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1. GENERALIZED INVERSE OF MATRICES 

Generalized inverse of matrices has a wide range of applications in statis­
tics; especially its applications in linear models are well known. It is therefore 
quite appropriate that g-inverses should be covered in a seminar or linear 
models. In this chapter we will recall what is known about g-inverses, and dis­
cuss some recent work on the subject, which provides a generalization and uni­
fication of the earlier results. 

1.1 Background 

The first major contribution in this area was made by E.H. Moore in 1920. 
He considered a linear transformation A which maps points in a vector space 
1/ into a vector space tHo These spaces may be of different dimensions. If 
transformation A is bijective, then there exists a unique inverse for it. But in 
cases where A is not bijective, Moore gave the following definition: G is "the 
general reciprocal" of A if it satisfies the conditions 

AG 

GA 

P,A , (1.1) 

(1.2) 

where ..4 is ~(A), the range of A, ri is the range of G, and P,A and P w denote 
the orthogonal projection operators on ..4 and ri respectively. 

This approach is basically geometric. However, Moore considered only 
vector spaces endowed with an inner product, and the concept of norm was 
involved in his definition. 

In 1955 R. Penrose defined the generalized inverse of a matrix transforma­
tion. Let A be an m x n matrix with complex elements. Then the generalized 
inverse of A, denoted by G, is such that it satisfies the four conditions 

AGA A, (1.3) 

GAG G, (1.4) 

AG is hermitian, (1.5) 

GA is hermitian. (1.6) 

Penrose's approach was purely algebraic. In the literature on g-inverse this 
kind of a definition is very often used. 
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In a way, Moore's and Penrose's definitions are quite similar. If we con­
sider the vector spaces as Euclidean spaces E" and Em and we have the usual 
inner product < x, ~ > = x' y, then these two definitions are equivalent. On 
the whole Moore's definition is somewhat more general because the concept 
of a projection operator envisages a more general inner product, namely 
<x,y> = x'Uy, where U is a positive definite matrix. 

In 1955, C.R. Rao constructed an inverse of a singular matrix for use in 
computing least squares estimates of parameters in the Gauss-Markoff model 
and their variances and covariances. This inverse was different from the 
Moore-Penrose inverse. 

C.R. Rao (1962) introduced a general definition of a g-inverse in the form 
AGA = A and in 1967 provided a classification of generalized inverses as 
shown in Table 1.1 , where A is an m X n matrix and r = E" and iN' = E"' 
are Euclidean spaces furnished with inner products. All g-inverses in Table 1.1 
can be obtained in seeking particular solutions to a nonhomogeneous equation 
Ax = y. If the equation is consistent, but the matrix A is singular or rectan­
gular, then a solution to the equation can be obtained by writing x = A-y. 
Here G = A- is a matrix that satisfies the condition AGA = A, and it is 
simply called a g-inverse of A and denoted by A- (Rao 1962). 

Of course, there may be more than one solution to the equation Ax = y. 
The solution with the smallest norm can be found by using a different kind 
of g-inverse, namely the minimum norm "g-inverse A;. Now A; is a matrix G 
that satisfies GA = I - P.:J{ , where .Y{ is the kernel space of A and P.:J{ is the 
orthogonal projector on .Y{ using any inner product associated with the norm 
(to be minimized). 

If the equation Ax = y is not consistent, then it can be solved by means 
of least squares, by minimizing the norm of y - Ax. Again, there is a g­
inverse, the least squares g-inverse A" that gives a solution to this optimiza­
tion problem. This time A, is a G that satisfies AG = P ~ , where P ~ is the 
orthogonal projector on .A using the inner product associated with the norm. 

Finally, if we have an inconsistent equation Ax = y and we want to find 
a minimum norm least squares solution to it, this can be obtained by using 

Notation 

A­
A;;;-

TABLE 1.1 

Special types of g-in verses 

Name 

g-inverse 
minimum norm g-inverse 

least squares g-inverse 
minimum norm least 
squares g-inverse 

Condition 

AGA = A 
GA = 1 - P".. 
[oY( is the kernel space of AJ 
AG = p .... 
GA = p •• AG = p .... 
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another generalized inverse satisfying he conditions GA = P wand AG = 

P -" , which is the Moore-Penrose inverse. 

Thus we have seen that study of the equation Ax = y furnishes motivation 
for these kinds of definitions of g-inverses. The approach outlined in Rao 
(1967a) is partly algebraic and partly geometric. 

For a detailed discussion of the different types of g-inverses listed in Table 
1.1, their applications and generalizations, reference may be made to the book 
by Rao and Mitra (1971). 

An entirely different approach is to define g-inverses through certain opti­
mization problems (Rao 1980, p. 18). Let us suppose that A is a given matrix 
and G is a corresponding g-inverse. If the true inverse exists, then AG is the 
identity matrix. Otherwise, let us find a G that minimizes the difference 
between I and AG, i.e., 

min III - AGII 
G 

III-AXil . (1. 7) 

The minimizer X turns out to be the least squares g-inverse AI. If instead of 
(1.7) we minimize the difference between I and GA, then the matrix Y that 
satisfies 

min III - GAil 
G 

111- YAII 

is the minimum norm g-inverse. 

(1.8) 

Finally, let us first find the class of X's that minimizes (1.7), and then use 
these X's in order to minimize III - XBII with respect to B. Then the matrix 
X that satifies the conditions 

min 111- AGII 
G 
min III - XBII 
B 

III-AXil, 

III-XAII, 

simultaneously is the Moore-Penrose inverse A +. 

(1.9) 

(1.10) 

It may look as if the solutions to these optimization problems depend upon 
the type of norm we use. However, it is shown in Rao (1980) that a wide class 
of norms, which von Neumann (1937) called unitarily invariant norms, give 
the same solutions. 

1.2 [£ vi( N-inverse 

Let us consider a linear transformation 

A:r-<!H'. 
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In general A may not be a mapping onto the space q)fbut only into it. In the 
following we shall find an inverse transformation of A which would be 
defined everywhere on the vector space q)f, Let us suppose that the range space 
of A, denoted by '"'" is a proper subspace in '*. and represent by II! a direct 
complement of JiI in q)f, i.e., 

(l.lI) 

Further, let .1{be the kernel space of A (i.e., the set of all vectors x such that 
Ax = 0), and let .At be a direct complement of .1{ in r, i.e., we have the de­
composition 

(l.l2) 

If A : r - q)fis bijective, then there exists a unique inverse for it. Otherwise 
an inverse may be defined only in a special sense and for a specific purpose. 

