOW ELECTRONS IN A POLAR CRYSTAL!

We imagine an electron moving in a polar crystal, such as sodium chlo-
ride. The electron interacts with ions, which are not rigidly fixed. Thus,
the electron creates in its neighborhood a distortion of the crystal lattice,
and if the electron moves about, the region of distortion moves with it.
This electron, together with its distorted environment, has been called
a polaron.

One consequence of the lattice distortion is that the energy of the
electron is lowered. Furthermore, since as the electron moves the ions
must move to adjust the distortions, the effective inertia of the electron
(or, to use the currently accepted term, the mass of the polaron) is
higher than simply the mass the electron would obtain if the lattice were
composed of rigidly fixed points. The precise motion of such a polaron
analyzed quantum-mechanically is exceedingly complicated. We shall,
however, make a number of approximations whose justification in the
real case may be quite difficult. Nevertheless, we shall arrive at an
idealized problem which has been studied by a number of physicists.?

1R.P. Feynman, Slow Electrons in a Polar Crystal, Phys. Rev., vol. 97, pp. 660-
665, 1955.

2For example, H. Frohlich, Electrons in Lattice Fields, Advanc. Phys., vol. 3,
pp. 325-361, 1954. References to other works are given in this article.
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It has been studied not only because of its possible connection with the
real behavior of an electron and a crystal, but also because it represents
one of the simplest examples of the interaction of a particle and a field.
The path integral variational method has been very successful in the
solution of this idealized problem.

First, we note that even if the ions were rigidly fixed in the crystal,
the electron would still move in a very complicated potential. In such a
case, one can show that there are solutions of the Schrédinger equation
for the electron with characteristic wave numbers k. The energy levels
of these solutions are generally very complicated functions of the wave
number. Nevertheless, we assume that the relation between the energy
E and the wave number k is still a quadratic form, such as

h2 k>

2m
where m is a constant (not necessarily the mass of an electron in a
vacuum). Next, we note that the force which the electron exerts on
the lattice is such as to push away the negative ions and attract the
positive ions. The motion of these ions will be analyzed by considering
them as a set of harmonic oscillators and employing the methods of
Chap. 8. However, we shall assume that the only harmonic modes which
we need are those with high frequency, in which ions of opposite sign
of charge move in opposite directions. The frequency wy of each mode
then depends on the wave number k of the mode. However, we shall
neglect this dependence and assume that w is a constant.

Our object is to find the electrical force generated by a distortion
characterized by the wave number k and find the interaction of the
electron in this force. Here, we neglect the atomic structure and treat
the material of our crystal as simply a continuous dielectric which carries
waves of polarization. If P is the polarization, written in the form of a
longitudinal wave

k

FE =

(11.50)

P::Em&m* (11.51)
then the charge density from the ions is

p(r) = =V . P = —ikape™™ (11.52)
If the potential is ¢(r), we have

V2¢ = —dmp(r) (11.53)

Thus if g is the amplitude of the kth longitudinal running wave, the
polarization amplitude ay is proportional to ¢, and the energy of inter-
action between the wave of polarization and the electron at x is propor-
tional to the sum over all values of k of the terms (g /k)e™*.
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Since the energy and the momentum of the electron are related
through F = p?/2m, we can write the lagrangian of the entire system
as

1 1 2v/2 He 1
. 2 .2 2 7TO( 'Zk'x
= §[X! + 5 ;(Qk ~ Q) — ( v ) g 7 k€ (11.54)

The first term of this expression is the energy of the electron in a
rigid lattice, where x is its position. The second term is the lagrangian
of the oscillations of polarizations taken alone, where it is assumed that
all waves of polarization have the same frequency and the coordinate of
the kth mode is gx. The last term is the lagrangian of the interaction
between the electron and the lattice vibrations, where V represents the
volume of the crystal and « is a constant. To simplify writing of all
our subsequent formulas, we have written this in dimensionless form.
That is, the scales of energy, length, and time are so chosen that not
only 7 but also the common frequency w of the oscillators and the mass
m of the electron are all unity. The coupling constant « is then the
dimensionless ratio

o= <—}- - 1) e? (11.55)
V2 \exw €

where ¢ and ¢, are the static and high-frequency dielectric constants,

respectively. In a typical case, such as the crystal of NaCl, the value of

« is about 5. The values of the energy which we shall calculate are in

units of Aw.

Now we can study the quantum-mechanical motion of the electron,
solving the motion of the harmonic oscillators completely. For example,
the amplitude that the electron starts at x, with the oscillators in the
ground state and ends a time T later at x; with the oscillators still in
the ground state is

Goolb,a) = / i Dx(t) (11.56)

where, using Eq. (8.138),

3
/ IXI2 dt+// / \/_7704 zk x(t) —ike x(s)e——z[t Sldsdt (dl){
(11.57)

Performing the integral over wave numbers k gives

/ IX‘th—i—\/_// 0 e ]dsdt (11.58)
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The quantity Go ¢(b, a) depends upon the initial and final positions of the
electron, x, and X, and upon the time interval we are considering, 7.
Since this function is a kernel, it is a solution of the Schrédinger wave
equation, considered as a function of the time interval T. Therefore,
we realize that it will contain frequencies in its exponentials which are
proportional to the energy levels E,,. It is the lowest one of these energy
levels which we now seek.

In developing our variational principle, as we have explained, we are
not interested in the kernel for real time intervals T'. Instead, we want
quantities such as those which appear in Eq. (11.8) for large values of S3.
By following all the steps leading to Eq. (11.58), it can be readily shown
for imaginary values of the time variable that the resulting kernel has
the form

K(b,a) = / e Dx(t) (11.59)

where the variable ¢ (previously called u) goes from 0 to 3 and

:__/ lezdtﬂL\f// |x(t)~]~:] s (11.60)

This result is just that which one might expect from the replacement of
¢t in Eq. (11.58) by the imaginary time variable —it (previously called
—iu). Asymptotically, for large values of 3, this kernel becomes propor-
tional to e~ #Fo,

We now have a relatively complicated path integral on which to try
our variational principle. Next, we shall have to choose some simple
action S, which roughly approximates the true action S, and then find
Ej and §.

We note that in Eq. (11.60) the particle considered at any particular
time! “interacts” with its position at a past time by a reaction which is
inversely proportional to the distance traveled between these two times,
and which dies out exponentially with the time difference. The reason
for this is that the disturbance set up by the electron in the crystal
lattice in the past takes some time to die out. That is, it takes some
time for the ions to relax, and during this relaxation period the electron
still “feels” the old disturbance.

We shall try an action S’ which has this same property, except that
instead of involving the inverse distance as a coupling law, the attrac-
tion will have the geometric form of a parabolic well. This would be a

1 Although t in Eq. (11.60) is not really a time, but an integration variable instead,
it is useful to think about ¢ as a time, just as we thought of u as a time below
Eq. (10.43).
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poor approximation if the distance |x(¢) —x(s)| could very often become
exceedingly large. However, since there is a limited time available be-
fore the exponential time factor forces the interaction to die out, large
values of this difference will not make any important contributions to
the integral. Thus, we shall try

/ 1 & 12 C orr 2 —w|t—s|
S =—= |x|“dt — — 1x(t) — x(s)|"e dsdt (11.61)
2 Jo 2 Jo Jo

The constant C is a measure of the strength of the attraction between
the electron and the previously created disturbance. We take this as
an adjustable parameter. Furthermore, we can with no extra difficulty
permit the exponential cutoff law to contain the adjustable parameter
w, which may differ from unity. With this extra parameter we can
partly compensate for the imperfection which we have introduced by
replacing the inverted distance effect by a parabolic effect. (We also
note in this regard that adding an extra constant to the parabolic term
1x(t) — x(s)|? leads to no further freedom, since such a term would drop
out in evaluating a formula for Ej.) We shall adjust variable parameters
C and w later in the evaluation in order to make Ej a minimum.

Since the action S’ we have picked is quadratic, all of the path in-
tegrals which result are easily worked out by the methods described in
Sec. 3-5.

By comparing Eqgs. (11.60) and (11.61), we find that

- %(5 5 (11.62)

- [ ()

¢ o7 2\ ,—w|t—s|
+ 55/0 /o (Ix(t) — x(s)]?)e dsdt
=A+B

We shall concentrate our attention on the first term on the right-hand
side of this equation, A. In this term we can express [x(t) — x(s)|™! by
a Fourier transform. As a matter of fact, this term is the result of the
Fourier transform involved in the step between Eqgs. (11.57) and (11.58).
So we have

. 3
m = 42_2 exp{ik-[x(t) — X(s)]} ((Zivrl){3 (11.63)

For this reason we need to study

explik-[x(1) — x(c)]}e5 Dx
(explikfx(r) — x(o)y) = LRI e XD (1160

J
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The integral in the numerator is of the form

I= /exp {»%— /Oﬁ 1%|* dt — g—/oﬁ/: 1x(t) — x(s)[2e"®1t~5l ds dt

+ /ﬂ £(t)-x(t) dt} Dx(t) (11.65)
0

where specifically
£(t) = ikd(t — 1) — ikd(t — o) (11.66)

Now we shall evaluate Eq. (11.65) in so far as it depends on f or k aside
from a normalization factor which drops out in Eq. (11.64). Inciden-
tally, let us notice that the three rectangular components separate in
Eq. (11.65) and we need consider only a scalar case. The method of in-
tegration is the same as that introduced in Sec. 3-5 for the evaluation of
gaussian path integrals. Thus we substitute X (t) = X (¢) + Y (t) where
X (t) is that special function for which the exponent is maximum. The
variable of integration is now Y (¢). Since the exponent is quadratic in
X (t) and X (t) renders it an extremum, it can contain Y (¢) only quadrat-
ically; so Y'(¢) then separates off as a factor not containing f, which may
be integrated to give an unimportant constant (depending on 3 only).
Therefore, within such a constant

I:exp{-%/o X dt-——// _ R(s)2evl-l s at
+/O f(t)X(t)dt} (11.67)

where X (t) is that function which minimizes the expression (subject
for convenience to the boundary condition X(0) = X(8) = 0). The
variational problem gives the integral equation

dt?
Using Eq. (11.68), Eq. (11.67) can be simplified to

I =exp {%/O FHOX(t) dt} (11.69)

We need merely solve Eq. (11.68) and substitute into Eq. (11.69).
To do this, we define

P X(1) = 2C / (s)]e vl ds — f(t) (11.68)

B _
= -;3 / X(s)emvlt=sl s (11.70)
0
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so that

dzdff) — w?[Z() — X(0)] L)
while Eq. (11.68) is

X0 - ik - 2] - 50 (1L72)

The equations are readily separated and solved. The solution for X (%)
substituted into Eq. (11.69) gives, for the case of Eq. (11.66),

I = exp {ik[X (1) — X (0)]} (11.73)
. 2C 2 —v|T—0] wz 2
——exp{——;é—u—)k (1—e )——2—?—)316 |7 — o]

where we have defined

= w? + %5 L)

The result is correctly normalized, since it is valid for £ = 0. Upon
substitution from Eq. (11.73) into Eq. (11.63) there results an integral
over k which is a simple gaussian, so that substitution into A gives, in
the limit 8 — o0,

v 00 ,02 _ ’LU2 —-1/2
A=a—r7= / {sz + (1—e™"7) e "dr (11.75)
0

wl/2 v

To find B, we need (|x(t) — x(s)|?) This can be obtained by expand-
ing both sides of Eq. (11.73) with respect to k up to order k2. Therefore

$x(r) = x()) = (1= e + Tl o] (11.76)

The integral in B is now easily performed and, in the § — oo limit, the
expression simplifies to
3C  30? —w?

B = — =1 (11.77)

In addition we need Ej, the ground-state energy associated with our
action S’. This is most easily obtained by noting that, in parallel with
Egs. (11.2) and (11.13),

e BBy — lim/ / ed QD:E ) dzg
B—o0 To
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Differentiating both sides with respect to C, one finds immediately

dEy, B
=0 (11.78)
so that, in view of Eqgs. (11.77) and (11.74), integration gives
3
E| = 5(1} — w) (11.79)

since Ej = 0 when C = 0 (the free particle). Finally, using Eqs. (11.14)
and (11.62), we obtain for the true ground state energy

3 3 (v—w)?
Ey < 2(1} w)—A—B= YR A (11.80)‘
with A given in Eq. (11.75). The quantities v and w are two parameters
which may be varied separately to obtain a minimum.

The integral in A, unfortunately, cannot be performed in closed form,
so that a complete determination of Ey requires numerical integration.
It is, however, possible to obtain approximate expressions in various
limiting cases. The choice w = 0, corresponding to a fixed harmonic
binding potential in Eq. (11.61), leads to

v\1/2 [ —vr\=1/2 7 I'(1/v)
A::a(;) lL (1—e¥7)"1/2 I =0 ey (18D

and to Ej = 3v/4. The case of large « corresponds to large v, in which
case e~¥7 can be neglected, so that A = a(v/7)}/2. For o less than
5.8 and w = 0, Eq. (11.80) does not give a minimum unless v = 0, so
that the w = 0 case does not give a single expression for all ranges of
a. In spite of this disadvantage, the result with Eq. (11.81) is relatively
simple and fairly accurate. For o > 6, only fairly large values of v are
important, and the asymptotic formula (good to 1 per cent for v > 4)

A:&(3Y0<1+2m2> (11.82)

™ v

is convenient. Frohlich, however, considers the discontinuity at o = 6 as
a serious disadvantage — a disadvantage which can be avoided in our
present approach by choosing w different from zero.

