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On the role of the constant
term in linear regression

Jarkko Isotalo Simo Puntanen George P. H. Styan

Abstract. In this paper we comment on the role of the constant term in linear
regression, with particular emphasis in teaching statistics. The constant term
corresponds to a variable whose observed values are all identical and hence
its variance is zero. Hence students might wonder if such a variable is indeed
a proper variable. We go through some important geometric considerations
and comment on various models and the role of the constant term therein.
A numerical example run in the Survo computing environment, see e.g.,
Mustonen (2001), illustrates our comments.
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1 . . . Life gets troublesome

Let us begin by quoting the following e-mail correspondence which took place
in May 1996, almost 10 years ago. (The mathematical symbols are coded in
LATEX.)

Date: Wed, 15 May 1996
From: "Simo Puntanen" <sjp@uta.fi>
To: "David A. Belsley" <belsley@bc.edu>
Subject: high correlation

Dear Professor Belsley,

I’d like to bother you with the following simple question: on page 20
of your book, you say that “. . . a high correlation surely implies a low
angle. . . ”

I’m afraid that I have misunderstood something since it is easy to
find an example where correlation is high but the angle is not low.
Take x = (1,1,1.01)′, y = (1,0,−1)′, and then cor(x,y) = −.866 but
cos(x,y) = −.004. Clearly I have missed something?

With best regards, Simo P.
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Date: Wed, 15 May 1996 11:06:40 -0400 (EDT)
From: "David A. Belsley" <belsley@bc.edu>

Dear Simo P.,

Ah, you must be a mathematician or a statistician to think that −.866 is
a high correlation. In the world of collinearity, that is pretty good; life
doesn’t get troublesome until the correlations are at least .96. And what
I mean by a “high” correlation is really more like .99 or higher. You will
note that this notion is made very clear as the monograph progresses.

Best wishes, David A. Belsley

Date: Wed, 15 May 1996 20:18:23 -0400 (EDT)
From: "David A. Belsley" <belsley@bc.edu>

Dear Simo P.,

I was entirely too quick and too flip in my previous answer to you.
You are absolutely correct. It is quite possible for two variates to be
perfectly correlated, yet also be orthogonal, i.e., perfectly conditioned.
Your example comes very close. Letting x = (1,1,

√
2)′ and y = (−1,−1,√

2)′ comes right on the button. These have correlation 1 and cos 0.
I was also too quick in my book, giving away more than need be

by following conventional wisdom, which, in this case, is wrong. It is
indeed clear that correlation and conditioning are neither necessary nor
sufficient to one another – which wonderfully strengthens my argument.
For it is equally clear that two variates, such as exemplified above, do
very well as regressands (without the constant term), even though they
are perfectly correlated. [Note, however, that in situations like this, if you
include the intercept (a column of 1s), the data become ill-conditioned
and not suitable for regression.]

I thank you for pointing this out; strangely you are the first to do so.
I know why I failed to pursue this issue further, because it was already
clear that high correlation is not a suitable diagnostic for conditioning,
and your example furthers this point.

Sincerely, David A. Belsley

2 Numerical illustration through Survo

The correspondence above is a lesson in itself. It illustrates how carefully we
should proceed in the world of collinearity.

While teaching concepts related to regression and correlation, it is ab-
solutely necessary to illustrate these concepts using geometric arguments.
Students should realize that the sample correlation coefficient is the cosine
between two specific vectors: these vectors are the centered values of cor-
responding variables. It is essential to observe that these vectors must be
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centered, or in geometric terms: the original vectors must be projected onto
the plane which is orthogonal to the vector of ones; we denote this vector as
1 (or 1n).

It is precisely due to this centering requirement that the concept of high
correlation (absolute value) and high cosine (low angle) do not go hand-in-
hand.

In his excellent book, Professor Belsley (1991, p. 20) has an illustrative
example of the situation where the correlation is zero but the cosine is very
close to 1. We go through this example using Survo, a statistical software
developed by Professor Seppo Mustonen, see, e.g., Mustonen (2001). The
calculations are shown in the example below.

The fundamental concept in Survo is the edit field. The user works with
Survo by typing text in the edit field and by activating various commands and
operations within the text; in the Example, these activated operations (except
lines 11 and 12) are emphasized as a white text in a black background.

Between lines 20 and 24, we define a 3× 2 matrix B. Then, a 3× 4 matrix
A is created so that the first two columns of A comprise B, while (in view of
line 28) the last two columns of A include the values of variables U and V ;
they are functions of variables X and Y and a real number eps.