The complements II! and .At can be chosen, for instance, in the following 
way. Let G be a linear transformation that satisfies AGA = A. Then it is easy 
to show that 

9'l(GA) e .1{ = r (1.13) 

and hence we can choose 9'l(GA) for .At. Further, the mapping A restricted to 
.At, 

A I .At : .At - JiI, 

is bijective and it has a unique inverse which is 

G I JiI : JiI - .At. 

Let !l! = 9'l(J - AG) so that II! is a direct complement of JiI. Then G maps 
the points in II! to .1{, i. e., 

G I II! = (G - GAG) I II! = N I !l! : II! - :K, (1.14) 

where N = G - GAG. Thus we have found an inverse transformation of A 
defined in the entire vector space '*. which maps the points in the range space 
of A onto .At and the points in II! into the kernel space of A. 

Now let us choose for .At and II! any direct complements of .1{ and JiI respec­
tively, and for N any specified linear transformation that takes points of II! 
into .1{ and the points of JiI into the null vector, and ask whether there is a 
G associated with them. 

We show that such a G exists, is unique and 9'l(GA) = .At, 9'l(J­
GA) = II! and N = G - GAG. Figure 1.1 illustrates the situation. 
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T:A-vt{ 

Figure 1.1. Illustration oj the !l! .At N-inverse. 

Let us denote by P JI . fL the projection operator on A along a complemen­
tary subspace f£ and by P .If . .J( the projection operator on vii along :K. Notice 
that these operators need not be orthogonal projectors; the only condition is 
that the subspaces along which and on which we project are complementary 
and span the whole space. Now the following properties hold: 

PJI . fL + PfL . JI = I, 

P .If . .J( + P .J( . .If = I, 

AP.J( . .If = 0 and AP .If . .J( = A. 

(1.15) 

( 1.16) 

(1.17) 

Using these projection operators we can define a g-inverse as follows (Rao and 
Yanai 1984). First we give a definition of an f£ vii N-inverse specifying a 
restriction on N. 

DEFINITION 1.1. Let vii and f£ be any chosen complements of ;Y{ and A 
in their respective spaces. The mapping A I vii : vii - A is bijective and has 
a unique inverse T : A - vii. Further, let N : iN - 1/ be a specified linear 
transformation such that AN = 0 and NA = O. Then a linear transforma­
tion G : iN - 1/ is said to be an f£ vii N-inverse of A if 
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G 1 .A = T and G 1 fl! = N 1 fl!, (1.18) 

where the second condition can also be written as GP fL . .. = N. 

For any choice of fl!, .At and N, there always exists an fl! .At N-inverse and 
it is unique. This uniqueness is easily shown, since if G1 and G2 are two fl!.At 
N-inverses then we have 

(1.19) 

which imply that G1 = G2• Its existence is verified by noticing that the 
matrix G, 

(1.20) 

where 

Go = P.N .. JlA- P" .fL , (1.21) 

satisfies the conditions for the !l! .At N-inverse. 
Now let us examine how Definition 1.1 is related to the Moore-Penrose 

type of definition. It can be shown (Rao and Yanai 1984) that the following 
statements are all equivalent: 

G is an fl! .At N-inverse; 

GA = P.N . .1f and GPfL ... = N; 

GA = P.N . .1f , AG = p .. . fL and G - GAG = N; 

AGA = A, £Yl(G 1..4) = .At and GPfL ... = N. 

From the condition (1 .24) by taking N = 0 we get 

G = GAG, .At = CfJ, 

in which case 

GA = P W . .1f and AG = p .. . fL. 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

Thus the fl!.At N-inverse is a generalization of the definition given by Moore, 
since G - GAG does not have to be 0 but can be chosen as any transforma­
tion N that takes the points in !l! into .Y{ and the projection operators need not 
be orthogonal. We represent an fl!.At N-inverse by A/,;,n when N '* 0 and by 
A/~ when N = o. 

Note that (1.27) by itself does not have a unique solution for G. But uni­
queness can be achieved by demanding conditions such as orthogonality of the 
projection operators as done by Moore. 

If we specify only one or two of the arbitrary elements Il!, .At and N, we 
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get different types of g-inverses. For instance, if we specify .At but neither fl! 
nor N we get an .At-inverse. Then the following statements are equivalent: 

G is an .At-inverse; 

GA = P .1(.$; 

AGA = A and &l(G 1..4) = .At. 

(1.28) 

(1.29) 

(1 .30) 

We denote an .At-inverse by A; . Now again this definition does not involve 
the concept of inner product. But if we choose r as an inner product space 
and .At as the orthogonal complement of .Y{, then we have 

min IIxII = IIA; yll, (1.31) 
Ax = y 

where Ax = y is a consistent equation. In other words, under these cir­
cumstances the .At-inverse is the minimum norm g-inverse of A . If A- is a 
g-inverse satisfying AA - A = A, then an .At-inverse can be found by writing 

(1.32) 

Similarly, if we fix only fl!, then we get the following equivalent statements: 

G is an fl!-inverse; 

AGA = A and AGP!I! . ...,. = O. 

(1.33) 

(1.34) 

(1.35) 

An fl!-inverse is represented by A, . Now if ~ is an inner product space and 
fl! is the orthogonal complement of ..d, then the fl!-inverse equals the least 
squares inverse, i.e., 

min lIy - Axil lIy - AA, yll. (1 .36) 
x 

One solution to (1.34) can be obtained by writing 

G=A- P""'. !I! ' (1.37) 

where AA- A = A. 
Finally, if we specify both fl! and .At then the following statements are 

equivalent: 

G is an fl! .At-inverse; 

AGA = A, &l(G 1..4) = .At and AGP!I! . ...,. = O. 

(1 .38) 

(1.39) 

(1.40) 
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An !l! .At-inverse is denoted by Aim. A solution satisfying any of the condi­
tions (1 .38)-(1.40) can be obtained through 

G = P,A{ .. JlA - P,A . IE , 

where A- is defined as before. 

(1.41) 

So we have seen that once we have an A- satisfying AA - A = A we can 
derive all kinds of g-inverses by using projection operators. Rao and Yanai 
(1984) have given explicit expressions for A; , A I and At",. 