Let us study Eq. (11.80) in case w is not zero. For small «, the
minimum will occur for v near w. Therefore, we write v = (1 + €)w,
consider € small, and expand the root in Eq. (11.75). This gives

A=a— [1 - e/ 782 (1 — eV e T ar

w o wml/2

+oe (11.83)
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The integral is
@/w)[(1+w)/? -1 =P (11.84)

The problem of Eq. (11.80) then corresponds, in this order, to minimiz-
ing

Eo = 3we* —a — ae(l — P) (11.85)
That is,
2a(1 — P)
=) 11.86
€ ™ (11.86)

which is valid for small o only, because ¢ was assumed small. The
resulting energy is

B a?(1 - P)?

Ey = —
0 3w

(11.87)

Our method therefore gives a correction even for small . It is least for
w = 3, in which case it gives

a? a2
= — _ e = - .2 (_) 11'
Ey o= g a—1.23 1 (11.88)
It is not sensitive to the choice of w. For example, for w = 1 the

1.23 falls only to 0.98. The method of Lee and Pines! gives exactly
the result of Eq. (11.88) to this order. The perturbation expansion has
been carried out to second order by Haga,? who shows that the exact
coefficient of the (a/10)? term should be 1.26, so that our variational
method is remarkably accurate for small a.

The opposite extreme of a large « corr#asponds to large v and, as we
shall see, to w near 1. Since v > w, the integral Eq. (11.75) reduces in
the first approximation to Eq. (11.81), which we can use in its asymp-
totic form. The next approximation in w can be obtained by expanding
the radical in Eq. (11.75), considering w/v <« 1. Furthermore, e™7 is
negligible. In this way we get

3 (v—w)? v\ 1/2 2In2  w?
Eo———z v ——a(;) 1+ . ——2';)" (11.89)

1T.-D. Lee and D. Pines, Interaction of a Nonrelativistic Particle with a Scalar
Field with Application to Slow Electrons in Polar Crystals, Phys. Rev., vol. 92,
pp. 883-889, 1953.

2E. Haga, Note on the Slow Electrons in a Polar Crystal, Prog. Theoret. Phys.
(Kyoto), vol. 11, pp. 449-460, 1954.
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This is minimum, within our approximation of large v, when w = 1 and
v = (402/97) — (4In2 — 1). Then we find!
a? 3

The approximations do not keep Ey as an upper limit because, unfortu-
nately, the further terms, of order 1/a?, are probably positive.

Detailed and numerical work based on this approach has been carried
out by T.D. Schultz.? Using a digital computer, Schultz worked out
values of v and w which would give a minimum for several different
values of a. He also evaluated Ey and compared it with the values which
would be obtained from several alternative theories. In particular, he
worked out the self-energy from the theories of Lee, Low, and Pines®
(Eup), Lee and Pines* (E,), Gross® (E,), and Pekar,® Bogoliubov,’
and Tyablikov® (Epp:).

The results for o, v, and w and also for the energies given by the
Feynman theory (Ef) compared with energies derived from the other
theories are given below, in a table reproduced from the paper of Schultz.
In this table, both A and w are assumed to have the value 1. Note that
for all values of v, the value of Ey is less than all others.

Ey ~0.10610° — 2.829 (11.90)

la | 300 | 500 | 700 | 9.00 | 11.00 |
v 3.44 4.02 5.81 9.85 15.5
w 2.55 2.13 1.60 1.28 1.15
Ey | —3.1333 | —5.4401 | —8.1127 | —11.486 | —15.710
Eyp | —3.0000 | —5.0000 | —7.0000 | —9.000

Ep | =310 | =530 | —7.58 —-9.95 [ —12.41
E, | =309 | —524 | —7.43 —9.65 | —11.88
Epbt —6.83 | —10.31 | —14.7

1S.1. Pekar in Theory of Polarons, Zh. Eksperim. ¢ Teor. Fiz., vol. 19, pp. 796-806,
1949, has shown that Egp goes as —0.1088c? for the case of large a.

2T.D. Schultz, Slow Electrons in Polar Crystals: Self-Energy, Mass, and Mobility,
Phys. Rew., vol. 116, pp. 526-543, 1959.

83T.-D. Lee, F.E. Low, and D. Pines, The Motion of Slow Electrons in a Polar
Crystal, Phys. Rewv., vol. 90, pp. 297-302, 1953.

40p. cit.

5E.P. Gross, Small Oscillation Theory of the Interaction of a Particle and Scalar
Field, Phys. Rewv., vol. 100, pp. 1571-1578, 1955.

6S.I. Pekar, “Untersuchungen iiber die FElektronentheorie der Kristalle,”
Akademie-Verlag, Berlin, 1954.

7N.N. Bogoliubov, On a New Form of the Adiabatic Theory of Disturbances in
the Problem of Interaction of Particles with a Quantum Field, Ukrainskii Matem-
aticheskit Zhurnal, vol. 2, no. 2, pp. 3-24, 1950.

8S.V. Tyablikov, An Adiabatic Form of Excitation Theory in the Problem of
Exchange Effects of a Particle with the Quantum Field, Zh. Eksperim. i Teor. Fiz.,
vol. 21, pp. 377-388, 1951.
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Other Problems in Probability
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IN the preceding chapters we have seen how to use path integrals to
treat a number of quantum-mechanical problems which are, by their
very physical nature, probabilistic problems. We have also used the
path integral method to analyze some aspects of statistical mechanics
wherein the probabilistic nature of the functions permitted the path
integral technique to be particularly effective. We can continue this line
of development into a wide variety of probability problems where this
approach has special and valuable applications.

It is the purpose of this chapter to explore a number of these prob-
ability problems. They will be of two kinds. First we shall discuss
direct applications of path integral ideas to classical probability prob-
lems (Sec. 12-1 through 12-6). This is quite different from all preceding
chapters, in which all applications were to quantum mechanics. Fol-
lowing that, we shall deal with problems in which both probability and
quantum mechanics are involved (Sec. 12-7 through 12-10). We cannot,
in this chapter, deal with these matters in any detail. We shall only out-
line by some examples how certain problems may be set up and thereby
suggest to the reader other applications of the path integral approach.

The main direct application of path integrals to probability problems
is due to the ability of path integrals to deal directly with the notion
of the probability of a path or a function. To make this idea clear, we
proceed in steps from the well-known! ideas of probability applied to
discrete events and to continuous variables.

RANDOM PULSES

To start with, suppose we consider a typical probability problem for a
discrete variable. We are given a situation in which a series of discrete
events is taking place at random times, e.g., cosmic rays striking a de-
tector or raindrops falling on a specifically demarked area of ground.
We know that the particles fall at random times, but in any long period
of time T we expect i = uT" particles will be observed. In other words,
1 is the mean counting rate.

Of course, in any actual measurement the exact number of particles
n recorded will not, in general, correspond to the expected number. But
we can ask directly: “What is the probability of observing a particular
number n of particles during a period when the expected number of

1Harold Cramér, “Mathematical Methods of Statistics,” Princeton University
Press, Princeton, N.J., 1951. We assume knowledge of usual probability theory.

322
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particles is n7” It is given by the Poisson distribution
P, = ;L_e—n (12.1)

On the other hand, we might ask a probability question of a different
kind. We might, for example, ask: “What is the probability that the
interval from one particle impact to the next will be some particular
time ¢7” Actually, there is no correct answer to the question phrased
this way. If we were to ask the probability that the time interval will
be equal to or greater than ¢, then we could give an answer (it is e7#?).
That is, we can get an answer to a question about ¢ falling within a
certain range. Thus, if we are interested in a particular value, we must
allow ourselves an infinitesimal range and ask the question: “What is
the (infinitesimal) probability that the time interval will fall within the
range dt centered on t7” The answer is written as

P(t)dt = pe "t dt (12.2)

So we create a concept of a probability distribution of a continuous
variable: P(t) is the probability per unit range of ¢ that the interval is
t. We write the probability distribution of z as P(x) if P(z)dz is the
probability that the variable lies in the range dz about x. We can easily
extend this to two variables and write the probability distribution of x
and y as P(x,y) dz dy. By this we mean that the probability of finding
the variables  and y in the region R of the xy plane is given by

| Py dzdy
R

We wish to expand the concepts of probability still further. We want
to consider the distribution not of single variables but of complete curves;
i.e., we want to construct probability functions, or rather functionals,
which will permit us to answer the question: “What is the probability
of obtaining a particular time history of a physical phenomenon, such as
the voltage in a resistor or the price of a commodity, or, in two variables,
the probability of a certain shape of the surface of the sea as a function
of latitude and longitude?” Thus, we are led to consider the probability
of a function.

We shall write it down this way. The probability of observing the
function f(t) is a functional P[f(t)]. But we must be careful to remember
that questions relating to such a probability have meaning only if we
define the range within which we are looking for a specific curve. Just
as in the example above we had to ask the question: “What is the
probability of finding the time interval within the range dt?” so now
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we must ask: “What is the probability of finding the function within
some more or less restricted class of functions, for example, those curves
which are bounded between values a and b for the complete time history
in which we are interested?” If we call such a subset of curves the class
A, then we ask: “What is the probability of finding f(¢) in the class A?”
and we write the answer as the path integral

/A PLF(t)] Df(2) (12.3)

where the integral extends over all functions of class A.

Actually, this expression can be thought of as similar to the proba-
bility function for a number of different variables. If we imagine time to
be divided into discrete intervals (as we imagined it when we were first
defining path integrals in Chap. 2) taking on the values of t1, ¢, ..., then
the values of the function at those particular times f(t1), f(t2),... =
fi, f2, ... are analogous to the variables of a multivariable distribution
function. The probability of observing a particular curve can then be
thought of as the probability of obtaining a particular set of values
f1, f,... in the range df1,dfs, ..., that is, P(f1, f2,...)df1dfa---.

If we then proceed to the limit as the number of discrete intervals
in time becomes infinite, with suitable normalization, we obtain the
probability of observing the continuous curve f(¢) in the range D f(t)
as the integrand in the path integral of Eq. (12.3). It is this probability
concept and this probability functional with which we shall be working
in the remainder of this chapter.

CHARACTERISTIC FUNCTIONS

It is helpful to continue using the analogy between the probability func-
tional of a path and the more traditional probability function of a vari-
able. A number of concepts, such as the concept of a mean value, are
common to the two approaches. With usual probability distributions
for quantities which have discrete values, so that the probability of ob-
serving the specific number n is P,, the mean is

Y nP, = (12.4)
n=1

For a continuously distributed variable, it is

/OO zP(z)dr =Z (12.5)

-0
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and in an analogous fashion, the mean value of the functional Q[f(t)] is
written

JQlf( f( )] Df(t)
fP )] Df()

In this last equation, as in Sec. 11-1, we have included a path integral
in the denominator to remind ourselves that we are always faced with
normalizing problems. In principle, it would be possible to work out
the path integral of the distribution function, set it equal to 1, and so
evaluate the normalizing constant to begin with. However, in many
practical cases it is more convenient to leave the function unnormalized
and simply cancel out factors on the top and bottom of the expression
which might, in actuality, be extremely difficult to evaluate.

Just as the mean value of the function can be expressed in the path
integral notation, so can the mean-square value of the function at a
particular time, say t = a. Thus,

oy _ L PP@PLIOIDF
RO N OB

for this is only a special functional.

One of the most important mean values of a function, as evaluated
with Eq. (12.5), is the mean of e'*®. It is called the characteristic func-
tion, and it is

= (@) (12.6)

(12.7)

oo

b(k) = (eth7) = / ¢k P(2) da (12.8)
-0

This is sometimes also called the moment-generating function. It is
simply the Fourier transform of P(z), and it is an extremely useful
function for evaluating various characteristics of the distribution, since it
is equivalent to a knowledge of the distribution function itself. This last
fact is the result of the possibility of performing the inverse transform
as

P(z) = / e (k) o (12.9)

A number of important parameters of the distribution can be deter-
mined by taking the derivatives of the characteristic function. Thus, for
example, the mean value of z is

@) — i B0

— (12.10)

k=0
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as is readily demonstrated by differentiating each expression in Eq. (12.8)
with respect to k and then setting k£ = 0. In fact, a series of such relations
exists:

¢(0)=1  ¢'(0)=i(z) ¢"(0)=—(? - (12.11)

Of course, our next step is to generalize the concept of the char-
acteristic function to the functional distribution case. We construct a
mathematical definition of such a generalization by returning to our
picture of discrete time intervals. We then wish to perform the Fourier
transform on the probability function of a large number of variables, us-
ing the kernel e**1/1et*2f2 ... As we go to the limit of an infinite number

of time intervals, this becomes simply eif R(E)S(8) dt This, then, is the
functional whose mean value we wish to take in order to develop the
characteristic functional. By using Eq. (12.6), we obtain

_ [ FOrO Py D ()
JPf®)]Df(¢)
This characteristic functional also has important special properties. For

example, ®[0] = 1, and the mean value of the function f(¢) evaluated at
the particular time t = a is

(F(a)) = =i g

B[k(t)] (12.12)

(12.13)

k(t)=0

where we have used the technique of the functional derivative as de-
scribed in Sec. 7-2.