When line 36 is activated, the correlation matrix of all four variables will be
calculated. We see at once that the correlation between U and V is zero. On
line 45 we have calculated the cosines. In this situation cos(U,V) is extremely
close to 1 (even though these variables are uncorrelated).

On line 54, the cosine cos(U,V) is expressed as a function of eps. We
immediately confirm that cos(U,V) can go through all values when eps varies,
but at the same time cor(U,V) = 0 (except when eps = 0; then cor = 0/0).

3 Introduction

The linear model that we are considering can be written as

y = Xβ+ ε = β01+ β1x1 + · · · + βkxk + ε, (3.1)

or in other notation, M = {y, Xβ, σ2I}, where E(y) = Xβ, E(ε) = 0, and
cov(y) = cov(ε) = σ2I. Vector y is an n× 1 observable random vector, ε is
an n× 1 random error vector, X is a known n× p model matrix, β is a p × 1
vector of unknown parameters, and σ2 is an unknown nonzero constant. By
E(·) and cov(·) we denote the expectation vector and the covariance matrix,
respectively.

We will use the symbols A′, A−, A+, C(A), C(A)⊥ and r(A) to denote,
respectively, the transpose, a generalized inverse, the Moore–Penrose inverse,
the column space, the orthogonal complement of the column space, and the
rank of the matrix A. Furthermore we will write PA = AA+ = A(A′A)−A′ to
denote the orthogonal projector (with respect to the standard inner product)
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   -  - SURVO MM  Tue Mar 15 13:14:01 2006     C:\SP\D\   2000  100 0 

  10 *

  11 * EXAMPLE:   Correlation is 0 BUT cosine is 0.999999999 
  12 *            IN THE WORLD OF COLLINEARITY ...  
  13 *  Belsley (1991, p.20): Conditioning Diagnostics. Wiley.

  14 *   Let  X and Y be centered vectors such that X’Y = 0.

  15 *   Let us define variables U and V so that

  16 *   U=1+eps*X, V=1+eps*Y, where eps is a real number.

  17 *  (a) What is cor(U,V)? 

  18 *      This is 0 for all nonzero eps, since cor(X, Y) = 0

  19 *  (b) What about cos(U,V)? 

  20 *MATRIX B

  21 *///     X    Y

  22 *  1     1    1

  23 *  2    -1    1

  24 *  3     0   -2

  25 *

  26 *MAT A!=ZER(3,4)    / creates a 3 by 4 matrix (full of zeros)
  27 *MAT A(1:3,1:2)=B   / first two columns = B
  28 *MAT A(1:3,3:4)=CON(3,2)+eps*B / eps=0.001
  29 *MAT LOAD A                    / Last two cols are U and V
  30 *MATRIX A

  31 *///             X        Y        U        V

  32 *  1       1.00000  1.00000  1.00100  1.00100

  33 *  2      -1.00000  1.00000  0.99900  1.00100

  34 *  3       0.00000 -2.00000  1.00000  0.99800

  35 *

  36 *CORR A.MAT   / calculates the corr-mtx, saves it as CORR.M
  37 *MAT LOAD CORR.M 
  38 *MATRIX CORR.M

  39 *///             X        Y        U        V

  40 *X         1.00000  0.00000  1.00000  0.00000

  41 *Y         0.00000  1.00000 -0.00000  1.00000

  42 *U         1.00000 -0.00000  1.00000 -0.00000 

  43 *V         0.00000  1.00000 -0.00000  1.00000

  44 *

  45 *MAT COS!=(NRM(A))’*NRM(A) / NRM scales the lengths
  46 *MAT LOAD COS              / of columns to 1
  47 *MATRIX COS

  48 *///             X        Y        U        V

  49 *X        1.000000 0.000000 0.000816 0.000000

  50 *Y        0.000000 1.000000 0.000000 0.001414

  51 *U        0.000816 0.000000 1.000000 0.999999 

  52 *V        0.000000 0.001414 0.999999 1.000000

  53 *

  54 *GPLOT Y(eps)=n/SQRT((n+a*eps^2)*(n+b*eps^2)) / a=X’X b=Y’Y

                          cos(U, V) as a function of EPS, cor(U, V)=0

-10 -8 -6 -4 -2 0 2 4 6 8 10  EPS
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1 
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onto C(A). By (A : B) we denote the partitioned matrix with A and B as
submatrices.