1.3 Applications 

As already mentioned, the g-inverses have a great variety of applications 
in statistics. Now let us review some useful results where the concept of a 
g-inverse is applied. One application is the explicit representation of projec­
tion operators. For instance the orthogonal projection operator on the range 
space of A can be expressed as 

P,A = A(A' A)- A ' , (1.42) 

when the inner product is defined as < X,Y > x ' y, and 

P,A = A(A'UA)- A ' U, (1.43) 

when the inner product is a more general one < x,Y > x' Uy, where U is a 
positive definite matrix. [See Rao (1967a), where the expressions (1.42) and 
(1.43) were first reported.] By means of projection operators we get a result 
which is often used in the theory of linear models, namely 

A = P,AA = A(A'A)- A'A. (1.44) 

Another field of application is the theory of multivariate normal distribu­
tions. The variance-covariance matrix of multivariate normal variable is in 
general assumed to be nonsingular, so that in the very definition of the density 
function there occurs the inverse of the variance-covariance matrix. However, 
the density function can be given, even if the variance-covariance matrix is 
singular, by using a generalized inverse (Rao 1973a, pp. 527-528). 

It is often useful to study the matrix product AA -. Although A-is 
usually not unique, some elements of AA - may be. For instance, the ith 
column of AA - is the unit vector ej (the ith column of I) if and only if the 
ith row vector of A is independent of the other row vectors of A (Rao 1981, 
p. 3) . The conditions under which certain elements of AA- are unique are 
very important in multivariate analysis, e.g. in defining multiple correlation 
and partial correlations when the variance-covariance matrix is singular. 

2 
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2. UNIFIED THEORY OF LINEAR ESTIMATION 

2.1 The model 

Let us consider the general Gauss-Markoff model 

Y = X{3 + E, G"(E) = 0 , ~(E) = ulV, (2.1) 

where X and V are known matrices of order n x m and n x n, respectively, 
and {3 and ul are unknown parameters . A heuristic principle for finding an 
estimate for {3 is to look for a point in the expectation space, i.e., in the range 
space of X, that would be closest to the observed point Y. This leads us to 
minimize some chosen norm 

IIY - X{311 (2.2) 

with respect to {3. Naturally, the expression (2.2) depends upon the type of 
norm we use. If we have the usual inner product, < a,b > = a' b, then 

IIY - X{3112 = (Y - X(3)'(Y - X(3), (2.3) 

which gives us the ordinary least squares solution. If instead of (2.3) we 
minimize 

IIY - X{3112 = (Y - X(3)'V- I(Y - X(3), (2.4) 

then we have implicitly used an inner product of the form < a,b > = 

a'V- lb. This approach leads to the Aitken least squares theory. We note, 
however, that this kind of definition requires V to be nonsingular. In the 
unified theory of linear estimation we determine the appropriate norm to be 
minimized in the general case, when we impose no restrictions on the rank of 
matrix V. 

It is well known that in the ordinary and in Aitken's least squares theory 
the optimal point for (2.2) is obtained using a projection operator. If P is the 
orthogonal projection operator on the range space of X, then the point in 
51l(X) that minimizes (2.2) is PY, which is the coordinate free estimator of G"(Y). 
However, if an estimator of (3 itself is required, then it is obtained from 

PY = X~. (2.5) 

Let us recall some facts about the model (2.1) in the general case. Denote 
by Z a matrix of maximum rank such that 

X'Z = o. (2.6) 

Then the subspaces 51l(X) and 51l(VZ) are disjoint and 

e(V : X) = e(X : VZ), e(VZ) = e(V : X) - e(X), (2.7) 
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where eO denotes the rank. Further, the observation vector Y has the proper­
ty 

Y E ~(V : X) = ~(X : VZ) with probability 1. (2.8) 

The concept of identifiability is a central one in the discussion of linear 
models. A linear parametric function p ' (3 is said to be identifiable if 

P'(31 * P'(32 ~ X(31 * X(32 (2.9) 

for which a necessary and sufficient condition is that 

P E ~(X'). (2.10) 

Condition (2.10) is also the condition for unbiased estimability of p ' (3 by a 
linear function of the observations. In general, identifiability is a much more 
important concept than unbiasedness; it does not make sense to estimate 
nonidentifiable parametric functions. 

2.2 Generalized projection 

We will first give the definition of a generalized projection operator (cf. 
Rao 1974, Rao and Yanai 1979). Let.A = ~(A) and fJJ = ~(B) be subspaces 
of E" such that 

.A n fJJ = [0 ) (2.11) 

and 

.A + fJJ = ~(A : B) = !7 C E", (2.12) 

where !7need not be the whole space E". Now, every vector U E !7has a uni­
que decomposition 

(2.13) 

We say that PA l B is the generalized projection operator on .A along fJJ if 

P A I BU = UA for all U E !Jl. 

The projector PA l B so defined need only satisfy the conditions 

PAIBA = A, PA IBB = O. 

(2.14) 

(2.15) 

Note that PA l B is not necessarily unique and it is not necessarily idempotent. 
Let us now consider the model (2.1) where X and V may be deficient in 

rank. We want to find the linear function of Y that would estimate X(3 un­
biasedly and have the smallest dispersion error. Let PY and LY be unbiased 
estimators of X(3, i.e., 

8(PY) = PX(3 = X(3 (2.16) 
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and 

C(L Y) = LX(3 = X(3. 

Now (2.16) and (2.17) hold if 

PX = X and LX = X. 

(2.17) 

(2.18) 

Note that in the case of singular V the condition PX = X is actually only suf­
ficient for the unbiasedness of PY. This is so because of the restrictions due 
to the singularity of V which become known when the observations are 
available; see e.g. Rao (l973b). However, if there are other unbiased 
estimators not satisfying the condition (2.18), then they are equivalent, with 
probability one, to those satisfying the condition (2.18). So there is no loss of 
generality in using the condition (2.18) as necessary and sufficient for un­
biasedness. 

An unbiased estimator PY is said to have the smallest dispersion error if 

C(pY - X(3)(PY - X(3)' ~ C(LY - X(3)(L Y - X(3)' (2.19) 

for all unbiased estimators LY. Such an estimator PY is called the minimum 
dispersion unbiased estimator (MDUE) of X(3. Condition (2.19) means that 
the difference between the dispersion matrix of LY and that of PY is non­
negative definite (n.n.d.). This is a very strong requirement. For instance, it 
can be shown that if (2.19) holds, then 

C(PY - X(3)' B(PY - X(3) ~ C(LY - X(3)' B(LY - X(3) (2.20) 

for all n.n.d. matrices B. Thus PY minimizes simultaneously every compound 
loss function of the form (2.20), e.g., the trace of the dispersion matrix. 
Similarly any monotone function of the eigenvalues of the dispersion matrix 
will be minimized. 