In principle, we can invert our path integral Fourier transform and
write the probability functional as

Plf(t)] = [ et S ¥OFDdtgp ) D (t) (12.14)

where now, of course, the path integral is carried out in the space of the
k(t) functions.

We may remark, for use in interpretation later on, that if the func-
tion f(¢) is not uncertain but is definitely known to be some particular
function F'(t), that is, P[f(¢)] is zero for all f(t) except f(t) = F(t),
then the characteristic functional is

Blk(t)] = ' J FOF(D) dt (12.15)
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NOISE

Suppose we apply the ideas so far developed to a particular example and
in the process develop a few more concepts. Let us consider the situation
in which we are counting some sort of pulses, perhaps pulses generated
by the impact of cosmic rays on a Geiger counter or perhaps thermal-
noise pulses in a resistor. In such cases the pulses are not simply discrete
spikes of energy but are represented by a rising and falling voltage. Thus,
careful inspection of the actual voltage history associated with such a
pulse would show that it has the form g(¢) for a pulse occurring at ¢t = 0.
So, if the pulse occurred at g, the shape of the voltage curve would be
g(t — to).

Now, suppose we conduct our counting experiment for the time in-
terval of length T' (much longer than the length of a single pulse) during
which a number of pulses centered on the times ¢1,%s,...,t, occurred.
The complete voltage history over this experiment would be

=3 glt—1y)

j=1

Since we know when all the events occurred, our probability function
would simply be the representation of certainty, and by use of Eq. (12.15)
the corresponding characteristic functional becomes

®lk(t)] = exp zz / k(t)g(t —t;)dt (12.16)
j=1

But now suppose that we wish to determine the probability of find-
ing a particular time history of the voltage before conducting the exper-
iment. In that case we permit the n events to be randomly distributed
with uniform probability over the complete time interval. That is, the
probability of an event happening within the time interval dt is dt/T.
In this case the characteristic functional becomes

oot N dt, dty  dtn
@{kz(t)]:/o /0/0 o 13 [ Hgte -t ary 22
g=1

T n
_ (/ ez’f}c(t—i—s)g(t) dt %f) (1217>
0

We call the expression in parentheses A and write this result as A™.
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If the number of events in the time interval is distributed in such a
way that the Poisson distribution applies, i.e., the occurrence of each
event is independent of the time of occurrence of any other event and
there is a constant rate p for the expected number of events per unit
time, then the expected number of events in the time interval 7' is
n = pT. The characteristic functional is

Dk(t)] = > Ar—e™" (12.18)

The sum on the right-hand side of this equation is the expansion of an
exponential function, so that we can write the characteristic functional
as

Olk(t)] = —-(1-A)n _ T 1= /T ifk(t—i—s)g(t) dt éf
=€ = exXp L A e -

. T .
= exp {—/j, /O (1 ¢t [ Etre)9(®) dt) ds} (12.19)

Thus, we may determine the characteristic functional for many different
situations. We next go on to discuss this result under various approxi-
mate circumstances.

Suppose we imagine that the pulses get very weak while the expected
number of pulses per unit time, that is p, becomes large. In that case
g(t) is small, so we can expand RN COEOL TN power series and we
can approximate the characteristic functional as

T /T T
exp {w/o /o k(t+s)g(t) dtds} = exp{z,uG/O k(t) dt} (12.20)

where we have defined G = [ ¢(¢) dt, the area of the pulse. This means
that ®[k(t)] is in the form of Eq. (12.15) with F(¢) = uG (a constant
independent of #). This is equivalent to saying that f(t) is certainly
uG or, in other words, that there is unit probability for observing the
function f(t) = uG and zero probability for observing any other f(t).
That is to say, the pile-up of a large number of small pulses generates a
nearly steady direct voltage of value equal to the number of pulses per
second p times the average voltage G supplied by each. Next, we go to
one higher approximation and study the fluctuations or irregularities of
this nearly constant voltage.

Equation (12.20) is a first-order approximation to the exponential

eif k(t+s)9(® dt i the description of the characteristic functional of
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Eq. (12.19). Suppose now that we go on to the next-order approxi-
mation and include the second-order term. This is

——-// t)g(t + s) dt/k g(t' + s)dt' ds (12.21)

To simplify this expression, we define a function which measures the
overlap between two nearby pulses as

Ar) = / g(D)g(t +7) dt (12.22)

By use of this substitution, the second-order term is reduced to

_—// BRIt —t') dt dt’ (12.23)

Including both first- and second-order terms, the characteristic func-
tional is

Olk(t)] = ei,quk(t) di ,—(u/2) [[ 6@k )\ t—t") dt dt’ (12.24)

The first factor in this expression is the constant average level, which
we might call the DC level if we are thinking about voltage pulses. We
can, if we wish, neglect this level and concentrate only on the variations
around it by shlftmg the origin of f(t). That is, we can always take

out a factor e i [ROFE®) dt by shifting the origin of f(¢) (i.e., by writing
f(t) = F(t)+ f'(t) and studying the probability distribution of f'(¢) and
its characteristic functional). If we make this change of origin, we are in
a position to study the fluctuations of voltage around the DC level.

We note one special approximation to Eq. (12.24) which is often
adequate. Generally, A(7) is a narrow function of 7. The pulse shape
g(t) rises and falls with a finite width, so if two pulses are spaced a very
great distance apart, their overlapping area vanishes. This is another
way of saying that \(7) approaches 0 rapidly as 7 becomes large. As a
result of this, if A\(7) is narrow enough, the second factor in Eq. (12.24)
can be approximated by

o—(a/2) [ K3 () dt (12.25)
where ¢ = p / A(7) dr. This is equivalent to the probability distribu-
tion "

Plf(t)] = e~ (/2" [ £ &t (12.26)

Such fluctuations are often called gaussian noise.
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Characteristics of distribution functionals describing noise functions
have been studied extensively in recent years in the theory of communi-
cations. A number of characteristics of noise spectra have been defined
and evaluated, and we shall carry through similar discussions here and
in the next section, where we treat gaussian noise.

Now we shall continue to show, by giving one further example, how
characteristic functionals are set up. We shall consider pulses which
come at random times all with a given characteristic shape, say u(t), but
each with a different scale height, so a typical pulse is written au(t). We
might allow the height a to be either plus or minus. So now we suppose
the timings of the pulses are randomly spaced instants ¢; and the heights
take on random positive and negative values a;. The resulting function
is

) = ajult—1;) (12.27)

If first we set aside the random nature of the events, we obtain a char-
acteristic functional equivalent to that of Eq. (12.16) as

O[k(t)] = exp Z a; / u(t —t;)dt (12.28)

Next, if we include the presumed random nature of the scale heights of
the pulses and say that the probability of obtaining for the jth pulse
a particular scale height of a; in the region da; is p(a;) da;, then the
characteristic functional becomes

OEk(t)] :/~--//exp iéaj/k(t)u(t—tj)dt

X p(a1) day p(az) das - - - p(an) dan (12.29)

Of course, each of these probability functions for the values of a; has as-
sociated with it a characteristic function (also called a moment-generating
function). We call this function

Wlw| = /oo e*“%p(a) da (12.30)

- 00

Then the expression for ®[k(t)] is
B[k (t)] HW [[E()u(t —t;) dt] (12.31)
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Now we can proceed as we did in the derivation of Eq. (12.17) and
introduce the notion that the exact time at which a pulse occurs is ran-
domly and uniformly distributed over the interval 0 < ¢t < T. If we
suppose that there are precisely n pulses in this interval, the character-
istic functional becomes

B{e(t)] = (M) (12.32)
where
lk(t)] = / W[ [kt — s) df] ds (12.33)

If again we assume, as we did in the derivation of Eq. (12.18), that
the pulse distribution satisfies the Poisson distribution, then we must
multiply Eq. (12.32) by (2" /n!)e™™ and sum over n to get

Blk(t)] = e HIT—TE@D = exp {-—/J/ (1 =W [[E@)u(t — s) dt]) ds}
(12.34)
As a special example of this result, we assume that that pulse shape
is extremely narrow. In fact, we assume that we can approximate the

shape function by a Dirac delta function, that is, u(t) = §(¢). Then the
characteristic functional is

Bk(t)] = exp {—,,L / (1 — Wk(s)) ds} (12.35)

Next, we assume that the distribution of scale heights is gaussian with
zero mean and a root-mean-square value of ¢; in other words, the ordi-
nary normal distribution is given by

1
Ve2mo

In that case, the characteristic function is

Wlw] = e~(@"/2)" (12.37)

p(a) da = e=9" /29" gq (12.36)

and for ® there results
Ok(t)] = exp {—,u,/ (1 - e"("z/z)kz(s)) ds} (12.38)

So we find again that a characteristic functional ®[k(t)] can be de-
rived to fit our assumed conditions. At any stage in this derivation, ap-
proximations that would reduce this to a quadratic form may be valid.
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For example, in the case just described a small value of the root-mean-
square scale height o corresponds to weak signals. If, at the same time,
the expected number of signals arriving in a time interval is not small,
then Eq. (12.38) can be approximated quite well by

B{k(t)] = exp {—,uf; / K2(2) dt} (12.39)

A distribution like this is called white noise.

GAUSSIAN NOISE

The type of distribution whose characteristic functional is gaussian comes
up in many situations, and we shall discuss it here.

We have been working with probability distributions which are gaus-
sian, i.e., exponentials of second order in the defining functions. Al-
though we arrived at this gaussian functional by making a second-order
approximation to the exponential term introduced by our assumption
of a Poisson distribution of random pulses, it is worth remarking that
a number of physical processes actually seem so distributed by their
nature. In traditional probability theory the normal, or gaussian, distri-
bution fits physical phenomena which are the result of the combination
of a large number of independent events occurring randomly. This is the
conclusion of the central-limit theorem of probability theory.! The same
conclusion applies to distribution functionals and results in the fact that
many important cases for study of physical phenomena have gaussian
distributions. For further reference, we write here the most general form
of a gaussian characteristic functional as

Olk(t)] = ez’fk(t)F(t) dt ,~(1/2) [[ B@k) At dt di’ (12.40)

The first factor in this expression can be removed by a shift of
the origin defining f(¢), as we discussed in deriving the distribution
of fluctuations of voltage around a DC level. Thus, we could define
f'(t) = f(t) — F(t). Next we note that, if the system we are describing
behaves in a manner independent of the absolute value of time, then the
kernel A(t,t') must have the form A(¢t —t').

In actual physical situations this function A may be defined by mech-
anisms in some sort of experimental situation or by approximating a
particular piece of reality in such a way that it behaves nearly like the
distribution function we are studying. We have an example of such an

L1bid., pp. 213fF.
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approximation in the derivations given above on the noise spectrum.
For it, A(t,t') = puA(t — t'). In either case theorems of the behavior of
the system which result from the use of this function will be the same
so long as the characteristic functional ® can be suitably approximated
by the quadratic or gaussian form of Eq. (12.40).

Of course, by now we know how to deal with gaussian functionals,
since we have spend quite a bit of time in the preceding chapters manip-
ulating them in one way or another. In this particular case the appear-
ance of the factor ¢ is different from that in typical quantum-mechanical
cases. This means that functions which were real in Sec. 7-4, for ex-
ample, are imaginary here. However, this does not require any review
of the mathematical aspects of the subject; it simply is an awareness of
and preparation for certain differences in detail in the results.

The probability distribution which corresponds to the characteristic
functional of Eq. (12.40)

I0) ._exp{.-- / f — FOfE) — F(t’)]B(t,t’)dtdt’} (12.41)

where the function B(t,t') is a kernel reciprocal to A(t,¢'). That is, the
functions A and B are related by

/ A(t,7)B(r, s) dr = 3(¢ — 5) (12.42)

Problem 12-1 Prove this.

All the parameters of the distribution can be calculated from the
characteristic functional by the methods introduced in Chap. 7.

We shall now study in more detail some of the physical character-
istics of gaussian noise that is time-independent; i.e., we shall study
distributions whose characteristic functional is

@[I"C(t)] — e—(1/2) ff k() k(t'YA@t—t") dt dt’ (1243)

This function A(7) is called the correlation function. Eq. (12.43) means
that the probability of observing a particular noise function f(t) is

Plf(t)] = o~ (1/2) [[ r®r@)B@—t) dta (12.44)

The function B appearing in this last expression is the inverse of the
correlation function A. That is, [ A(t — s)B(s) ds = §(t), or, if

= / A(T)e™T dr (12.45)
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is the Fourier transform of A(7), the Fourier transform of B(7) is 1/P(w).