Our model matrix above is

X = (1 : x1 : . . . : xk) = (1 : X0), p = k+ 1, (3.2)

where X0 is an n× k matrix. Denoting J = P1 = 1
n11′ and C = I− J, where C

is a centering matrix, we get

T = (X0 : y)′C(X0 : y) =
(

X′0CX0 X′0Cy
y′CX0 y′Cy

)
=
(

T1 t2
t′2 tyy

)
, (3.3)

and hence the sample covariance matrix and sample correlation matrix of
variables x1, x2, . . . , xk, y are

S = 1
n−1T =

(
S1 s2
s′2 s2y

)
, R =

(
R1 r2
r′2 1

)
. (3.4)

We will use the notation H = PX (= hat matrix), and M = I − H, thereby
obtaining the ordinary least squares (OLS) estimator of Xβ as

OLSE(Xβ) = Xβ̂ = ŷ = Hy = PXy, (3.5)

where β̂ is any solution to the normal equation X′Xβ = X′y. The correspond-
ing vector of residuals is

res(M) = e = y− Xβ̂ = y−Hy = My. (3.6)

One particular model deserves special attention: if the model matrix X has
only one column and that column is 1, then we have the very simple basic
model M0 = {y, 1β0, σ2I}. Under M0 we have OLSE(1β0 |M0) = Jy = ȳ1,
where ȳ = 1

n
∑n
i=1yi; the residual vector is the centered y:

res(M0) = y− Jy = Cy = ỹ. (3.7)

The four orthogonal projectors

H = PX, M = PX⊥ = I−H, J = P1, C = P1⊥ = I− J (3.8)

play crucial roles in many considerations related to linear regression.
As emphasized in Section 2, the sample correlation coefficient between

variables x and y whose values are the elements of vectors x,y ∈ Rn is the
cosine between the corresponding centered vectors:

cors(x,y) = cord(x,y) = cos(Cx,Cy) = rxy =
x′Cy√

x′Cx · y′Cy
. (3.9)

Note that the correlation cors(x,y) refers to a sample correlation coefficient
when the arguments are the variables x and y , while in the correlation
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cord(x,y) the arguments are the vectors (data) comprising the observed
values of variables x and y .

Taking a look at the model matrix X = (1 : x1 : . . . : xk), we see that the first
column there looks just as any other column, but there is one big difference:
all other variables represented in the model matrix X have a nonzero sample
variance. (Of course we can request that there be no multiples of 1 in X0.)
Belsley (1991, p. 196) writes:

“Much confusion surrounding centering arises because of some com-
monly held misconceptions about the ‘constant term’. This section [6.8]
aims at several of these issues with the goal of showing that, for most
of the part, despite much practice to the contrary, the constant is most
reasonably viewed as just another element in a regression analysis that
plays no role different from any other ‘variate’.”

We recall that variables (columns) u1, . . . , um are said to be exactly collinear
if one of the ui is an exact linear combination of the others. This is exact
collinearity, i.e., linear dependency, and by the term collinearity or near
dependency we mean inexact collinear relations.

The book by Belsley (2001) offers a thorough discussion on the vector 1
and the collinearity. For example, Belsley (1991, p. 176) notes that “there is
general tendency to confuse the two notions of collinearity and correlation,
many practitioners thinking them to be the same.” In this article, there is no
space to consider such concepts, like condition number, in further detail and
we refer to the interesting Chapter 6 in the book by Belsley (1991).

Inspired by Belsley’s remarks, we now consider several features related to
centering. Before that, we summarize (for clarity) our comments above and
present three helpful lemmas that will be needed later on.

Proposition 1. It is possible that

(a) cos(x,y) is high, but cord(x,y) = 0,

(b) cos(x,y) = 0, but cord(x,y) = 1.

Moreover, let x ∉ C(1) and y ∉ C(1). Then

cord(x,y) = 0 ⇐⇒ y ∈ C(Cx)⊥ = C(1 : x)⊥ ⊕C(1). (3.10)

Lemma 1. The orthogonal projector (with respect to the standard inner prod-
uct) onto C(A : B) can be decomposed as P(A:B) = PA + P(I−PA)B.

Lemma 2. The rank of a partitioned matrix (A : B) can be expressed as

r(A : B) = r(A)+ r[(I− PA)B],

while the rank of the matrix product AB is

r(AB) = r(A)− dimC(A′)∩C(B⊥).
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Lemma 3. The following three statements are equivalent:

(a) PA − PB is orthogonal projector,

(b) PAPB = PBPA = PB,

(c) C(B) ⊂ C(A).

If any of the above conditions hold, then PA − PB = PC(A)∩C(B)⊥ .

For more about these three lemmas, see Marsaglia and Styan (1974) and
Isotalo et al. (2005, Th. 1 and 4, Cor. 3.1).

4 Centered vector as a residual

UnderM0 = {y, 1β, σ2I}, the residual vector is the centered y. What happens
here is that we “eliminate” (we will return to this much-used phrase later
on) the effect of the column vector of ones 1 from y, and, what is left is just
the residual which in this case is the centered y, i.e., ỹ. Correspondingly, the
centered x is the residual of x after the elimination of 1.