Let P and L satisfy the condition (2.18). Since 

(L - P)X = 0, (2.21) 

L can be written in the form 

L = P + M, (2.22) 

with 

MX = O. (2.23) 

With this notation the condition (2.19) becomes 

C(PY - X(3)(PY - X(3)' ~ @'t(P + M)Y - X(3][(P + M)Y - X(3]' 
= C(PY - X(3)(PY - X(3) ' + @'M(y - X(3)(Y - X(3) ' M' 
+ CP(Y - X(3)(Y - X(3)' M' + @'M(Y - X(3)(Y - X(3)' P ' . (2.24) 
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A necessary and sufficient condition for the inequality (2.24) to hold for all 
M that satisfy MX = 0 (cf. Rao 1973a, p. 317), is that 

8P(Y - X(3)(Y - X(3)'M ' = PVM ' = O. 

Therefore PY is the MOUE of X(3 if and only if 

PX = X , PVM' = 0 \I M : MX = 0 
= PX = X, &'l(VP ' ) c &'l(X) 
= PX = X, PVZ = 0, 

(2.25) 

(2.26) 

where Z = X' is a matrix as defined in (2.6). We recognize that, according 
to (2.15), the matrix P that satisfies conditions (2.26) is the generalized projec­
tion operator on &'l(X) along &'l(VZ) , denoted by Px I vz' i.e., the MOUE of 
X(3 is P x I vz Y which is the projection of Y on the column space of X. 

Solving for P from the equations (2.26) we get the following expressions: 

P = X(X ' V- IX)- X'V- I, when V is nonsingular, 

P = X(X'X)- X', when V = I, 

and in general, whatever may be the ranks of X and V, 

P = X(X'TX)- X'T, 

where 

T = (V + XUX')-

and U is any matrix that satisfies 

e(V + XUX') = e(V : X) . 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

There always exists a U that satisfies the condition (2.31). For instance, the 
choice U = I has this property. 

Next we consider the parametric function p' (3. We assume that p E &'l(X') 
or in other words that p ' (3 is identifiable. Let us denote P = P x I VZ. Then 
the minimum variance unbiased estimator (MVUE) of p' (3 is }..' PY if 

p = X'}... (2.32) 

It is easy to check that this holds. Since 

&'(}..'PY) = }..'PX(3 = }.. ' X(3 = p'(3, (2.33) 

the expression}.. ' PY is unbiased for p ' (3. If}..1 and }..2 are two vectors satisfy­
ing (2.32), then 

(}..: - }"{)PX = 0' and (}..: - }"{)PVZ = 0 ' (2.34) 
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and therefore 

(A{ - A2)PY = 0 with probability 1. (2.35) 

Thus, although there may be several vectors A that satisfy (2.32), the estimator 
A ' PY is always unique. Finally, we will check the minimum variance property. 
Let q I Y be another unbiased estimator of p ' fj. The unbiasedness condition 

~(q' Y) = q' Xfj = p' fj 

implies that 

p = X'q. 

(2.36) 

(2.37) 

It is easily seen that q' PY is another unbiased estimator of p' fj . Now, because 
PY is the MDUE of Xfj, we have 

~(Y - Xfj)(Y - Xfj)' ~ ~P(Y - Xfj)(Y - Xfj)' P ' (2.38) 

and therefore 

~q , (Y - Xfj)(Y - Xfj) ' q ~ ~q' P(Y - Xfj)(Y - Xfj)' P' q, (2.39) 

or in other words, q' PY has a smaller variance than q' Y. But since q' PY 
equals A' PY for all q satisfying (2.37), we note that A' PY is the MVUE of 
p ' fj. 

Substituting for P the explicit expression given in (2.29) we get 

A'PY = A'X(X'TX)- X'TY 
= p'(X'TX)- X'TY = p'S, (2.40) 

defining 

S = (X'TX)- X'TY. (2.41) 

We note that the S as defined in (2.41) minimizes 

(Y - Xfj)' T(Y - Xfj) = (Y - Xfj)' (V + XUX' )-(Y - Xfj). (2.42) 

Thus we have found a generalization of the Gauss-Markoff-Aitken theory 
of least squares, applicable to all situations . 

The estimator S in (2.41) can always be used whether V is singular or not. 
If the subspaces 9'l(X) and 9'l(VZ) do not cover the whole space P, then S 
may not be unique; it depends e.g. upon the choice of generalized inverse in 
(2.41). Nevertheless, the estimator p' S will always be unique. 

Thus far we have only studied the estimation of parameter fj. An estimator 
of the other unknown parameter a2 can be obtained in a way similar to that 
in the nonsingular case. An unbiased estimator of a2 is 

&2 = r'(Y - XS)' T(Y - XS) 
= r'Y'T(I - P)Y, (2.43) 
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where P is given in (2.29) and 

f = e(V : X) - e(X) (2.44) 

denotes the degrees of freedom. 
The variances and covariances of the estimators are of the form 

rm(p'~) = o2p ' [(X'TX)- - U]p (2.45) 

and 

~(p'~,q'~) = o2p ' [(X'TX)- - U]q. (2.46) 

It is worth noting how matrix U appears in these representations. Some papers 
have been published giving wrong results because the role of the matrix U has 
been ignored. In Section 2.3 it will be shown how the problem of estimation 
can be treated without introducing the matrix U. 

2.3 Least squares with restrictions 

The first ones to consider the least squares estimation with a singular V 
were A. J. Goldman and M. Zelen in 1964. They reduced the problem to one 
of least squares theory with restrictions on the parameters. Certain 
refinements to this method have been introduced by Rao and Mitra (1971). 

The singularity of V means that there exists a matrix N "* 0 of rank n -
e(V) such that 

N'V = 0, 

which implies that 

N' Y = N' X(3 with probability 1. 

Let V- be any g-inverse of V and let ~ be such that 

min (Y - X(3) ' V-(Y - X(3) = (Y - X~)' V- (Y - X~) 
N ' X/3 = N ' ¥ 

(2.47) 

(2.48) 

(2.49) 

The value of ~ depends on the g-inverse we use in (2.49). But despite this, the 
expression p' ~ is unique and it turns out to be the MVUE of the parametric 
function p' (3. Similarly, the expression r- I Ro 2, where f = e(V : X) - e(X), 
does not depend on the choice of V- in (2.49); r-IRo2 is an unbiased 
estimator of 02. If the observation vector Y is normally distributed, i.e., 

then the distribution of Ro2 is 

Ro2 - o2x2(f). 