We shall begin by calculating some of the properties of this distribu-
tional. We first show that the average value of the noise signal vanishes.
This is because the average value of the noise function at a particular
time t = a is, as in Eq. (12.13),

(@) =5 (12.46)

In this expression, the functional derivative of @ in Eq. (12.43) is given
by (see Sec. 7-2)

52?;) = [— / k(t)A(t — a) dt} 3 (12.47)

and, if it is evaluated for the particular function k(t) = 0, then it be-
comes 0.

Next we calculate the average of the square of the noise function or,
better, the expected value of the product of two noise functions at times
a and b. This is called the correlation function of the noise. It is (by
differentiating both sides of Eq. (12.12) twice)

§2P
(f(a)f(b)) = ~ Sh(a)0k (D)
— A(b— a)® — [ [K()A(t — a) dt] [[k(t) At - b)dt'] @

(12.48)

and, if this is evaluated for the function k(t) = 0, it is simply A(b — a).
That is why A is called the correlation function.

NOISE SPECTRUM

A most useful characteristic of the noise distribution is the power spec-
trum of the noise (see Prob. 6-26), which is defined as the mean value
of the square of the Fourier transform of the noise function, that is, the
mean square of

p(w) = /f(t)eiwt dt (12.49)
By using our previous results, we can evaluate this as

(19(w)?) = ([ (@)™ da [ f(B)e™" db)
= [[(f(a)f(b))e™ (") dadb
= [TA(b— a)e™ =) dadb
= [P de (12.50)
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Here we have made use of the function P(w), the Fourier transform of
the correlation function A (see Eq. 12.45).

If we carried out the integration shown in the last step of Eq. (12.50)
we would, of course, get an infinite result. Therefore, the mean-square
value which we are attempting to work out can be defined only for some
finite time interval. If we take a unit time interval, then we say that the
mean power per second is

Mean of |¢(w)|? per second = P(w) (12.51)

We can apply some of these general results to our special example of
noise produced by a multitude of small pulses. The correlation function
for our problem is pA(7) introduced in Eq. (12.22). That is,

A(T) = p / g(t)g(t +7)dr (12.52)
This means that the power spectrum is
P(w) = u [ [ otlglt + 7 drdt = uly(w) (12,53

where y(w) is the Fourier transform of our pulse function g(t). We can
explain this simple result more directly for our problem as follows. If
the pulses occur at times ¢; so that f(t) Zg , the Fourier

transform of f(t) is ¢(w ny Yelwti, Thus the square of ¢(w) has

the average

{¢(w)?) < w)|? Z et (fi=ts) > (12.54)

But, since the times t; are random, and independent of ¢; for ¢ # j, all
the terms with ¢ # j average out, because the average of e®({t:i—%) ig
zero. Only the terms with ¢ = j remain. Each is |y(w)|?, and they are
pT in number; so the mean of |¢(w)|? per second is u|y(w)|?.

In the special case that the characteristic function can be approx-
imated by the white-noise characteristic of Eq. (12.39), the function
A(t —t') = const 6(t — t'). This means that P(w) is independent of w
and there is the same “power” per unit frequency range (mean |@(w)|?
per second) at all frequencies.

The distributions we are describing can very conveniently be de-
scribed by giving the probability distribution not for f(t) but for its
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Fourier transform ¢(w) directly, and the characteristic functional not in
terms of k(t) but its Fourier transform

/ k(t)e™?t dt (12.55)

Using these functions, the characteristic functional for the noise distri-
bution corresponding to Eq. (12.43) is

& — o~ (1/2) [ K@) *P(w) dw/2n (12.56)

by direct substitution of the inverse of Eq. (12.55) into Eq. (12.43). The
corresponding probability functional is

P = =1/ [lI$()?/P(w)] dw/2m (12.57)
We deduce Eq. (12.57) from Eq. (12.56) as follows. Note that

k@) f(t) dt = [K*(w)p(w) dw/27 (12.58)

so that Eq. (12.14) implies

P= f et [ K @)ow) dw/2mpype () (12.59)

If we now imagine the possible values of w to be discrete and sepa-
rated by an infinitesimal spacing 27 A, the integrals in the exponent in
Egs. (12.56) and (12.57) can be replaced by Riemann sums, and our
path integral becomes

P=T] / e~ (U/DK@PP@)A K @)W)A gK () (12.60)

The integral for each value of w can be done separately (by completing
the square), and we get

P= H o~ (1/2)I¢(w)|*/P(w)]A (12.61)

Putting the product together gives Eq. (12.57). It is clear that what
happens at one frequency is independent of what happens at another,
and that the signal strength ¢(w) at frequency w is distributed as a
gaussian with a mean square proportional to P(w).
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BROWNIAN MOTION

It is usually true that the path integral method does not really help
to get the solution to problems that cannot be solved in some other
manner. Nevertheless, someone who has followed us this far and who
is now familiar with path integrals will find its mode of expression and
logic very simple and direct when applied to probability problems.

For example, in the theory of brownian motion we might have a
linear system — say, a damped harmonic oscillator being driven by a
fluctuating force f(¢). Assume the mass of the oscillator equal to 1, and
we must solve

B(t) + v (t) + wiz(t) = £(t) (12.62)

where z(t) is the coordinate of the oscillator. If the function f(¢) is
not known but is given by a known probability distribution Py[f(t)],
what is the probability distribution P.[z(t)] for the various responses
z(t)? Equation (12.62) relates z(t) to f(¢); that is, for each f(¢) there
is an z(t). Hence the probability of given z’s is the same as that for the
corresponding f’s, or

Pyla(t)] Da(t) = Pr[f ()] Df(¢) (12.63)

where z(t) is related to f(t) via Eq. (12.62). In general, we must be very
careful in relating path differentials like Dx(t) to D f(t), there being an
analogue of a “jacobian” between the “volume” elements. But if f(¢)
and x(t) are linearly related (as above), this jacobian is a constant; so
if, as is usual with path integrals, we can trust ourselves to normalize
our answer in the end, we have

P, [z(t)] = const Pfli(t) +v&(t) + wiz(t)] (12.64)

which gives us a formal solution. If Py is gaussian, then P, is and the
problem may be worked out in many ways, the most evident being by
the method of Fourier series if wg and -+ are independent of time.

At any rate, many problems can be set up and solved or partly solved
by using Eq. (12.64) as a starting point. We shall look at a specific
example. A fast particle goes through matter in which it receives small,
sharp alterations in velocity as a result of passage by nuclei. After going
through a thickness T, what is the probability it will emerge a distance D
from the origin (the extension of its original straight-line path) moving
with deflection angle 8 as in Fig. 12-17
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Fig. 12-1 A fast particle impinges perpendicularly on a slab of matter of thickness T'.
After traveling through a thickness ¢ measured parallel to its original line of flight, it
is deflected away from its original trajectory (as extended) by a distance x owing to a
number of interactions with the nuclei in the material. Eventually, it emerges from the
slab a distance D from the point O, at which it would have emerged with no deflection,
and is traveling in a direction that makes an angle 6 with its original direction.

We assume that the interactions cause no measurable loss in the
longitudinal velocity of the particle and that the matter through which
the particle passes is homogeneous. Further, we assume that 0 is always
small and that the motion is the result of a large number of collisions
each of which has a small effect. We assume that the expected number of
collisions in the infinitesimal thickness dt is p dt and that the deflection
suffered in each collision is given by the angle A, which is governed
by the probability distribution p(A)dA. We further assume that this
probability distribution results in a mean-square value of A given by

/ A?p(A) dA = o? (12.65)

and we shall use the definition R = po?.

We shall confine our attention to the motion as projected onto a two-
dimensional plane containing the original path of the particle. Motion
in a plane normal to this will follow similar rules, and the motion in
either plane can be considered independently of the other. We shall use
t to measure the depth of penetration into the slab, @ to represent the
instantaneous direction of motion in the plane we are considering, and
z to measure the position of the particle away from an extension of its
original path of motion, as shown in Fig. 12-1. These parameters are
related by dz = 0dt, or £ = 6.

We assume that the deflections of 6 occur suddenly, so that § = f(t),
where the functions f(t) are a set of randomly spaced delta functions



12-6 Brownian motion 339

having random scale heights. This means that &(t) = f(¢) and Py[f(t)]
has the characteristic functional (see Eq. 12.34)

Blk(t)] = e A-WIk() ds (12.66)
where
W] = / p(A)ed dA (12.67)

We note that the mean value of A is assumed to be 0, and these deflec-
tions themselves are assumed small. Now if we expand Ww] as

Wiw] = /p(A) (1 + iwA — 92-2-132 + - ) dA (12.68)

and use terms only through second order in A to get Ww] = 1 —w?c?/2,
then

Blk(t)] = e~ /DR K (s) ds (12.69)
This in turn implies (Eq. 12.44) that

Pylf() = e~ (/2R [ PO (12.70)
Hence

P, ()] = const exp {~%% OT #2(2) dt} (12.71)

We wish to evaluate the probability distribution P(D, ), which gives
the probability that the particle will exit with displacement D and angle
of motion € when it enters with initial conditions (0) = 0 and £(0) = 0.
We are concerned not with the exact path that the particle takes in the
material, but only that the particle exits with 2(7") = D and (T") = 6.
Thus, we express this probability distribution by an integral over all
paths as

T
P(D,§) = / exp{_-é% /0 0 dt} Da(t) (12.72)

where the paths included in the integral satisfy the assumed end-point
conditions. This integral can be carried out by the methods of Sec. 3-5.
The integral is a gaussian and becomes an extremum for the path

d*z

T2 o (12.73)
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The solution of this equation, which satisfies our assumed boundary
conditions, is

#(t) = (3D — 0T) (%)2 — (2D - 4T) (%)3 (12.74)

By using this path in the integrand of the exponential function in Eq.
(12.72), we find

1 (T . 6 oT\*  6°
which means that our required probability distribution is
6 oT\>  6°
P(D, ) = const exp {_ET_P’ (D - ——§—> - 2RT} (12.76)

In some practical cases we may really be concerned not with the
exact linear spacing of the particle away from our assumed origin point
but, rather, with the deflection angle at which it leaves the slab. Given
the overall distribution function of Eq. (12.76), it is simple to evaluate
the distribution function in angle alone by integrating over all values
of D. The result is e~?"/2ET. This is an expected result, because we
have already assumed that the mean-square value of the deflection angle
which would be acquired in a unit thickness is R, so this value in a total
thickness T' should be RT.

Suppose next we look only at particles which emerge traveling in a
specific angle 6 and consider the distribution function of the emerging
positions D of those particles. We find that the probability distribution
has a maximum at D = 67/2. This would be the position we would
expect if the final deflection angle § were acquired in a smooth manner
as a linear function of thickness starting from 0 and building up to its
final value. In that case its average value during the passage through
the slab would be 6/2.

Problem 12-2 Show that the constant required to normalize the
probability function P(D,8)dD df is

6 1
const = \/WRT3 \/QWRT (12.77)
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QUANTUM MECHANICS

In this and the following sections we should like to see how to formu-
late statistical problems in quantum mechanics. In quantum mechanics
there are probabilities involved in an intrinsic way, because even a known
state implies probabilities to be found in other states. But in addition
there may be extrinsic uncertainties. The state, for example, may not be
known — we may know only that the state is such and such with a cer-
tain probability. This situation is analogous to the classical-mechanics
situation in which the initial conditions are not known and only a proba-
bility distribution for such conditions is available. We have already dealt
with such a situation in statistical mechanics (see Chap. 10), but that
is a very special case in which the state of energy E has the probability
e~ E/kT  Here we shall be more general.

Again, under a given external force, say f(t¢), the behavior of a
quantum-mechanical system can be worked out, but what can we say if
that force is uncertain and has a probability distribution P[f(t)] D f(t)?
Need we actually solve the problem for each f(t) and then average, or
is there some way to formulate the problem after the average of f(t)
is taken? (We hope so, because it often occurs that the solution of a
statistical problem after an average is taken is, in fact, much easier than
finding the general solution of the original problem for a wide range of
conditions.) We shall find such a formulation in this section. Then we
shall go on to discuss situations in which a quantum-mechanical system
is disturbed not just by a classical system but by another quantum-
mechanical system about which there are statistical uncertainties.

Our main purpose in this chapter is to show how these and other
questions may be formulated. We shall not deal in detail with solving
the special problems mentioned; they are brought up only to help us
understand the more general formulations we shall arrive at.