Consider two vectors x and y and the model Mxy = {y, xβ, σ2I}. A very
natural measure for the “goodness” of this model would be

R2xy =
‖Pxy‖2
‖y‖2 = ‖ŷ‖2

‖y‖2 =
y′ · x(x′x)−1x′ · y

y′y
= cos2(x,y). (4.1)

Note that the goodness measure above can also be expressed as

R2xy =
‖[I− (I− Px)]y‖2

‖y‖2 = 1− ‖(I− Px)y‖2
‖y‖2 = 1− SSE(Mxy)

‖y‖2 , (4.2)

where SSE(Mxy) refers to the sum of squares of errors under Mxy .
The quantity R2xy defined here is now usually called the coefficient of

determination, see Section 8 below. To distinguish between the situations
of simple linear regression (one regressor) and multiple linear regression
(more than one regressor), the terms coefficient of simple determination
and coefficient of multiple determination have been used, respectively, see
Puntanen and Styan (2006, page 6).

If we now eliminate the effect of 1 from y and x, i.e., we center them,
then we can consider the model Mxy·1 = {ỹ, x̃β, #}, where we have deliber-
ately left the covariance matrix unnotated. Now a natural measure for the
“goodness” of the model Mxy·1 would be

R2xy·1 =
‖Px̃ỹ‖2
‖ỹ‖2 = ‖ˆ̃y‖2

‖ỹ‖2 =
ỹ′ · x̃(x̃′x̃)−1x̃′ · ỹ

ỹ′ỹ
= cos2(x̃, ỹ). (4.3)

Obviously R2xy·1 = cord
2(x,y) = r2xy , and hence we have shown that r2xy can

be interpreted as a “measure of goodness” when y is regressed on x after the
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elimination of 1. We later discuss a more general corresponding situation.
Note further that corresponding to (4.2), we have

R2xy·1 = 1−
‖(I− Px̃)ỹ‖2

‖ỹ‖2 = 1− SSE(Mxy·1)
SST(Mxy·1)

, (4.4)

where SSE(Mxy·1) refers to the sum of squares of errors under Mxy·1 and
SST(Mxy·1) = y′Cy.

5 OLSE of the constant term

In this section we simply introduce (in a handy way) the formula for the OLSE
of the constant term. For that purpose we partition the model as

y = Xβ+ ε = β01+ X0β(2) + ε. (5.1)

We recall that in the partitioned linear model M12 : y = X1β1 + X2β2 + ε, we
have (assuming X to have full column rank)

β̂1(M12) = (X′1M2X1)−1X′1M2y, β̂2(M12) = (X′2M1X2)−1X′2M1y, (5.2)

where Mi = I− Pi, Pi = PXi . Putting X1 = 1, X2 = X0 yields

β̂0 = [1′(I− PX0)1]
−11′(I− PX0)y, (5.3a)

β̂(2) = (X′0CX0)−1X′0Cy = (X̃′0X̃0)−1X̃′0y = T−11 t2 = S−11 s2, (5.3b)

where X̃0 refers to the centered X0.
Usually the intercept β̂0 is not expressed as in (5.3a); the most common

expression is

β̂0 = ȳ − x̄′β̂(2) = ȳ − (x̄1β̂1 + · · · + x̄kβ̂k), (5.4)

where x̄ = 1
nX′01 = (x̄1, . . . , x̄k)′. To confirm (5.4), we use Lemma 1 which

gives the decomposition

P(A:B) = PA + P(I−PA)B. (5.5)

Substituting A = 1, B = X0 into (5.5) yields

Hy = Xβ̂ = 1β̂0 + X0β̂(2)

= Jy+ CX0(X′0CX0)−1X′0Cy = Jy+ CX0β̂(2), (5.6)

i.e., 1β̂0 = Jy− JX0β̂(2), from which (5.4) follows.
Note that from (5.3a) we can immediately conclude the following:

β̂0 = 0 ⇐⇒ C(X0 : y) ⊂ C(1)⊥ or y ∈ C(X0), (5.7)
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and

var(β̂0) =
σ2

y′(I− PX0)y
. (5.8)

The result (5.8) implies, as shown (by other means) by Seber and Lee (2003,
pp. 251–252, and Ex. 9d, No. 1), that the variance of β̂0 does not depend on
the scale used to measure the variables in X0; changing the scale means the
multiplication X0D, where D is a positive definite diagonal matrix.