(2.50) 

(2.51) 
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In order to test a consistent hypothesis 

K'{3 = W 

we impose another set of restrictions on (2.49) and solve 

Now, 

R,2 = min (Y - X(3) ' V_(Y - X(3). 
N'X(3 = N ' Y 

K' (3= w 

and is independent of R/ , and therefore 

R / - Ro2 + Ro2 _ F(h,j). 
h f . 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

The expression in (2.55) has central F distribution with hand f degrees of 
freedom when the hypothesis is true and otherwise noncentral. 

2.4 The Inverse Partitioned Matrix (IPM) approach 

Another unified approach to linear estimation is the IPM method 
developed by C. R. Rao (1971). Again we consider the model (2.1) , where X 
and V may be deficient in rank . Let 

(~, ~r = (~: -~:) (2.56) 

for any g-inverse. Now it can be shown e.g. that a parametric function p' {3 
is estimable only if 

p'C2X = p ' or p'C3X = p'. 

The MVUE of an identifiable function p' {3 is p ' S, where 

S = C2Y or C3Y (which may not be the same). 

The dispersion matrix of S is a2C4 in the sense that 

[
rm(p'S) = a2p'C4p, 
~(p'S,q'S) = a2p'C4q = a2q'C4P. 

For a2 we obtain an unbiased estimator as 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

Hence it can be seen that through an inverse partitioned matrix of the form 
(2.56) we get all the necessary ingredients for the estimation of parameters. In 
a similar way, the IPM approach can be used in inference problems. 



A unified approach to inference from linear models 25 

Let S' S be the vector of the MVUEs of k estimable parametric functions 
S'{3 and let R/ = Y'C)Y. If Y - Nn(X{3,a2V), then S'S and Ro2 are in­
dependently distributed, 

S'S - Nk(S' (3 ,a2S' C4S), Ro2 - a2x2(f) , 

where f is as defined in (2.60). Further, let 

S' (3 = w 

be a null hypothesis. The hypothesis is consistent if and only if 

GG- u = u, u = S'S - w, 

where 

G = S'C4S. 

The test statistic for the consistent hypothesis (2.62) is 

F - u ' G- u ..:.. Ro 
2 

h - (G) - ' --, - e , 
h f 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

and it has central F distribution with hand f degrees of freedom when the 
hypothesis is true and otherwise noncentral. 

2.5 Errors in observations 

In the linear model an elementary assumption is that the observation vec­
tor Y belongs to the subspace generated by the columns of X and V. However, 
in a practical estimation situation there may be errors in observations, e.g. 
rounding-off error, so that Y may not actually be confined to this particular 
subspace. Therefore it appears to be a good procedure to project the observed 
vector Y onto 9Il(V : X) and then use this projection of Y in the computations 
(Rao 1978). As a matter of fact, such correction of observations can be carried 
out by making certain modifications in the generalized inverse we use in 
estimation. 

3. ALTERNATIVE CRITERIA OF ESTIMATION 

The estimation criteria used in Chapter 2, such as unbiasedness and 
minimum variance, are sometimes criticized. In this chapter we introduce an 
alternative set of criteria where we do not use any of these customary con­
cepts. 
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Let us consider the linear model (2.1), where for simplicity we suppose that 
X and V are of full rank . Now the singular value decomposition of V-~X 
can be written as 

V-~X = P~Q', (3.1) 

where Pn X m has orthogonal columns, ~m x m is a diagonal matrix with 
positive elements and Qm x m is an orthogonal matrix. Let Rn x (n _ m) be such 
a matrix that 

T = (P : R) (3.2) 

is orthogonal. Now the model can be transformed to 

(~:) = T'V-~Y , (3 .3) 

where 

(3.4) 

and 

(3 .5) 

Writing () = ~Q' {3, the model (2.1) is equivalent to the two uncorrelated 
models 

(3.6) 

where the variance-covariance matrices of 1:, and 1:2 are 

(3.7) 

We can hence replace the original model by a new one where m observa­
tions (Y,) depend upon the parameter () and the other n - m observations 
(Y2) are uncorrelated with Y, and do not depend on (), so that Y2 has no in­
formation on () . Now we lay down the following criteria for the estimation of 
an identifiable parametric function p' (3 = q' (): 

(i) The estimator of q ' () is function of Y, only, say flY ,). 
(ii) The estimator is method-consistent (MC), i.e., if there is no error in 

Y, then the estimator flY ,) coincides with the true value q' () . 

Condition (ii) implies that 

fl() = q'() for all () E Em, (3 .8) 

i.e., 

(3 .9) 
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which is the least squares estimator of q' () = p' (3. Thus, we have arrived at 
the least squares estimator without introducing concepts such as linearity of 
estimator or unbiasedness or minimum variance. 

4. GENERALIZED RIDGE REGRESSION 

Let us assume that in the model (2.1) the parameter vector {3 itself is a ran­
dom variable with 

~({3) = (I, ... , 1)' g = 19 (4.1) 

and 

(4.2) 

Then the observation vector Y has the expectation 

~(Y) = Xlg, (4.3) 

and the variance-covariance matrix of {3 and Y is (cf. Rao 1973a, p. 234) 

(4.4) 

In this case an estimator of {3 can be obtained by writing down the regression 
of {3 on Y, i.e., 

(3(b) = 19 + X' (XX' + kV)-'(Y - Xlg). (4.5) 

This expression gives the Bayes estimator of {3, where the terms g and k may 
be regarded as prior parameters. 

Next we consider some special cases. If g = 0 and V = I, then we have 

(3(b) = X' (XX' + kI)-'Y 
(X'X + kI)- 'X'Y, (4.6) 

which is the ordinary ridge regression estimator. Hence the ridge estimator is 
found to be a Bayes estimator of {3 under the assumption that the regression 
coefficients are independent and have a priori values equal to zero. 

If g = 0 and V is nonsingular, then the estimator (3(b) is of the form 

where 

(3(b) = (X'V- IX + kl)- 'X'V-'Y 
[I - U(U + /rII}-I]{3(I), 

U = (X' V- IX)-I 

(4.7) 

(4.8) 
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and (3(1) denotes the (generalized) least squares estimator of (3: 

(3(1) = (X'V- I X)- IX'V- IY. 