We wish first to discuss the analogue of brownian motion for a
quantum-mechanical system. That is, we shall suppose that a quantum-
mechanical system whose unperturbed action is S[z(t)] is under the in-
fluence of an external force f(t) such that its action is

S/[a()] = Slz(t)] + / 26 F(£) dt (12.78)

IWe shall do everything as though there were only one coordinate . One can
immediately generalize to several coordinates z; (so that a set of forces f; act) and
to cases in which the coefficient in front of f(¢) in the action is not simply z but
some more complex operator.
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Suppose we ask: “What is the probability that, starting at some
time t, with coordinate z(t,) = z,, we shall arrive at a final time ¢; at
coordinate x,7” 1t is the square of an amplitude: |K (zp,tp; Ta,tq)|?. O
again, if we specify that initially a system is in the state of wave function
¥(z) and finally in the state of wave function X(z), the probability of
transition from ¥ to X is

z); ()] ; (12.79)
_ I / / X (2) K (2, to; T b 0(30) dazp dze

= [[ ][ ¥ @)X K @ 008K (01130 )b )0 52)
It is evident that all such problems can be solved if we can evaluate

‘Kv(gjbatb;aj ta)K*<$b7tb>$ t) (1280)

a’ra

The first factor is the path integral [ 51" Dz (t), whereas the second
factor is its complex conjugate! [e~*3[EMI Dx(t). Each integral is over
paths with appropriate end points. In writing the product of Eq. (12.80),
we shall call the path variable in the second integral z’(¢) and we can
then express Eq. (12.80) as the double path integral

/ / ¢SOl O] D) D! (1) (12.81)

The summing of such integrals over various end points gives the required
probability.
If the force f(t) is acting, we should replace S[z(t)] in Eq. (12.81) by
, and the expression becomes

// H{Slz()]-Sla’ (O)+ [ () f(t) dt— [ & (1) f (1) dit} Di(t) D' () (12.82)

But now suppose the force is known only in a probabilistic sense; i.e.,
we know that there is a probability Py¢[f(t)] D f(t) that the force is f(¢).
Then the probability to go from ¢ to X is given by Eq. (12.79) calcu-
lated for each f(t) and then averaged over all f(t) each with the weight
Pf [f ()] Q)f(t). This is then

X(z); ¥(z (12.83)

/ // / X () X(4)J (@, i 2, 2L (2,0 (&) d, dy ds, d

1We suppose that S[xz(t)] is real and that our units are so defined that % = 1, as
in Chap. 11.
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where J is the average of Eq. (12.82) over all f(¢) with weight
A0) @fos); thus

xb7$b: (12.84)
/ / / Z{S cc(t) Sla’ ()]} i [ 2@~ (D15 (1) LPf (1) Da(t) D' (t) Df ()

with the integrals taken between appropriate end points z(t,) = z,,
z'(t,) = xl, (t,) = x,, 2'(t,) = z,. Actually, this choosing of end points
and then integrating over various values with wave-function distributions
depending on the problem (as in Eq. 12.83) is simply a sum of J’s for
different end conditions, and we shall hereafter simply forget this and
speak as though with J we already have our probability — it being left
to the reader to remember that a bit more has yet to be done. This is
so that we can concentrate on the main feature, the evaluation of the
double path integral needed to calculate J.

In this form we can do the integral over f(t¢) explicitly and see that,
to find the probabilities after averaging, we must evaluate a double path
inteéra,l

i{ Sz ()] Sz’ ()]} T o T I 9.
J = / / Ba(t) — 2/ (£)] Da(t) Da' (¢) (12.85)

where ®[k(t)] is the characteristic functional belonging to the probability
distribution Py, so

k) = [ TR OTOUP o] D1 () (12.56)

Equation (12.85) then answers our challenge to express the answer
in a form valid after the averaging. It involves evaluation of the double
phth integral. How to evaluate it is, of course, another question, but the
methods discussed in this book may be useful. In these sections we are
discussing only how various problems may be formulated.

As an example of the application of Eq. (12.85), suppose f(t) is
gaussian noise with zero mean and correlation function A(t,t') as in
Eq. (12.40). We must evaluate

i{S[=(t)]—S[z' (t)]}
J= / / (12.87)
x exp{—% [[lz(t) — &' (t)][z(t') — &' (t')]A(t,¢') dt dt' } Dz(t) D' (t)

Because in the new factor at least the x and 2’ appear only quadrati-
cally, some of the methods previously discussed for quadratic forms may



12-8

344 12 Other problems in probability

be useful. Of course, if S[z] is itself quadratic, corresponding to a har-
monic oscillator, the path integrals can be evaluated exactly by using
the methods of Sec. 3-5.

INFLUENCE FUNCTIONALS

Now we wish to discuss the behavior of a quantum-mechanical system
whose general coordinate we call x in interaction with another quantum-
mechanical system whose coordinate we call X.T We shall suppose that
all measurements which are to be made are on system z only, and no
direct measurements of the system X will be made. For example, we
may be interested in how an atom makes transitions because it is in
the electromagnetic field and can radiate. We contemplate studying
only the atom and will not directly measure the light coming from it;
then z are the atomic coordinates and X the coordinates of the field.
If we study it the other way — that is, if we only observe the light
from the atom, emitted, absorbed, or scattered, but never ask for any
quantity directly involving the atom’s variables — then we may use our
present analysis with z being the coordinates of the electromagnetic field
and X those of the atom. If, for example, the theory of the index of
refraction is wanted, then z are again the field coordinates and X the
coordinates of the matter through which the light goes. For one further
example, suppose the behavior of an electron in a crystal (or an ion
in a liquid) is to be studied: the measurements to be analyzed involve
directly only the position of the charge, not the material of the crystal.
For example, we might wish the current (electron velocity) generated
in some circumstance, but we are not contemplating correlations with
the number of phonons produced. Then z can be the coordinates of the
electron and X all the other coordinates of the matter of the crystal.

Let S[z(t)] be the action of system z, So[X (¢)] that of the environ-
mental system alone, and Siyg[z(t), X ()] that of the interaction between
the environmental system X and the system of interest . The action
of the combined system is S{z(t)] + So[X (¢)] + Sins[z(t), X (¢)], and the
probability of any event involving the combined system can be evaluated
from the double path integral, an obvious generalization of Eq. (12.81),
and now written as

T X stands for any number of coordinates — this other system may be, and gener-
ally is, very complex. We shall just carry one X variable, but nothing essential will
be lost.
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J= / / / / exp{i(S[z(t)] - Slz' ()] + SolX(1)] — SolX'(8)]  (12.88)
+ Sint[2(t), X (t)] — Sing [x’(t), X'(t)])} Dx(t) DX (t) ‘Da:’(t) ’DX’(t)

But, if we need no measurements on system X and if only the depen-
dence on z(t) need ever be studied, then we can write our answer in the
form

— [ [ HSE®I-S OB Bla(s). 2/ (8] Da(t) Da’
J /f Flz(t), 2/ (t)] Da(t) D' (t) (12.89)

where we shall call the functional F[z(t), 2'(t)] the influence functional.
It is a functional of the two functions z(t) and z'(t), and for this partic-
ular problem it is given by

Fla(®), () = 3, [ [ exp(i(SolX(®)] - Solx'(9) (12.90)
final
+ Sine [2(2), X (£)] — Sins[2" (), X' ()])} DX (t) DX'(2)

The sum ranges over all possible final states of X. This is because no
measurement on X is to be taken, and all final states of the environment
are possible. Therefore we must add together the probabilities (i.e., the
J functions of Eq. (12.88)) of all. In coordinate representation, for
example, Z just means that at the final time ¢, after we are no longer

final
interested in the interaction we must take X (t5) = X'(t5) = X, and

integrate over all Xj.

To summarize, the behavior of a system in any environment can be
discussed in terms of a double path integral like Eq. (12.89), where F
is a property of the environment — its “influence” on the system. It
summarizes all of the environment that is relevant to z(t). Two different
possible surrounding conditions, say, A and B, might physically be very
differently constructed; nevertheless, if they happen to lead to the same
functional F', they are indistinguishable as far as the behavior of the x
system is concerned.

This F' is somewhat analogous to the use of “external force” in sepa-
rating the behavior of interacting systems classically. We can analyze the
motion of z alone provided we know what force is produced (as a func-
tion of time) by the environment. These newtonian equations of motion
of z alone are the rough analogue of Eq. (12.89), whereas Eq. (12.90)
corresponds to the calculation of the force produced by a given environ-
ment. Two different environments which produce the same force on =
are equivalent. Actually, the analogy is only rough; for F' contains the
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entire effect of the environment including the change in behavior of the
environment resulting from reaction with z. In the classical analogue,
F would correspond to knowing not only what the force is as a function
of time, but also what it would be for every possible motion x(t). The
force for a given environmental system depends in general on the motion
z(t), of course, since the environmental system is affected by interaction
with the system of interest z.

We are therefore led to study the properties of influence functionals.
We shall be content to list a few such rules and give some suggestions
on how they are arrived at.

Rule I:

Flz(t),2'(t)] = F*[2' (t), 2(t)] (12.91)

where the asterisk means complex conjugate.

Rule II: If the argument functions z(t) and z'(t) are equal for ¢
exceeding some value t., then F' does not depend upon the actual values
of z(t) for t > t..

Rule III: If F; is the influence functional for a particular environment
i and we do not know what the environment actually is but know only
that the probability of its being ¢ is w;, then the effective influence
functional (for calculating all probabilities) is

1

Rule IV: If the system z is simultaneously in interaction with two
external systems A and B, and if A and B do not interact directly with
each other, and if there is no correlation between their initial conditions,
then

F=F4 Fg (12.93)

where Fj is the influence functional if A alone were interacting and F'p
is that if B alone were interacting.

Rule V:If the functional F' can be adequately approximated by the
form

Flz(t),z'(t)] = exp {z /[zc(t) —2' () f () dt} (12.94)
then the system z is acting as though under a classical force f(t) with
action of interaction [ z(¢)f(t) dt. If it is of the form

Flz(t),2'(t)] = @[z(t) — '(¢)]

where ®[k(t)] is any functional, then the environment is equivalent to a
classical but uncertain force f(t), where @ is the characteristic functional
for the distribution of f(t).
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That rule I is true is evident directly from Eq. (12.90).

This expression also explains rule II, but in a much more subtle way.
Note that for any given system with any definite action Sp(X) and any
given initial state

3 / / P IX@I-5oIX O} D X (1) DX (¢) = 1 (12.95)
final

This is because the integrals and the sum over final states are equivalent
to

/K( (o i X to) K (X 1y Xo t,) dX, = 6(X, — X7) (12.96)

by Eq. (4.37). Thus, if the initial wave function were ¥(X,), we would
multiply by ¥(X,)v* (X)) as we did in Eq. (12.79) and integrate to get

[ 6, = Xu e (X ax, ax, = [peopax =1 (207

Now notice that, if we put z'(t) = x(¢) for all time in Eq. (12.90), we
have an expression just like Eq. (12.95) where the effective (and definite)
action is

SplX ()] = So[X (8)] + Sint[2(2), X (2)]
with
Sp[X'(£)] = So[X'(¢)] + Sint[z(t), X' (t)]

as required, as long as z’'(t) = z(t). Hence Fz(t),z(t)] = 1.

The same argument limited to the time range t. < t < t;, using a
relation like Eq. (12.96) but with ¢,, X, replaced by t., X., shows that,
if 2/(t) = x(t) for t > t., the dependence of F on z(t) for ¢t > t, drops
away, because the right side of Eq. (12.96) does not depend on z(¢) for
t> t,.

Rule IIT is an evident result of the fact that probabilities are deter-
mined by adding the value of J over various circumstances.

Rule IV is evident from Eq. (12.90) when it is realized that the
conditions of the rule imply that the action that goes into Eq. (12.90) is
SQA[XA (t)] -+ SintA[x(t), XA(t)] -+ SQB[XB (t)] + Sim;B[a?(t), XB(t)] and
that the exponential of the sum becomes a product, as does the integral
F| if the initial state is itself a product of wave functions.

Rule V is merely a statement of our results shown in Eqgs. (12.82)
and (12.85).

These are some of the general properties of influence functionals.
Calculations with them involve the various methods for doing path inte-
grals applied to Eq. (12.89). We shall conclude this section by discussing
certain important influence functionals.
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Just as gaussian probability distributions and gaussian noise distri-
butions are simple and important, so influence functionals which depend
on z(t), '(t) as an exponential of a quadratic form — which we shall
call gaussian influence functionals — are particularly important.

First, if the environment is a set of harmonic oscillators in their
ground states (or at a given temperature) coupled linearly to the sys-
tem of interest z, evaluation of Eq. (12.90) shows that F' is gaussian.
But gaussian influence functionals, like gaussian probabilities, occur in
good approximation in a much wider class of situations, namely, where
the effect is the result of a very large number of influences, each of which
by itself has little effect. For example, consider an atom in weak inter-
action with each of the large number of atoms of an environmental gas.
The influence of one atom A is very small, so its influence functional F4
differs only slightly from 1. However, in view of rule IV, the complete F
is the product of many such factors, which becomes (nearly) the expo-
nential of the sum of a small contribution from each. This contribution
expanded to first and second order in the interaction with each atom
leads to influence functionals of the gaussian type.

As an application of this conclusion, a piece of metal placed in a cav-
ity resonator affects the resonator in a simple linear way summarizable
by one impedance function, even though the multitude of electrons in
the metal behave in such a complex manner. The influence functional
of the metal (X) on the cavity oscillator (z) is nearly a gaussian, and
to this extent the metal is equivalent to some set of harmonic oscillators
which would produce the same influence functional.