6 Does centering ‘get rid’ of the constant term?

Belsley (1991, p. 199) writes:

“It is generally thought that centering ‘gets rid’ of the constant term. But
this is not the case; centering merely redistributes the constant among
all the variates so that it continues to be present, but not explicitly.”

To see what is behind this remark, we will consider the following models:

M12 = {y, (1 : X0)β, σ2I}, M12·1 = {Cy, CX0β(2), σ2C}, (6.1a)

Mc = {y, (1 : CX0)β, σ2I}, Mr = {y, CX0β(2), σ2I}. (6.1b)

The model M12 is the full model and all other models are various versions
of it. In all these versions we have done something related to the constant
term: we have centered something. The above models frequently appear in
practice (and in teaching regression in statistics courses). We now review
some properties of these models.

We first note that the above models are special versions of the following
more general models:

M12 = {y, X1β1 + X2β2, V}, M12·1 = {M1y, M1X2β2, M1VM1}, (6.2a)

Mc = {y, (X1 : M1X2)β, V}, Mr = {y, M1X2β2, V}. (6.2b)

These models have recently been studied, for example, by Bhimasankaram et
al. (1998), Groß and Puntanen (2000), and Chu et al. (2004, 2005).

We call M12·1 a reduced model. It is obtained by premultiplying the full
model equation

y = X1β1 + X2β2 + ε (6.3)

by the orthogonal projector M1. In the reduced model, the response variable
is the residual when y is explained by the variables represented by X1, and
the explanatory variables are the residuals of the X2 “after elimination of
X1”. Therefore, in the case when X2 = xk, the (squared) multiple correlation
coefficient in the corresponding reduced model is the (squared) partial cor-
relation between y and xk after the elimination of all other x-variables. The
plots of residuals M1y and M1xk are called added variable plots.
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Now, let us return to M-models. We assume that X has full column rank
and thereby that β̂(M12) is unique. In view of Lemma 1, we have

p = r(X) = r(1 : X0) = r(1 : CX0) = 1+ r(CX0), (6.4)

and hence r(X) = p =⇒ r(CX0) = k = p−1, and so CX0 has also full column
rank and hence β(2) is estimable under Mc , etc.

Taking a look at the four models in (6.1), we immediately observe an
interesting feature which we may state as a Proposition:

Proposition 2. Consider the models defined in (6.1), and let X have full column
rank. Then β̂(2) is the same in each model, i.e.,

β̂(2)(M12) = β̂(2)(M12·1) = β̂(2)(Mr ) = β̂(2)(Mc). (6.5)

Moreover, the residuals under the models M12, M12·1, and Mc are identical.

Proof. The first two equalities in (6.5) are obvious. Model Mc is a reparame-
terization of M12. This is seen from (1 : CX0) = (1 : X0)A, where

A =
(
1 −1+X0
0 Ik−1

)
=
(
1 −(1′1)−11′X0
0 Ik−1

)
=
(
1 −x̄′

0 Ik−1

)
. (6.6)

It is easy to confirm that β̂0(Mc) = ȳ and β̂(2)(Mc) = β̂(2)(M12). Since
C(1 : CX0) = C(1 : X0), the residual vectors under Mc and M12 are identical:

res(Mc) = res(M12) = y−Hy = My = e. (6.7)

The residual vector under M12·1 becomes (in view of Lemma 1)

res(M12·1) = Cy− PCX0Cy = y− (P1y+ P(I−P1)X0y) = My. (6.8)

The first equality in (6.5) is known as (a special case of) the Frisch–Waugh–
Lovell Theorem, see, e.g., Frisch and Waugh (1933) and Lovell (1963), and
further extensions by Groß and Puntanen (2000, 2005).

Premultiplying the equation

y = β01+ X0β(2) + ε (6.9)

with J = P1 shows that

β01 = ȳ1− P1X0β(2) − ε̄1. (6.10)

If (6.9) is premultiplied with C we obtain the reduced model M12·1 which can
be written as

ỹ = X̃0β(2) + ε̃, (6.11)

y− ȳ1 = (X0 − P1X0)β(2) + (ε− ε̄1). (6.12)

Belsley (1991, p. 199), referring to the above equations, observes that
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“In the form (6.11), there appears to be no constant term, but in the more
transparent form (6.12) we see through to the fact that the information
in (6.10) is indeed present; it is just incorporated into the other variates
– the constant term is still there.”

Belsley (1991, p. 199) also remarks (and proves, somewhat tediously) that “1
does not even play a unique role in such ‘reductive’ transformations of the
regression, for we may similarly transform (6.9) with any of the explanatory
variates xi”. Indeed this is so, and the explanation is simply the Frisch–
Waugh–Lovell Theorem, which is not referred to by Belsley.