When g = 0 but V may be singular we get the expression 

(3(b) = X' (XX' + kV)- Y. (4.9) 

Finally, if g =1= 0 and V is nonsingular, the estimator (4.5) can be written as 

(3(b) = 19 + (X' V- IX + kl)-IX' V- I(Y - Xlg) 
= (3(1) - U(U + ,,11)- 1«(3(1) - 19). (4.10) 

In general we do not know a priori what the values of g and k are. For­
tunately, however, these parameters can be estimated from the observations 
as follows: 

g = l'U-I(3(1) + l'U-l l (4.11 ) 

and 

k = a + b, (4.12) 

where a and b are determined from 

(n - m + 2)a = (Y - X(3(I)' V- I(y - X(3(I), (4.13) 

b l'U- 2l 
(m - 3)[ (tr U-I - ) + a] 

m - 1 l'U-l l 

«(3(1) - 19)' U-I«(3(1) - 19). (4.14) 

Substituting g and kin (4.10) we get the estimator 

(3(e) = 19 + (X' V- IX + kI)- IX' V- I(Y - Xlg). (4.15) 

This estimator may not be better than (3(1) in terms of a compound loss func­
tion, but it may be a good competitor to the usual ridge estimator. 

5. SIMULTANEOUS ESTIMATION AND PREDICTION 

5.1 Simultaneous estimation 

In some applications of linear estimation there may be several models to 
be estimated simultaneously. The method of simultaneous estimation was 
originally suggested by R. A. Fisher and was further developed by Fairfield 
Smith (1936), C. R. Henderson (1950), V. G. Panse (1946) and C. R. Rao 
(1952, 1953). The subject has been revided with the remarkable contribution 
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by Stein (1955). We shall illustrate the Stein phenomenon for vector 
parameters. [See Efron and Morris (1972) for a general discussion.] 

In this section we will study estimation from k linear models 

Yi = X{3i + Ei ' i = 1 , ... , k. (5 .1) 

In these models ({3i,Ej) are assumed to be i.i.d . random variables with 

(5.2) 

where {3, F and ol are unknown. 
Let (3ll) denote the least squares estimator of {3i from the ith model and let 

U be defined as in (4.8). Then the regression of {3i on Yi can be written as 

(5.3) 

The estimator (3fb) is the Bayes estimator of {3i under the assumptions (5 .2). It 
can be shown to have the following property: 

~R .~y . ({3lb) - (3)((3?) - {3J' = olU - 04U(F + olU)- IU 
"I , 

$ olU = ~({3fl) - (3)«(3/ f) - (3) ' , i = 1 , . .. , k, (5.4) 

where ~R . and ~y . represent the expectations taken over the distribution of Yi ", , 
for a fixed {3i and over the prior distribution of the vectors {3i' respectively. 
Inequality (5.4) tells us that the Bayes estimator of (3i has a smaller mean 
dispersion error (MDE) than the least squares estimator. Consequently, the 
MDE connected with all the estimators (3 /b), i = 1 , .. . , k, is 

Q(b) = _1 f ~({3 .!b) - (3 .)({3 .!b) - (3 .)' 
k I ' " , 

= olU - 04U(F + olU)- IU . (5.5) 

The unknown parameters {3, F and ol may be estimated from the observa­
tions in the following way: 

(5.6) 

k 

k(n - m)ol. = E (Y.' V- IY - Y .' V- IX{3.(l) 
l ' I I , 

w, (5.7) 

k 

(k - 1)(F. + a;U) = E ({3/f) - (3.)({3/1) - (3.) ' = B. (5.8) 
I 

Substituting {3., F. and a; in the Bayes estimator (5.3) we obtain the empirical 
Bayes estimator 

(5 .9) 
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The constant c is determined by minimizing 

k 

C t ((3l') - (3;)({3/e) - (3;) I , (5 .10) 

under the assumption that €; and {3; have independent multivariate normal 
distributions. The minimizer c turns out to be 

c = (k - m - 2) / (kn - km + 2), (5 . 11 ) 

and with this choice of c the MDE for the estimators (3/e) is 

Q(e) = _1 f &({3 (e) - (3 .)({3 (e) - (3 .) I 
k I I I I I 

€f(n - m)(k - m - 2) 
= crU - U(F + a2U)-IU, 

ken - m) + 2 
(5.12) 

provided k ~ m + 2 (Rao 1975). 
It can be seen from the expressions (5 .5) and (5.12) that the following in­

equality holds: 

Q (I) > Q (e) > Q (b) , (5 .13) 

where Q (I) is the MDE connected with the least squares estimators {3? 
Although the empirical Bayes estimator is not as good as the Bayes estimator, 
i.e., when true {3, F and a2 are known, it is better than the least squares 
estimator for all k ~ m + 2. The larger k becomes, the better will the em­
pirical Bayes estimator perform. Stein made the remarkable observation that 
when m = 1, (ge) I {31 , •.. , (3k) < (Q"I) I {31 , .•. , (3k) ' i.e., when the ex­
pectations in (5.12) are taken for fixed {31 , . •• , {3k. The same results hold 
when m > 1. 

5.2 Simultaneous prediction 

We will next study the prediction of future observations in the setup of k 
linear models . Let us consider the ith model Y; = X{3; + €;, and a future 
observation y; with the structure 

y; = X' {3; + T/ ;, 

~ (~J = cr(:, ~) , i = 1 , . .. , k . (5 .14) 

Given Y; we want to predict the additional observation y; ; let the predictor 
of y; be of the form p 'y;. We choose as our loss function 

k 

~ (p'y; _ y;)2, (5.15) 
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in which case we try to find an estimator that minimizes the average mean 
square error over all our future predictions. 

If (3/fl and (3 /e) are as defined in (5 .9), then 

k 

~ fy; - [x I (3/e) + a I V- I(y; - X{3/e»])2 

k 

:$ ~ fy; - [x'{3/fl + a'V-I(y; - X{3/fl)])2. 

The result (5.16) shows that 

is a better predictor of y; than the least squares predictor 

x' (3;'fl + a'V-I(y; - X{3/fl) 

under the compound loss function (5.15). 

6. DIRECT OR INVERSE REGRESSION 

(5.16) 

(5.17) 

(5.18) 

In this chapter we will present two examples where both direct and inverse 
regression are applied. In our first example we assume that we have to predict 
a person's head breadth, knowing his head length. We assume further that 
there are available some previous measurements of head lengths and head 
breadths of individuals . Preferably these individuals should belong to the 
same racial, age etc. group as the person we are considering. 

Let HL and HB denote the head length and head breadth respectively of 
an individual. We suppose that HB depends on HL linearly and write down 
the regression of HB on HL 

/\. 