The most general exponential functional involving z(t) and z'(¢) in
linear form is

Fla(t),z'(t)] = exp {i [z(t) f(t) dt — i [z’ (t)g(¢) dt} (12.98)

for arbitrary and complex f(t) and g(¢). If this is to be an influence func-
tional, however, it must satisfy the conditions of our five rules. Rule I
requires g(t) = f*(t), and rule II implies g(¢) = f(t); hence g and f are
equal and real. Thus the most general linear functional is that equivalent
to the action of a classical external force in accordance with rule V.

We need not discuss this simple case further; for it is completely ana-
lyzable just by adding —z(t) f(¢) to the hamiltonian of the unperturbed
problem. If the exponent has both quadratic and linear terms, the linear
term can be factored out, so via rule IV we can say it is a classical force
plus the effect of a purely quadratic functional.

The most general exponential functional which involves its argu-
ments purely quadratically is of the form
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Flz(t),2'(t)] = (12.99)

T t
exp {——/0 /0 la(t, t)z@)z(t) + B¢, t)' (t)z' (¢)
+7(t, )x@)a’ (') + 5(¢, )’ (t)z(t)] at’ dt}

for arbitrary and complex! o, 3, 7, and §. The integrals on t/, t are over
the entire interesting range of time, but we always take ¢t > t/. This is no
loss of generality, of course, but it is convenient for later analysis. For
this to be a satisfactory influence functional, we must have from Rule I

B(t,t") = o™ (t,t) (12.100)
and
y(t, t') = §*(t,t) (12.101)

Rule II gives us a great deal of information, for putting z(¢) = z'(¢)
for t > t. and, assuming ¢ > ¢, t’ < t., the expression (which is part of
the integral in Eq. (12.99))

- T/ alt,¥)e(Bat) + AL, )a(t)a () (12102
e, a0 () + 5 ) (D)z(t)] df dt

must be independent of z(t) for ¢ > t. and arbitrary z(¢') and of z'(t')
for t/ < t.. This requires that

5(t,t) = —aflt,t)
’Y(tﬂﬁ,) == _ﬁ(tvt/>

as long as t > t., t' < t.. But since ¢, is arbitrary, Egs. (12.103) must
hold for all ¢, ¢’ (under the continuing restriction ¢ > t').

Therefore, the most general gaussian influence functional depends on
only one complex function a(t,t') and is of the form

Flz(t),2'(t)] = (12.104)

T pt
exp {_/0 /o lo(t, t)x(t) — a™ (¢, t)a'(t)][z(t) — 2'(¢)] dt dt}

(12.103)

1These functions are defined only for ¢ > t/.
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In the case that «(t,t) is real, say A(¢,t'), our functional is equiva-
lent to the exponential of Eq. (12.87), and we have the equivalent of a
noisy classical perturbation. In quantum-mechanical systems « is gen-
erally complex. A special case of importance is when a(t,t") = a(t —t')
depends only on the time difference ¢t — ¢/. We are then dealing with
an environmental system which has average properties independent of
absolute time.

To help understand some of the properties of Eq. (12.104), we shall
ask for the probability that the z system makes a transition from energy
level n to some other orthogonal level m during an interval of time T’
in the case that o is very small and we can use perturbation theory. If
we expand F in Eq. (12.104), the leading term, 1, gives nothing because

the states are orthogonal. The next term, linear in «, has four pieces.
¢

One is — / / a(t, Nz (t)z(t) dt’ dt. When this is substituted for F in

Eq. (12. 89) and the resulting J is used in Eq. (12.83) with 9 = ¢, and
X = ¢, the integral over paths z(t) and «’'(t) is seen to be the product
of two factors. One, the integral over z(t), involves

fora | [ fovemmersa

and when passed through Eq. (12.83) results in the transition element
(see Chap. 7)

<m ]—— /OT/Ot a(t,t)z(t)z(t') dt’ dt

T pt
- / / ot ) (mlz(B)z()|n) dt’ dt

Da(t)

n> = (12.105)

The integral over z'(t) is just [e ~i5[2'l Dy’ and results in the complex

conjugate of the transition element (m|ljn). Analyzing the other three
pieces in a similar way, the total transition probability is

Plo= //0

Y (mlz()z (") |n) (m|1|n)" (12.106)
+olt, t' ) (mlz(8)n)" (m|z(t')In)
a*(t,t) (mlz(t)[n)(mz(t')n)”
o (¢, ¢)(m[1In) (m|z(t)z(t')|n) "] dt’ dt

If m and n are orthogonal, (m|1|n) = 0. If S[z]| comes from a constant
hamiltonian with energy level Ej for state k, then

(m|z(t)|n) = Tppe!Em=En)t (12.107)
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Ouly the middle two terms of Eq. (12.106) survive, and they are complex
conjugates of each other, so that

T pt
P(TL — m) — lemn}Q Re {/ / a(t7t/>e——i(Em-En)(t—t') dt’ dt}
0 J0
(12.108)

Problem 12-3 For m = n, verify P(m - m)=1-3%__ P(m — n)
as required by conservation of probability.

In the case of a time-steady environment a(¢,t') = a(t—t'). Suppose
we define the Fourier transform

a(w) = /O h afT)e” T dr (12.109)

(a(t) is not defined for ¢ < 0.) Then since P(n — m) in Eq. (12.108)
is proportional to the time interval over which the integrals extend, we
can define a rate of transition per second and find the probability of
transition

P(n — m) per second = 2|Tmn|?ar(Em — Ey) (12.110)
where we have broken a(w) into real and imaginary parts
a(w) = ar(w) +iar(w) (12.111)

We may note that, for a disturbance by a classical force under gaus-
sian noise, a(7) is real (see Eq. 12.87) and the real part of a(w) is the
power-spectrum function of the noise as defined in Eq. (12.50). So, for
such classical noise systems

ap(w) = ar(—w) (12.112)
and in first-order perturbation
Rate of transition n — m = Rate of transition m — n (12.113)

and both rates are proportional to the power P(w) at the frequency of
the transition. Thus classical forces have equal probability of causing
transitions up and down.

Another interesting example is when the environment cannot supply
energy with any reasonable probability. For example, it may be initially
in the ground state or at zero temperature. We shall call such an envi-
ronment “cold.” For such a situation transitions of the system x going
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up in energy (Ey,, > E,) are unlikely. Hence for such cold environment
systems

ar(w)=0 forw>0 (12.114)
and for first-order perturbations
Rate of transitionn - m=0 if B, > E, (12.115)

Since any a(w) can be written as the sum of one of the type shown
in Eq. (12.112) plus one of the type shown in Eq. (12.114), it is readily
apparent that any time-independent gaussian functional is equivalent to
a system in some cold environment acted on by a fluctuating classical
force described by a gaussian expression. This conclusion follows from
the fact that the product of any two gaussian functions is also a gaussian
and from rule IV. If the interaction of one environment on the system is
represented by Ai(¢,t') in the manner of Eq. (12.87) and the interaction
of the other environment as A, (¢,t’), then the single interaction term in
the single resulting gaussian functional is A; + As.

INFLUENCE FUNCTIONAL FROM
A HARMONIC OSCILLATOR

We shall next give an example of how F can be worked out from
Eq. (12.90) for an environment consisting of a harmonic oscillator with
coordinates X, in the ground state coupled to z linearly through an

interaction Smt [z(t), X =C f t) dt. We suppose the oscillator
of unit mass and frequency wo, SO that

Solx(8)] = 5 [1C(0) — B x>(e) e (12.116)
Then

Flz(t), z(t)] = (12.117)

;//exp {i/[%Xz(t) — LW2X2(t) + Ca(t) X (1)) di}

exp { /[1X’2(t) LB X2 (t) + Co' () X' (¢))] dt}
x DX () DX'(t)

where m is the final state and the initial state is the ground state. The
integral over X is clearly gaussian, and in fact we have already done it;
for it is exactly the transition amplitude G, worked out in Sec. 8-9 for
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a forced harmonic oscillator. The forcing function there called f(t) is
here Cz(t).1 It is therefore given by Eq. (8.145) with n = 0 or

Gmo = <Z§% Goo (12.118)
with Goo given in Eq. (8.138) and £* in Eq. (8.143) replacing f(¢) b
Cxz(t). Likewise, the integral over X’ is the complex conjugate of a simi-
lar expression but with f(¢) replaced by C'z’(¢) this time. We distinguish
values of this substitution with a prime. Then the sum over final states
in Eq. (12.117) gives us

Z’ﬁﬁﬁ me __?:/8/ .
ZGmOGmO = Z (\/%—! Goc)( \/77—52‘ Ggo = Gooaéoeﬁ v

(12.119)

Substitution from Eqgs. (8.138) and (8.143) produces, as expected, an F'
of the form of Eq. (12.104) but with

tt) = 2 (it 12.120
alt,t') = 2o € (12.120)

For example, the terms in zz’ in Eq. (12.104) come from the 5%’ in the
exponential; for this product by Eq. (8.143) is

02 T iwot T / —iwot
= { / s(t)e dt} [ f o (t)e dt} (12.121)

f / [0 (¢ )0~ o/ (Rt Yo =00~ at
2(4)0

TThe reader may prefer to observe that Eq. (12.117) is
F[:C(t), "B/(t)] = fffK(Xb’ tb§ Xan ta)K/* (Xb7 tb; Xclw ta)¢O(Xa)¢8(Xclz) an dthz de

where K is the kernel of Eq. (3.66) for a forced harmonic oscillator with f(t) = Cxz(t)
and K’ is that with f(t) = Cz'(t). ¢o(X) is the wave function of the oscillator in
the ground state. All variables X,, X/, and X, then appear in a simple gaussian
way and may be directly integrated. We shall then find it as easy to do the finite-
temperature case. For here state n is the initial state with probability proportional
to e PEn  so, in view of rule ITI, the resulting F' is obtained by the expression above
but with the wave functions o (X Yb§ (X ) replaced by

const ¢y (Xg)¢r(Xa)e™PFn

that is, by the density matrix p(X,, X/ ) worked out in Prob. 10-1. The integrations
are again gaussian.
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The quantity a(w) defined in Eq. (12.109) is therefore (see Eq. (5.17)
and the Appendix)

02 o0 ) ) 02
—_ —WoT ,—IWT =~ — | —PP. 5
a(w) o /0 e e dr 5o i P + 18 (wo + w)
(12.122)
so that the real part of a(w) is
2
on(w) = T 5w + w) (12.123)
QWQ

This is zero for positive w. As expected, we have a “cold environment”
as specified in Eq. (12.114).

If many independent oscillators at different frequencies are all acting,
then by rule IV, their ag(w) functions add; so any cold system (to this
gaussian approximation) is equivalent to a continuum of oscillators in
their ground state. This follows, since any function ag(w), for negative
w, can be built up of delta functions of the form of Eq. (12.123).

Another interesting example is the interaction with an oscillator at
finite temperature. If the temperature is 7', the initial state is energy
state n with relative probability e=%=/kT . For our case, the absolute
probability is

wy, = e~ "Pwo/KT /(1 _ g=hwo/KT (12.124)
If the initial state were n, the influence functional would be

F,=Y GG, (12.125)

instead of the form in Eq. (12.119). Using rule III, we add these with
probabilities w,, so our final F is

F =Y GppGe MwolFT [(1 — emhwo/kT) (12.126)
The sum is difficult to work out directly from Eq. (8.145), but it is

By . o /B__ ﬁ/)(ﬂ* _/6/*)
F = GyoGhe® ? exp {—< Y (12.127)

The ag(w) that results from this in place of Eq. (12.123) is

71..02 { eﬁLU()/k)T

2 | eror — oW @)+

ar(w) = 15(w0 — w)} (12.128)

and sums of such expressions of many oscillators constitute the environ-
ment. Now transitions can go down in energy (w < 0) or up in energy.



12-9 Influence functional from a harmonic oscillator 355

We note that if w > 0, the first delta function fails, whereas if w < 0,
the second fails, and that indeed
ag(—|w|) = MNP g (+|w|) (12.129)

This definite relation means that in perturbation theory, if £, > E,,

probability per second of a transition up (m — n) —(Bn—En) /T
ot 6 k22 m
probability per second of a transition down (n — m)
(12.130)

by using Eq. (12.110).

Thus, if the system z occupies states n with relative probabilities
e~ En/kT the net number of up and down transitions will balance out and
the system will be in statistical equilibrium for weak perturbation with
the environment. This is just what we expect for the laws of statistical
equilibrium. Any environment at temperature T producing a quadratic
influence functional will have the property of Eq. (12.129).