It is worth noting that in the reduced model M12·1, the covariance matrix
σ2C is singular. It is well known that a linear model with a singular covariance
matrix requires specific attention.

We recall that a linear unbiased estimator Gy is the BLUE of an estimable
parametric function K′β if it has the smallest covariance matrix (in the Löw-
ner sense) among all unbiased linear estimators of K′β.

It is well known that β̂(2) is the BLUE of β(2) underM12. But we may wonder
what is the BLUE of β(2) under M12·1, denoted as β̃(2)(M12·1). “Luckily” it
appears to be equal to the corresponding OLSE. To prove this, we can use,
for example, the following general result: Under the general linear model
{y, Xβ, V}, OLSE(Xβ) = BLUE(Xβ) if and only if

C(VX) ⊂ C(X), (6.13)

see, e.g., Rao (1967), Zyskind (1967), and Puntanen and Styan (1989). Sub-
stituting (6.13) into the model M12·1, we obtain the column space inclusion
C(C · CX0) ⊂ C(CX0), which clearly holds. Hence we may state the following
proposition.

Proposition 3. Let X have full column rank. Then

OLSE(β(2) | M12·1) = BLUE(β(2) | M12·1). (6.14)

The model Mr may seem to be obscure, but we note that Groß and Pun-
tanen (2000, p. 133) “. . . rather like to think of model Mr as a source of
estimators whose properties under the model M12 are investigated. . . ”.

7 Rank of the sample correlation matrix

Let the n×p model matrix X be partitioned as X = (1 : x1 : . . . : xk) = (1 : X0),
where p = k+ 1. The sample covariance and correlation matrices of x-vari-
ables are

S1 = 1
n−1X′0CX0 = 1

n−1T1, R1 = [diag(T1)]−
1
2T1[diag(T1)]−

1
2 . (7.1)

We assume that all x-variables have nonzero variances, that is, xi ∉ C(1),
i = 1, . . . , k. Then Lemma 1 now immediately gives the following result where
the vector 1 has a crucial role:
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Proposition 4. Assume that all x-variables have nonzero variances. Then the
rank of the model matrix X = (1 : X0) can be expressed as

r(X) = 1+ r(X0)− dimC(1)∩C(X0) = 1+ r(CX0)

= 1+ r(T1) = 1+ r(S1) = 1+ r(R1), (7.2)

and moreover,

det(R1) ≠ 0 ⇐⇒ r(X) = k+ 1 ⇐⇒ r(X0) = k and 1 ∉ C(X0). (7.3)

It is noteworthy that rij = 1 for some i ≠ j =⇒ det(R1) = 0 (but not vice
versa). It is also easy to conclude that the correlation matrix R1 is singular if
and only if (at least) one column, xk say (for notational simplicity), of X0, is a
linear combination of vectors 1, x1, . . . , xk−1.

8 Coefficient of determination

A place where the constant vector plays a fundamental role is in the concept
of the coefficient of determination (squared sample multiple correlation
coefficient), denoted as R2 = R2y·x, see also §4 above. Let us consider the
model

M12 = {y, Xβ, σ2I} = {y, 1β0 + X0β(2), σ2I}, (8.1)

and denote

SST =
n∑
i=1
(yi − ȳ)2, SSR =

n∑
i=1
(ŷi − ȳ)2, SSE =

n∑
i=1
(yi − ŷi)2. (8.2)

Then, according to many textbooks on regression, e.g., Seber and Lee (2003,
§ 4.4),

SST = SSR+ SSE, (8.3)

and the coefficient of determination can be defined as

R2 = SSR
SST

= 1− SSE
SST

. (8.4)

Some statisticians prefer to adjust R2 by dividing numerator and denomi-
nator in 1− R2 by the corresponding degrees of freedom:

R2adj = 1−
SSE /(n− p)
SST /(n− 1) . (8.5)

This adjusted R2adj, which is also known as Fisher’s A statistic, is used in
subset selection, see, e.g., Miller (2002, page 161), Puntanen and Styan (2006,
page 9).

Why is R2 so popular? For an interesting discussion about the “hot air” in
R2, see, McGuirk and Driscoll (1995, 1996) and Lavergne (1996).
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We take a quick look at the equality (8.3). In matrix terms, we can write

SST = ‖(I− J)y‖2, SSR = ‖(H− J)y‖2, SSE = ‖(I−H)y‖2, (8.6)

and we trivially have (I− J)y = (H− J)y+ (I−H)y. However, the equation

‖(I− J)y‖2 = ‖(H− J)y‖2 + ‖(I−H)y‖2 (8.7)

holds if and only if (H− J)y and (I−H)y are orthogonal, i.e.,

y′(H− J)(I−H)y = y′(JH− J)y = 0. (8.8)

Now (8.8) holds (for all y) if and only if J = JH, and thereby J = JH = HJ.
Lemma 3 immediately gives the following Proposition:

Proposition 5. Consider the modelM= {y, Xβ, σ2I}. Then the decomposition
SST = SSR+ SSE holds (for all y) if and only if 1 ∈ C(X).