HB = a + {3 HL. (6.1) 

Coefficients a and {3 can be estimated from the previous measurements (in the 
usual manner). If the person has HL = a then a predictor of his HB is obtain­
ed as follows 

/\. 

HB = a + j3 a, (6.2) 

where a and j3 are estimates of the coefficients in (6.1). 
The procedure we have used here is direct regression. An alternative 

method would have been to compute the regression of HL on HB 

(6.3) 
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estimate a l and (31 from this model, substitute a for HL and then solve for 
HB: 

(6.4) 

This method of estimation is called inverse regression. 
In this simple example it is not possible to say which one of the two ap­

proaches would be definitely superior to the other . If only one of the variables 
is stochastic, then it is reasonable to take regression of the stochastic variable 
on the nonstochastic one. But here variables HL and HB are quite similar in 
character, so that no distinction can be made on this basis. 

In our second example there may be seen some advantages in one approach 
over the other. We suppose that we have two repeated measurements, say m l 

and m2 , on the blood pressure of an individual. If t is the true value of the 
blood pressure of that individual, then 

where 

[~(E;) = 0, 'Vm(E;) = cr. , i = 1,2; 
~(EI ,E2) = 0. 

(6.5) 

(6.6) 

If we regard (6.5) as a simple linear model with one unknown parameter, then 
the least squares estimator of t is 

(6.7) 

In fact, this is a result given by inverse regression. 
On the other hand, we can consider (t, m l , m2) as three measurements on 

an individual, one of which is unobservable. Then we may predict t by the 
regression of t on m l and m2, i.e., by 

(6.8) 

computed from the distribution of (t, m l , m2) in the population. From the 
structure of observations (6.6) we derive the dispersion matrix of (t, m l , m2) 

for the population of individuals: 

(6.9) 

where a7 is the variance of true blood pressure over the individuals. Of 
course, all three variables have the same expectation; let us denote it by T. 
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With this notation we write down the regression of t on m l and m2: 

- 2cr,-t = T + (m - T). 
2cr, + cr. 

(6.10) 

This is the estimator obtained through direct regression. 
The errors of prediction connected with estimators (6 .7) and (6.10) are 

and 

8(m - tY = ~ 0: 
2 ' 

8([ _ t)2 = ~ 0: _ _ 20:_1 _ 

2 ' 2cr, + cr. 

(6.11) 

(6.12) 

It can be seen from these expressions that [has a smaller prediction error than 
m. In other words, the direct regression estimator is better than the inverse 
regression (least squares) estimator when we consider the overall mean square 
errors averaged over all future predictions. 

Estimator (6.10) is not usually applicable as such because of the unknown 
parameters in it. The unknowns can, however, be estimated provided we have 
previous data available, consisting of repeated measurements of blood 
pressure on n individuals. On these data we perform an analysis of variance 
and compute the mean squares between individuals, denoted by A, and within 
individuals, denoted by B. The expectations of these two mean squares are 

8(A) = 2cr, + cr. (6.13) 

and 

8(B) = cr., (6.14) 

and therefore they can be used for the estimation of variances cr, and cr.. The 
total mean of all our previous measurements forms an unbiased estimator of 
the average blood pressure T. With these expressions we are able to write down 
an empirical Bayes estimator of t as 

a = f + 207 (m - f), 
2a~ + a; 

(6.15) 

which, after rearrangement of terms, becomes 

m- a; (m-f) 
207 + a; , 

_ B (_ _) 
m~- m-T. 

A 
(6.16) 

3 
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The terms A, Band f may be updated every time new data become available, 
and thus the estimator can be improved. 

In can be shown that this empirical estimator has a smaller prediction error 
than the least squares estimator when A and B are obtained from a large sam­
ple, so that 

(6.17) 

Should we therefore use predictor (6.16) for the estimation of blood pressure 
instead of iii? When we examine the estimator (6.16) we notice that if iii is 
large compared with the average f, then d tends to give a smaller value than 
iii. On the other hand, if iii is small compared with f, then d becomes large. 
Thus the estimator d shrinks estimates towards the average, so that high blood 
pressures are underestimated and low ones overestimated . If we are trying to 
estimate blood pressure for diagnostic purposes this may be an undesirable 
feature. Therefore, in this case it may be more appropriate to apply inverse 
instead of direct regression. However, in other situations where the quadratic 
loss function is meaningful, estimator d may be better than iii . 

7. MODEL SELECTION FOR PREDICTION 

In the following we give an example concerning model selection for predic­
tion purposes. The example is based on a study where a dentist wanted to 
predict the growth of a tooth. 

The tooth had been measured weekly for 6 weeks, and the size of the tooth 
in the 7th week was to be predicted from these measurements. If the growth 
is to be estimated by a polynomial, then what order polynomial should we 
select? It seems plausible that a maximum use of data is achieved by fitting 
a fifth degree polynomial to it. But, generally this is not so as demonstrated 
below. We had measurements for 7 weeks on 13 boys. For each boy, a 
polynomial of the kth degree was fitted to the first 6 measurements and the 
seventh value was predicted and compared with the observed value. The mean 
square errors between the observed and predicted values for the 13 boys are 
as follows for different values of k: 

k 
M.S .E . 1.02 

2 
0.80 

3 
0.91 

4 

1.03 
5 

5.32 

From the above it is seen that the second degree polynomial provided the best 
prediction. On the other hand, the fifth degree polynomial produced very bad 
predictions . 

When model selection is under consideration, such criteria as Mallow's 
Cp , Akiake's information criterion and Fisher's forward and backward selec-
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tion of variables are usually cited. But in this example none of these could 
discover the superiority of the second degree polynomial. It is therefore sug­
gested that the procedure we are going to adopt for future observations should 
be tested whenever previous information is available. The failure of the fifth 
degree polynomial was due to the fact that we have used too many variables 
(5) with too few observations (6). Although a high degree equation is more 
precise mathematically and theoretically, paucity of observations makes 
estimation imprecise. 

Reference may be made to Rao (1984) and Rao and Boudreau (1984) for 
a discussion of prediction procedures in growth models. 
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Preface 

The First International Tampere Seminar on Linear Statistical Models and 
their Applications was held at the University of Tampere, Tampere, Finland, 
during the period August 30-September 2, 1983. The seminar brought to­
get her, from at least nine different countries, more than 100 researchers in 
linear statistical models and related areas. 