For an atom as system z in interaction with the electromagnetic field
at temperature T' as the environment, ar(w) is given by an expression
like Eq. (12.128) integrated over all the modes of the field of various
frequencies wp. It can be split into the cold environment of Eq. (12.123)
plus a noisy external force:

B 7C? 1

ap(w) = — |6(wo + w) + TRoolkT 1

- (50 + ) + (o — )]

(12.131)

The first term produces only transitions down in energy and is called
spontaneous emission. The second produces transitions up and down
with equal ease and is called induced emission or induced absorption.
We say that the transition is induced by an external force or noise
whose mean-square strength at frequency w varies with temperature as
1/(e™/®T _ 1), This is the way Einstein first discussed the blackbody-
radiation laws. As we see here, any environment giving a quadratic
influence functional at temperature 7' (we say it is an environment re-
sponding linearly) can be treated in the same way. Many people have
extended Einstein’s argument to other systems, like the voltage fluctu-
ation noise in a resistor at temperature 7. The first term measures the
rate at which energy is taken out of our system z in a one-way manner.
It measures the amount of “dissipation” produced by the environment
(e.g., electrical resistance of a metal or radiation resistance of the electro-
magnetic field). At temperature 7' we can then say that things behave
as if, in addition to the dissipation, there is a noisy signal generated by
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the environment whose mean square at each frequency is proportional
to the dissipation at that frequency and to 1/(e™/*T —1). This is called
the dissipation-fluctuation theorem.

We cannot pursue this subject further here.!

CONCLUSIONS

In these applications of path integrals to probability theory it is evident
that, if the integrands are gaussian, we can make considerable use of
the technique. But these problems are precisely those for which other
methods, not requiring path integrals, are also available to solve the
problem. One may reasonably question the real utility of the path inte-
grals. We can only say that if the problem is not gaussian, it can at least
be formulated and studied by using path integrals — and that we might
hope that someday, when the techniques of analysis improve, more can
be done with it. The only example of a result obtained with path inte-
grals which cannot be obtained in simple manner by more conventional
methods is the variational principle discussed in Chap. 11. We hope
that further study of these methods may yield more such results.

In the meantime, however, it is worth pointing out that the path
integral method does permit a rapid passage from one formulation of
a problem to another and often gives a clear or quick suggestion of
a relation which can then be more slowly derived in a more ordinary
fashion.

With regard to application to quantum mechanics, path integrals
suffer most grievously from a serious defect. They do not permit a dis-
cussion of spin operators or other such operators in a simple and lucid
way. They find their greatest use in systems for which coordinates and
their conjugate momenta are adequate. Nevertheless, spin is a simple
and vital part of real quantum-mechanical systems. It is a serious limita-
tion that the half-integral spin of the electron does not find a simple and
ready representation. It can be handled if the amplitudes and quantities
are considered as quaternions instead of ordinary complex numbers, but
the lack of commutativity of such numbers is a serious complication.

1The subject of influence functionals is discussed in detail by R.P. Feynman and
F.L. Vernon, Jr., The Theory of a General Quantum System Interacting with a
Linear Dissipative System, Ann. Phys. (N.Y.), vol. 24, pp. 118-173, 1963, and by
W.H. Wells, Quantum Formalism Adapted to Radiation in a Coherent Field, Ann.
Phys. (N.Y.), vol. 12, pp. 1-40, 1961. An application to calculation of mobility of
the polaron is in R.P. Feynman, R.W. Hellwarth, C.K. Iddings, and P.M. Platzmann,
Mobility of Slow Electrons in a Polar Crystal, Phys. Rev., vol. 127, pp. 1004-1017,
1962.
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Nevertheless, many of the results and formulations of path integrals
can be reexpressed by another mathematical system, a kind of ordered
operator calculus.' In this form many of the results of the preceding
chapters find an analogous but more general representation (only for
the special problems of Chap. 11 is the generalization not known) in-
volving noncommuting variables. For example, in this chapter discussing
influence functionals it must have struck the reader that an environment
coupled not to the coordinate z but to a noncommuting operator, such
as the spin, would be an important and interesting generalization. Such
things cannot be conveniently expressed in the path integral formulation
but can be easily expressed in the closely related operator calculus.

An effort to extend the path integral approach beyond its present
limits continues to be a worthwhile pursuit; for the greatest value of
this technique remains in spite of its limitations, i.e., the assistance
which it gives one’s intuition in bringing together physical insight and
mathematical analysis.

IR.P. Feynman, An Operator Calculus Having Applications in Quantum Electro-
dynamics, Phys. Rev., vol. 84, pp. 108-128, 1951.






Appendix

Some Useful Definite Integrals

> eaa:2+bcc dr = _7_1-_6-—62/4a (Al)
—oo —a

for Re{a} <0 but a #0

° 2 p(go—m - ab
[m (@1 —x)” b(w2 )2 d — p— exp { — b(xl . :1;2)2} (A.Q)
for Re{a+b} <Obuta+b#0
/ exp {i—% + ibxz} dx =4/ % exp{i2v/ab} (A.3)
0

for a, b real and positive

/OTexp{TifT + -Z-;} ——(—\/_jfl%_————;g = %exp{%(\/g+ \/5)2}

for a,b real and positive (A.4)
/Texp{ ia +z’b} dr
_ o~ 3
0 T—r 7 [ (T — T)T}
_ Jim Ja+ Vb i 2
V= o eXp{T(\/a+\/5) } (A.5)
for a,b real and positive
71’/2 . 2
/ 690 sin(20) do = —[(q — De” +1 (A.6)
0
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/ eP 5% gin(psin x) sin(ax) dz

[aw]

_ mp®
24!

/ eP °°5% cos(psin x) cos(ax) dx
0

/OO 2k dr = /\ (k+1)/mp k+1
0 m m

fork>-1, A>0, m>0
m .
/ et dt = 276 (w)

3
/f(k) s - % Zf(k) [see Sec. 4-3]
I

(2m)°

ty pt ity ply
/ f(t,s) det:/ f(s,t)dsdt
ta Jta to V1

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)



Appendix

Notes

These notes were added by the editor to explicate, amplify, or update
the book’s discussion. A relevant note is signaled in the text through
the symbol®.

Throughout: The book is often careless in distinguishing between
“probability,” “relative (i.e. unnormalized) probability,” and “probabil-
ity density”. Similarly for amplitude.

Page 3: In this book a sequence of two events is labeled as a (ini-
tial) to b (final); a sequence of three events is labeled as a to ¢ to b; a
sequence of four events is labeled as a to d to ¢ to b; and so forth. This
scheme for inserting intermediate events proves its value many times.
(See particularly pages 21 and 126.)

Page 3: “This particular experiment has never been done in just
this way.” This statement was true at the date of publication (1965).
The remarkable experimental progress since that date can be glimpsed
through the following publications:

Claus Jonsson, “Elektroneninterferenzen an mehreren kiinstlich her-
gestellten Feinspalten,” Zeitschrift fir Physik 161 (1961) 454—
474. Translated as “Electron diffraction at multiple slits,” Amer-
ican Journal of Physics 42 (1974) 3-11. (Wave-like properties of
electrons.)

A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa,
“Demonstration of single-electron buildup of an interference pat-
tern,” American Journal of Physics 57 (1989) 117-120. (Simul-
taneous wave-like and particle-like properties of electrons.)

Movies of the above experiments are at
<http://www.hqrd.hitachi.co.jp/em/doubleslit.cfm>.

R. Géhler and A. Zeilinger, “Wave-optical experiments with very
cold neutrons,” American Journal of Physics 59 (1991) 316-324.
(Wave-like properties of neutrons.)
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Olaf Nairz, Markus Arndt, and Anton Zeilinger, “Quantum inter-
ference experiments with large molecules,” American Journal of
Physics 71 (2003) 319-325. (Wave-like properties of Cgg.)

Michael S. Chapman, David E. Pritchard, et al., “Photon scatter-
ing from atoms in an atom interferometer: Coherence lost and
regained,” Physical Review Letters 75 (1995) 3783-3787. (Ob-
serving atoms as they pass through the double slits, as discussed
on page 7 of this book.)

E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky,
“Dephasing in electron interference by a ‘which-path’ detector,”
Nature 391 (1998) 871-874. (More on observing electrons, as or
after they pass through the double slits.)

Paul R. Berman, editor, Atom Interferometry (Academic Press, San
Diego, 1997).

Helmut Rauch and Samuel A. Werner, Neutron Interferometry: Les-
sons in Experimental Quantum Mechanics (Oxford University
Press, New York, 2000).

Page 21: In the generalization to time, it helps to think of the holes
in Fig. 1-9 as being covered by shutters that open only during specific
time intervals. Then a path is specified by a prescription like “through
hole E, at time slice 17, then through hole D3 at time slice t29,” etc. In
the limit that the screens are drilled away to nothingness, the shutters
are always open.

Page 22: Feynman’s hunch was wrong: in fact other consistent
interpretations are possible. One such alternative is the de Broglie-
Bohm formulation, described in

David Bohm and B.J. Hiley, The Undivided Universe: An Ontological
Interpretation of Quantum Theory (Routledge, London, 1993).

Page 23: The desired “statistical mechanics of [the] amplifying ap-
paratus” is being worked out under the name of decoherence. The vast
technical literature of this field is best approached through

W.H. Zurek, “Decoherence, einselection, and the quantum origins of
the classical,” Reviews of Modern Physics 75 (2003) 715-775.
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Page 26: The entity called the kernel here is more often called the
“propagator” or the “Green’s function.” See, for example,

L.S. Schulman, Techniques and Applications of Path Integration (Wi-
ley, New York, 1981).

Hagen Kleinert, Path Integrals in Quantum Mechanics, Statistics,
Polymer Physics, and Financial Markets, third edition (World
Scientific, River Edge, New Jersey, 2004).

Page 28, problem 2-2: Hint: This problem can be solved directly,
but it is easier if you first integrate by parts to prove the theorem that,
for a harmonic oscillator,

Sa = 5 l2(t)a(0)]3: -

Page 28, answer to problem 2-3: If T'=t, — t,, then

m(xp — Tg)? N fT(zo +2a) 213

Set = oT 9 2dm

Page 33, equation (2.22): (1) This kernel has dimensions 1/[length].
More generally, in s-dimensional configuration space the kernel has di-
mensions 1/[length]®. (2) The factor A is a complex quantity with phase
7/4 and the dimensions of length. (3) In contrast to the situation for the
Riemann sum, the path integral normalizing factor A=Y goes to infinity
as € — 0 and the subset of paths becomes more representative. (4) We
don’t really sum over all paths, but over all paths moving forward in
time.

Page 47: Sections 3-2 and 3-3 can be skipped on a first reading.

Page 56, equation (3.40): This probability density is unnormal-
ized. (As reflected by the fact that it has the wrong dimensions!) The
normalized version, which is used in Fig. 3-6, is

P(&) = g (IC(us) = Cuo)? + S(uy) = S(u-)P).

Page 63, equation (3.60): This expression is correct in magni-
tude, but the phase (i.e. the branch of 31/ 2) is ambiguous. The correct
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expression (see for example N.S. Thorber and E.F. Taylor, “Propaga-
tor for the simple harmonic oscillator,” American Journal of Physics 66
(1998) 1022-1024) is

' o 1/2
e~ <———-———~) where @ =

T/m)|.
2T ST [1+ 2 trunc(wT/)]

s

Here “trunc” denotes the “truncation” function: trunc(z) is the largest
integer less than or equal to z.

Page 64, problem 3-10: Hint: First prove that, for this system,

So = = [ad + yy + £2t] i”

2

Page 98: The argument leading from the probability density (5.4)
to the wave function (5.5) is suggestive, not definitive. Any argument
of this sort cannot uncover the phase of the wave function. This phase
might be a physically insignificant constant ¢%?, in which case ignoring it
would be perfectly permissible. But the phase factor might be a function
of momentum e*® | which does not change the probability density for
momentum, P(p), but which can dramatically change the probability
density for position, P(x).

Page 107: The argument leading from the probability (5.23) to the
amplitude (5.25) has the same defect remarked upon in the previous
paragraph.

Page 130: We distinguish between the arbitrary field point r and the
location of the particle x within that field. In chapter 6 this distinction
is largely pedantic, but in chapter 9 (Quantum electrodynamics) it is
essential.

Page 142 equation (6.62): This result holds in the limit of long

2
2 mRbc

m
times -———T—— — 0. Hint: Use the substitution z© = ———, and then

equatlon (A 3).
Page 204: This kernel has dimensions 1/[/mass x length]”.

Page 217, problem 8-4: Hint: First show that (for N odd)

(N=-1)/2

S @) - wA(@0)* + (@2)* - W@

a=1

l\')]i—*

L= (@87 +
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Page 217, problem 8-5: It is also worth showing that

(®ol(@a)"[®o) _ {Pol(@e)"[®o) _ { 0 for 7 odd
(Do|1|®0) (®o|1|®0) (n — DIN(A/2w,)™/? for n even

Page 218: Explicitly, in sums over £ (as in equations 8.89 and 8.93),

N N-1
Zf(k) means az::o f (%a) :

k=1

Page 233, equation (8.138): This equation is often written in the
form (obtained through the use of equation A.12)

1 T pT '
GOO:eXp{~4th/O/() f(t)f(s)e’w‘t_s|dsdi}

Page 236: Caution! Do not attempt this chapter without first
reading chapter 8 (Harmonic oscillators) and working problems 8-3, 8-4,
and 8-5. Do this even if you think you aren’t interested in harmonic
oscillators, and even if you think you already know all about them.