Note that for SST = SSR+ SSE to hold, it is not necessary that the vector 1
be explicitly a column of X; it is enough if 1 ∈ C(X). In this situation, in view
of Lemma 3, H− J is an orthogonal projector:

H− J = PC(X)∩C(1)⊥ = PCX0 . (8.9)

When 1 ∉ C(X), it makes no sense to use (8.4) as a statistic to describe
how well OLS fits the data. When 1 ∉ C(X), R2 as defined in (8.4), can be
even negative. In the no-intercept model, it is natural [see, e.g., Searle (1982,
p. 379)] to consider the decomposition

y′y = y′Hy+ y′(I−H)y, SST∗ = SSR∗+ SSE . (8.10)

Then the coefficient of determination can be defined as

R2∗ =
SSR∗
SST∗

= y′Hy

y′y
= 1− SSE

y′y
= cos2(y,Hy). (8.11)

However, there are some disadvantages in (8.11) as pointed out by Weisberg
(2005, p. 84): “The quantity in (8.11) is not invariant under location change,
so, for example, if units are changed from Fahrenheit to Celsius, you will get
different value for (8.11).” See also Puntanen and Styan (2006, page 15).

We may end up with R2 via different routes. One very natural approach
in which the vector 1 has an important role is to consider the simple basic
model where the only explanatory variable is a constant: M0 = {y, 1β0, σ2I}.
Under M0 we have OLSE(1β0) = Jy = ȳ1, while the residual vector is the
centered y, that is, Cy, and hence the residual sum of squares under M0 is

SSE0 = y′(I− J)y = y′Cy = tyy =
n∑
i=1
(yi − ȳ)2 = SST . (8.12)
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We may want to compare the full model M12 and the simple basic model
M0 by means of residual sum of squares: how much benefit is gained in the
residual sum of squares when also using x-variables as explanatory variables.
The change in SSE when moving from M0 to M12 is

SSE0− SSE = y′(I− J)y− y′(I−H)y = y′(H− J)y = SSR, (8.13)

which is called “sum of squares due to regression”. The value of SSR tells
the reduction in SSE when using M12 instead M0, but it is definitely more
informative to study the relative reduction in SSE, that is, we have reasons to
calculate the ratio

SSE0− SSE
SSE0

= SST− SSE
SST

= SSR
SST

= 1− SSE
SST

= R2. (8.14)

A fundamental property of R2 defined above is that it equals the square
of the multiple correlation coefficient between the y and Hy. This is a well-
known result but we state it here since it nicely illustrates the important role
of 1.

Proposition 6. Consider the model M = {y, Xβ, σ2I}, where 1 ∈ C(X) and
let R2 be defined as in (8.14). Then

R = cord(y,Hy) = cos[(I− J)y, (I− J)Hy] = cos(Cy,CHy). (8.15)

Proof. In view of 1 ∈ C(X) ⇐⇒ H1 = 1 ⇐⇒ J = HJ = JH, we observe that
(I− J)H = H− J. Hence our claim is

R = cord(y,Hy) = cos[Cy, (H− J)y] := a√
b · c

, (8.16)

which indeed is true since a = y′(I − J)Hy = y′(H − J)y, b = y′Cy, and
c = y′(H− J)y.

The geometry behind decomposition SST = SSR+ SSE is illustrated in
Figure 1.

Note that if all variables x1, . . . , xk, y are random variables with the
covariance matrix

cov

(
x
y

)
=
(
Σ11 σ2
σ′2 σ2y

)
, (8.17)

then the population multiple correlation (squared) is defined as

R2 = max
a

cor2(y,a′x) = σ′2Σ
−1
11σ2
σ2y

= 1−
σ2y −σ′2Σ−111σ2

σ2y
. (8.18)

It is worth emphasizing (see, e.g., Weisberg 2005, § 4.4), that when the x-
variables are controllable, fixed, then R2 is not to be considered as an estimate
of something like R2: for a linear model where X is fixed, there exists no
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SST = SSR + SSE

SSE

C (1)⊥

x

y

C (1 : x)

SSR

C (1)

e = (I − H)y

ỹ

y = Jy = y1 = JHy¯ ¯

SST = SSE0
α

α

C (X)⊥

y = Hyˆ

Figure 1. Illustration of SST = SSR+ SSE.

such a parameter as R. The sample value R2 is merely a descriptive measure
how well the OLS fits the data.