The .main speakers in the seminar were Professor C. Radhakrishna Rao 
(University of Pittsburgh, U.S.A., and the Indian Statistical Institute, New 
Delhi, India) and George P. H. Styan (McGill University, Montreal, Canada). 
There is no doubt that the whole seminar audience greatly enjoyed the excel­
lent lecture series given by these two outstanding statisticians. Professor Rao's 
topic was »A Unified Approach to Inference from Linear Models» and 
Professor Styan's was »Schur Complements and Linear Statistical Models». 
The editors of these Proceedings are extremely grateful to Professors Rao and 
Styan for the effort they put into their fine articles for this volume; we are 
very proud to publish them. 

This was the first time Professor Rao had visited Finland and certainly his 
visit was a great honour for the whole statistical community of Finland. It is 
also a great honour to the University of Tampere that Professor Rao, one of 
the fathers of modern statistics, has consented to accept an Honorary 
Doctorate in connection with the University's 60th anniversary in May 1985. 

Both Professor Rao's and Professor Styan's stimulating personalities and 
their vital participation in all seminar activities made a great impression on the 
organizers. The role of Professor Styan in planning the seminar was indeed 
invaluable. Also our sincere thanks go to him for his very useful advice and 
cooperation in preparing the Proceedings for publication. 

The invited talks at the seminar were given by Professors R. W. Farebrother 
(University of Manchester, U.K.), 10han Fellman (Swedish School of Eco­
nomics, Helsinki), Hannu Niemi (University of Helsinki) and Bimal Kumar 
Sinha (University of Pittsburgh, U.S.A.). My special thanks are due to these 
speakers, as well as to the speakers in the contributed paper sessions, for an 
excellent series of talks and for their kind cooperation in preparing the papers 
for publication. I also wish to thank Professors lerzy K. Baksalary (Academy 
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vi Preface 

of Agriculture, Poznan, Poland), J. A. Melamed (Tbilisi, U.S.S.R.) and Der­
Shin Chang (Hsinchu, Taiwan), who, unfortunately, for unavoidable reasons, 
were not able to participate in the seminar. The last two, however, do have 
their contributions in the Proceedings. 

All papers in this volume have been refereed and I therefore wish to thank 
the anonymous referees for their efforts. The deadline for the first versions 
of the papers was September 2, 1983. On the front page of each paper is the 
affiliation of the author as of August 1983 and at the end of the paper the 
current affiliation and the date when the final version was received. 

Financially the seminar was supported by the University of Tampere, the 
Academy of Finland, the City of Tampere, and various associations and com­
panies whose names are listed on page viii. All deserve our sincerest thanks for 
their invaluable support. The City of Tampere also very kindly invited all 
participants to a Civic Reception in the Town Hall. 

The seminar was organized by a local committee within the Department 
of Mathematical Sciences/Statistics, consisting of Paula Hietala, Pentti 
Huuhtanen, Paivi Laurila, Erkki Liski, Simo Puntanen and myself. Also Rai­
ja Leppala, Olavi Stenman and Pirkko Welin very kindly gave their help in 
various arrangements. I am deeply grateful to each and everyone of my col­
leagues for this tremendous cooperation. 

Jointly with Simo Puntanen, as the editors of these Proceedings, I wish to 
give special thanks to Pirkko Welin for her kind assistance in preparing this 
volume. 

I would also like to thank Professor and Mrs. Eino Haikala for their warm 
hospitality in connection with the seminar. The organizers of the seminar are 
also grateful to the University Rector J. K. Visakorpi for his address during 
the inauguration of the seminar. 

Our sincere thanks also go to all of the participants in the seminar, whether 
reading papers or not, for it was their participation which made the seminar 
a success. The organizers were also glad to see the active interest shown in the 
social programme of the seminar. It is my impression that everyone will have 
warm memories of the Seminar Dinner and Civic Reception - even hot ones 
of the Sauna Party. 

The success of the seminar is due also to Professors Gustav Elfving (Uni­
versity of Helsinki) and Timo Makelainen (University of Helsinki). Both acted 
as chairmen during several sessions in the seminar. Besides this, Professor 
Elfving gave an inspiring opening address entitled »Finnish Mathematical 
Statistics in the Past». I am deeply grateful for their help and for their coopera­
tion in carrying out the seminar. 

While preparing this volume for publication, we were deeply saddened 
that Professor Gustav Elfving passed away on March 25, 1984. He was in-
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strumental in the promotion of statistics in Finland as well as of our seminar. 
As the seminar organizers we were very impressed not only by his active 
participation in mathematical and statistical discussions but also by his great 
and warm sociability: he was one of the real old-time gentlemen . It is to 
Professor Elfving that we dedicate this volume. 

Tampere, February 1985 Tarmo Pukkila 
Seminar Director 
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IN MEMORIAM 

Gustav Elfving 
1908-1984 

While these Proceedings were in print we learned that the prominent con­
tributor to the Seminar, Professor Gustav Elfving had died on the 25th of 
March 1984 at his home in Helsinki. 

Erik Gustav Elfving was born in 1908 in Helsinki. He graduated in 1930 
in Mathematics and took his doctoral degree in 1934, both at the University 
of Helsinki. He was appointed Professor of Mathematics at the same university 
in 1948 and retired in 1975. 

Elfving wrote his doctoral thesis under the guidance of Rolf Nevanlinna 
on the latter's value distribution theory. Elfving's first paper in probability in 
1937 marks the beginning of a long and distinguished career in probability and 
statistics. His writings published for the international professional audience 
contain papers on Markov chains , point processes, sufficiency and complete 
classes, design of linear experiments and sample designs, test item selection, 
order statistics, exact distributions and expansions of distributions, quality 
control, nonparametric statistics, and Bayesian statistics. Characteristic to 
them · are many original ideas, clear formulation, and elegant presentation 
stressing central ideas . 

Perhaps the single most influential piece of Elfving ' s writings - and one 
in a subject very close to this Seminar - is the paper »Optimum allocation 
in linear regression theory» published in 1952 in the Annals oj Mathematical 
Statistics. The problem of optimal design of linear experiments is here 
brought, for the first time in some generality, before a wide statistical audience. 
Today an extensive field of study, optimal design of experiments has since un- · 
dergone profound technical development. Yet, Elfving's work remains part of 
its foundations. (Compare with Professor Fellman's lecture in this volume.) 
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During his retirement Elving took the role of a historian of mathematics. 
His lecture in this volume partly draws on a major work »The History of 
Mathematics in Finland 1828-1918» (Societas Scientiarum Fennica, Helsinki 
1981, 195 pp.). 

September 1984 Timo Makelainen 
Department of Mathematics 

University of Helsinki 
Helsinki . Finland 
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