Page 247: The normalization, spelled out in more detail, is
// 5(ay 1er» g 1 )01 187 1P (81 15 d?,k’)g day g dlig 1 -

Page 252: For polarization 1, this manipulation results in (using
t =t., s = tq, so that we have our usual sequence of a to d to ¢ to b)

L_ @ N e —ike(te—ta) = =
A =5 )25 /t dte | dtgetheltemta) - / d, / dz g4
k a N —00 -0

ta

x 8_(i/h)EM(tb_tc)¢7\/[ (XC)jl,k<XC) tc)d)N (Xc)
% g~ (#/M)EN (tc—td)wj*v(xd>5i‘)k<xd} tde (Xd)e—(i/h)EL (ta—ta)

Page 309, equation (11.41): The numerator is the kernel from z,
to . at “time” U, times f(xz.), times the kernel from z. to z; at “time”
0, integrated over all possible values of z.:

/ k(xp, B; 55'0)77').}0(3;0)]?(3307&5 Ta,0) dzc.

Then use expression (10.32) for the kernel.
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absorption, 153, 355
acceleration, 166, 174, 175
action, viii, 26—28
electromagnetic, 240242
alternatives, 14
amplitude, 6, 19-22, 24, 29, 86, 361
general measurements, 106-109
momentum amplitude, 96-101
scattering, 140, 142
to be in a state, 108
to have a property, 107
amusement, 276
annihilation, 232
approximation of continuity, 218-222
asymptotic series, 141
atomic potential, 130-141
average
of exponential, 283, 301
of measured quantity, 112
weighted, of potential, 305

Bethe, H., 256, 257
blackbody radiation, 295, 355
Boltzmann’s constant, 268
Boltzmann, L., 277

Born approximation, 128-131, 147, 169,

170
Born expansion, 128
Bose field, 231
Bose, Satyendra Nath, 16
boson, 16, 231, 244, 288-293
boundary conditions, periodic, 92-93,
213
box, for normalization, 89-92
brownian motion, 165-166, 337-341

calculus of variations, 26-28

central-limit theorem, 332
characteristic function, 325

of measurement, 106-112
characteristic functional, 326
charge density, 237
chemical constant, 279, 291
classical limit, 29-31
classical path, 26, 29-31, 59
cold environment, 352
commodity pricing, 323
communications, theory of, 330
commutation laws, 115-116, 176
completeness, 83, 85, 87, 116
complex conjugate of wave function,

109
Compton wavelength, 245
configuration integral, 278
conservation of probability, 82-84
constant field, 64
continuum, 150-151
coordinate space compared to momen-
tum space, 101

correlation function, 333-335
Coulomb potential, 137, 239
coupling coeflicient, 70
creation, 232
critical temperature, 292, 293
cross section, 135-143, 152
crystal, 198, 212-217, 224-229

polar, slow electrons in, 310-320
current density, 237
cutoff rule, 245, 255, 258-260

DC voltage, 329, 332
Debye, P., 295
degenerate Fermi gas, 293-294
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degenerate perturbation theory, 159,
160
delta + function, 260, 263, 264, 360
density matrix, 273
density of levels, 151
diffraction, 133
electron, 140
of particles, 47-57
dipole approximation, 250
Dirac delta function, 53, 87, 102-105,
114, 281
Dirac equation, 23, 36, 237, 255, 256,
258, 264
Dirac, Paul A.M., viii, 113
dispersion, 222, 225
dissipation-fluctuation theorem, 356

effective width of diffracting slit, 49—
52
Ehrenfest theorem, 175
eigenfunction, 115, 146
eigenvalue, 115
Einstein, A., 295, 355
elastic collision, 131
elasticity, 220, 224
electric dipole, 250
electromagnetic field, 39, 64, 79, 189—
192, 236-265
electromagnetic mass correction, 254
electrons in metal, 293
emission, 153, 248-250, 260-262, 355
energy, 28, 45-47, 53
and frequency, 45-47
correction, 253-256
expansion of kernel, 116-117
rest, 256
shift, perturbation, 159-161
thermodynamic, 269
energy state, 84-89, 116
energy-time transformation, 102-105
entanglement, 67-68
entropy, 272
of mixing, 291
environment, 344
cold, 351
time-steady, 351
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exchange, 293

exclusion principle, 16, 231

exclusive alternatives, 14

expectation value, 217

expected value for measurement, 112,
217

extremum, 26-28, 59

Fermi field, 231
Fermi, Enrico, 16
fermion, 16, 231, 244, 288-294
fine-structure constant, 252
force, 175, 270
external, 345
forced harmonic oscillator, 64, 70-71,
181, 232-234
form factor, 138
four-dimensional symmetry, 237, 258
Fourier series, 71-73, 337
Fourier transform, 101, 153, 219, 226,
314, 325, 334-336, 351
as energy-time transformation, 105
free energy, approximate, 284, 302
free energy, Helmholtz, 268
free particle, 42-47, 102, 120
relativistic, 35-36
frequency
and energy, 4547, 53
of wave function, 84—-86
Fresnel integrals, 49, 55-57
Frohlich, H., 310, 317
functional, 35, 68
functional derivative, 170-173

gaussian distribution, 52
gaussian function, 49, 52
gaussian integral, 42, 5862
gaussian noise, 329, 332-334
gaussian slit for diffraction, 49-54
Geiger counter, 3
gravitational effects, 245
Green’s function, 82, 274, 363
ground state
electrodynamics, 244-247
line of atoms, 222-223
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Haga, E., 318 kinetic energy

hamiltonian, 79 transition element of, 178-179
constant, 147, 308 Kronecker delta, 86, 208
time-independent, 84
with vector potential, 192 lagrangian, 26

harmonic oscillator, 28, 63, 65, 71-73, electromagnetic, 64, 79
183, 198-234, 276, 286, 313 general quadratic, 58

damped, 337 Lamb shift, ix, 253, 256-260
field as, 65, 69, 198, 221, 229, 232, Lamb, W., 253, 256
238, 243 Laplace, P.-S., 2
forced, 64, 70-71, 181, 232-234 lattice vibration, see phonon
independent, 209-211 least action, principle of, 26
influence functional, 352-356 electromagnetic, 240-242
interacting, 205 Lee, T.-D., 318, 319
interacting with particle, 69-71 lifetime, 161
heat, 270-272 linear operator, 114, 116
Heisenberg, W., 9, 161 liquid helium, 16, 287-294
Helmholtz free energy, 268 loose language, 108, 136-137, 147, 157,
Helmholtz, Hermann von, 268 166

Hermite polynomials, 199-200, 203

hermitian operator, 82, 86, 114, 188  magnetic analyzer, 45, 100

hypercomplex number, 6, 23 magnetic field, 64, 79, 300, 308
mass, experimental, 256, 257

identical particles, 14-18, 231, 243- mathematical rigor, 93-94, 170

244, 287-295 matrix element, 145

independent systems, 66-68 for transition, 151, 154, 157
influence functional, 344-356 Maxwell’s equations, 23, 230, 237-240
integral equation, 126, 129, 146 least-action principle for, 240-242
interaction, 125, 130 Maxwell, J.C., 23

of matter with field, 247-253 mean lifetime, 161

of particle with oscillator, 169 measurement, 96-113

of systems, 66 and probability, 106-112
interference, 2-6, 14, 56 measuring equipment
interfering alternatives, 14 for momentum, 45, 96-100
interpretation, 22 in general, 106-109
inverse transformation, 111 meson, 23, 24, 231, 254~256, 260
irregular path, 176-177 minimum principle, 300-303

mode, 205
jacobian, 72-73, 209, 337 molecule
diatomic, 139, 140, 198

kernel, 26, 28-29, 109, 363 polyatomic, 140, 198, 203208

energy representation, 102-105 moment-generating function, 325

free particle, 42
in terms of energy states, 88
momentum representation, 101-102
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momentum, 28, 44-45, 47, 53
amplitude, 96-102
and wavelength, 44-45
functional, 187
measurement of, 96-100
of photon, 242
operator, 116, 185-187
representation, 96-102, 185
space, 98
transition element for, 184-189

Newton’s law, 175, 251
noise, 153, 327-336
classical, 351
correlation function of, 333
gaussian, 329, 332-334
nonrelativistic approximation, 237
normal coordinates, 208-211, 216-217
normal distribution, 50, 52, 331, 332
normal mode, 205-208, 295
normalization
avoiding, 60, 62, 72, 134, 247, 281,
284, 315, 316, 325, 337
of wave function, 82, 86, 89-94, 244
statistical mechanics, 268
normalizing factor, for path integral,
29, 32-33, 61, 78, 178, 193—
195, 209, 215, 275

observation, 7-13

operator, ix, 79-82, 112-117, 170, 184~
189

orthogonal functions, 86

orthonormal functions, 86

particle, 2, 3
partition function, 268-273

for bosons, 289, 291

path integral for, 276, 280, 287
path, 20-22

irregular, 176-177

369

path integral, 35
benefits of, ix, 357
disadvantages of, viii, 39, 83, 294,
337, 356
double, 342-345
field variable vs. normal coordinate,
228, 236
Pauli, W., 16
Pekar, S.I., 319
periodic boundary conditions, 92-93,
213
periodic paths, 284-285
permutation, 288-293
perturbation expansion, 120-129
degenerate, 159, 160
time-dependent, 144-161
time-independent, 159-161
perturbed potential, 125
phase
change of, 45
of path, 29
phase transition, 278-279
phonon, 222, 231, 294, 295, 313
photoelectric effect, 153
photon, 231, 243
Pines, D., 318, 319
pion, 231, 254, 260
Planck’s constant, 10
Planck, M., 243, 295
Plesset, M.S., 230
Poisson distribution, 323
polar crystal, slow electrons in, 310-
320
polarization
of light waves, 243
of vibration waves, 224
polarization, of dielectric, 311
polaron, 310-320, 356
position measurements, 96
positron, 39, 240
potential energy, 26
effective, 286
expansion for, 62
in momentum representation, 102



370

power
mean, 335
noise, 153
spectrum, 334
pressure, 270
principal part of integral, 103-105, 156—
157, 253, 360
principle of least action, 26
electromagnetic, 240-242
probability, 2, 19, 361
distribution, 323
of a function, 323
of transition, 148-152, 248-250
relative, 43, 51
probability amplitude, 6
product
of amplitudes, 38
of momenta, 179, 195
of position and momentum, 176
of positions, 181
propagator, 363
pulses, random, 322-324

quadratic actions, 182184

quadratic functional, 184

quantum electrodynamics, viii, 65, 69,
236-265

fundamental assumption, 230, 240,

243

quantum field theory, 69, 229-232

quaternion, 356

radiation field, 242

Rayleigh-Ritz method, 307-310

relativistic symmetry, 237, 258

relativity, 35-36, 39, 102, 139, 229-
232, 236-265

resonance, 161

retarded waves, 251

Retherford, R.C., 253, 256

rigor, remarks on, 93-94, 170

root-mean-square (rms) deviation, 52

Rutherford cross section, 137

scalar potential, 79, 189, 237
scattering, 14-18, 121-153
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Schrodinger equation, 22-24, 58, 76—
82, 129, 195
Schrodinger, E., 79
Schultz, T.D., 319
Schwinger, J., 173, 258
separable systems, 66-68
solid state physics, 279, 293, 295
sound, 225
speed of, 222
spherical coordinates, 173
spin, 6, 15, 23, 39, 231, 255, 264, 289,
300, 356
standard deviation, 50
state, 57-58
energy, 84-89, 116
entangled, 67—68
not definable, 71
stationary phase, method of, 132
statistical mechanics, 150, 268—-298, 341
356
steady state, 84-89, 116
succession
events occurring in, 36-39
of velocities, 189
sum over paths, 29, 31-35
superconductivity, 294
swimming, 296
symmetry, of crystal, 224

temperature, 268, 348, 353
critical, 292, 293
thermal equilibrium, 269
tightrope, logical, 13
time-of-flight, 96
to measure energy, 130
to measure momentum, 96, 100, 141
trace, 273
transformation
energy-time, 102-105
of coordinates, 68
transformation function, 96, 111-112
transition amplitude, 109, 144, 165,
168, 202
for hamiltonian, 192-195
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transition element, 165, 217, 350
powers of velocity, 179
product of positions, 181
transition element to operator rule, 188
transition probability, 248-250
traveling wave, 222
trial action, 308

uncertainty principle, 9-13, 52, 54, 176
time-energy, 85, 148, 161
unit cell, 224

vacuum energy, 244-246

variational principle, 296, 303-310
vector potential, 79, 189-192, 237
velocity, mean-square, 176-179
virtual state, 157-158

Vol, 89

volume, as normalizing factor, 93-94

wave, 2
wave function, 57-58
complex conjugate of, 109
entangled, 67-68
not definable, 71
wavelength and momentum, 44-45, 47,
54, 99
weighted average, 166
Weisskopf, V.F., 256
white noise, 153, 332
WKB approximation, 63
work, thermodynamic, 269-270

X-rays, scattering of, 138