We complete this section by noting that in view of (3.3) and (8.9), we can
express R2, corresponding to (8.18), as

R2 = y′(H− J)y
y′(I− J)y

= t′2T
−1
1 t2
tyy

. (8.19)
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Noted added in proof

As we were reading the final page proofs of this paper we discovered the
recent article by Friedman and Wall (2005), and the related Letter to the Editor
by Christensen (2006), and reply by Friedman (2006). We plan to comment
on this work in a further paper.
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Sankhyā, 67, 74–89.

Friedman, L. (2006). Reply to Christensen (2006). Letter to the Editor. The American
Statistician, 60, 102–103.

Friedman, L. and Wall, M. (2005). Graphical views of suppression and multicollinearity
in multiple linear regression. The American Statistician, 59, 127–136.

Frisch, R. and Waugh, F. V. (1933). Partial time regressions as compared with individual
trends. Econometrica, 1, 387–401.

Groß, J. and Puntanen, S. (2000). Estimation under a general partitioned linear model.
Linear Algebra and Its Applications, 321, 131–144.

Groß, J. and Puntanen, S. (2005). Extensions of the Frisch–Waugh–Lovell Theorem.
Discussiones Mathematicae – Probability and Statistics, 25, 39–49.

Isotalo, J., Puntanen, S. and Styan, G. P. H. (2005). Matrix tricks for linear statistical
models: our personal Top Sixteen. Report A 363, Dept. of Mathematics, Statistics &
Philosophy, University of Tampere.

Lavergne, P. (1996). The hot air in R2: comment [on McQuirk and Driscoll (1995)].
American Journal of Agricultural Economics, 78, 712–714.

Lovell, M. C. (1963). Seasonal adjustment of economic time series and multiple regres-
sion analysis. Journal of the American Statistical Association, 58, 993–1010.

Marsaglia, G. and Styan, G. P. H. (1974). Equalities and inequalities for ranks of matrices.
Linear and Multilinear Algebra, 2, 269–292.

McQuirk, A. and Driscoll, P. (1995). The hot air in R2 and consistent measures of
explained variation. American Journal of Agricultural Economics, 77, 319–328. [See
also comment by Lavergne (1996) and Reply by McQuirk and Driscoll (1996).]

McQuirk, A. and Driscoll, P. (1996). The hot air in R2: reply [to Lavergne (1996)].
American Journal of Agricultural Economics, 78, 715–717.

Mustonen, Seppo (2001). SURVO MM: Computing Environment for Creative Processing
of Text and Numerical Data. http://www.survo.fi/english/index.html

Puntanen, S. and Styan, G. P. H. (1989). The equality of the ordinary least squares
estimator and the best linear unbiased estimator. The American Statistician, 43,
153–164.

Puntanen, S. and Styan, G. P. H. (2006). Some easy matrix tricks useful in teaching linear
statistical models, with some comments on subset selection criteria in multiple linear
regression. Report 2006-04, Dept. of Mathematics and Statistics, McGill University.



On the role of the constant term in linear regression 259

Rao, C. R. (1967). Least squares theory using an estimated dispersion matrix and
its application to measurement of signals. In Proc. Fifth Berkeley Symposium on
Mathematical Statistics and Probability: Berkeley, California, 1965/1966, vol. 1. Eds.
L. M. Le Cam and J. Neyman. Berkeley: Univ. of California Press, 355–372.

Searle, S. R. (1982). Matrix Algebra Useful for Statistics. New York: Wiley.

Seber, G. A. F. and Lee, A. J. (2003). Linear Regression Analysis. Second Edition. New
York: Wiley.

Weisberg, S. (2005). Applied Linear Regression. Third Edition. New York: Wiley.

Zyskind, G. (1967). On canonical forms, non-negative covariance matrices and best
and simple least squares linear estimators in linear models. Annals of Mathematical
Statistics, 38, 1092–1109.

Jarkko Isotalo
Department of Mathematics, Statistics and Philosophy
FI-33014 University of Tampere, Finland
jarkko.isotalo@uta.fi

Simo Puntanen
Department of Mathematics, Statistics and Philosophy
FI-33014 University of Tampere, Finland
sjp@uta.fi
http://www.uta.fi/~sjp/

George P. H. Styan
Department of Mathematics and Statistics
McGill University, Burnside Hall Room 1005
805 rue Sherbrooke Street West
Montréal (Québec), Canada H3A 2K6
styan@math.mcgill.ca
http://www.math.mcgill.ca/styan/


