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ABSTRACT 

Inspired by a recent article of Searle (1994), we consider some specific features of 
estimation of XI3 in the general linear model {y, XI3, V}, where the model matrix X 
need not have full column rank and the dispersion matrix V can be singular. Particular 
attention is paid to the problems related to the invariance of some matrix expressions 
with respect to the choice of generalized inverses. These invariance properties yield 
interesting matrix algebra while characterizing the best linear unbiased estimator of 
XI3. 

1. I N T R O D U C T I O N  

Let  the triplet 

~ r  = {y, Xl3, tr~V} (1.1)  

denote  the general linear model, in which y is an n x 1 observable random 
vector with expectation vector  XI3 and dispersion matrix ~ ( y ) =  tr2V, 
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where an n × p matrix X and n × n nonnegative definite matrix V are 
known, while I 3 is a p x 1 vector of unknown parameters; the positive scalar 
tr z is also unknown, but it has no role in this paper and therefore we may set 
o-2 = 1. 

The matrices X and V are both allowed to be of arbitrary rank, but it 
is assumed, throughout the paper, that the model (1.1) is consistent [cf. 
Rao (1973a, p. 297)], or, in other words, that the inference base is not self- 
contradictory [cf. Feuerverger and Fraser (1980, p. 44)], i.e., 

y ~ ~'(X: V) with probability 1, (1.2) 

where ~(X:V)  denotes the column space of the partitioned matrix (X:V). 
Hence, in the sequel, whenever we have a statement concerning a linear 
estimator Ay, this statement is to be understood to be valid for all y 
~(X:V).  

When both X and V are of full rank, the best linear unbiased estimator 
(BLUE) of X13 is then expressible in the form [Aitken (1935, p. 45)] 

BLUE(X13) = X ( X ' V - I X ) - I x ' v - l y ,  (1.3) 

where X' denotes the transpose of X. Here BLUE(X13) is understood as an 
estimator By such that BX = X and the difference ~Z~(Ay) - ~z,,(By) is 
nonnegative definite for every A satisfying AX = X. The ordinary least 
squares estimator (OLSE) of X13 is defined as 

OLSE(X13) = X(X'X)- lX 'y  = PxY = Hy; (1.4) 

here Px = H is the orthogonal projector onto the column space of X. 
If  matrices X and V are both deficient in rank, what changes we have to 

make in (1.3) and (1.4) in order to obtain the BLUE and OLSE? It is well 
known that in (1.4) we can replace (X'X) -1 by any generalized inverse 
(X'X)- ~ {(X'X)-}, where {A-} denotes the set of all generalized inverses of 
A, i.e., {A-} = {G : AGA = A}. In this case, the orthogonal projector onto the 
column space of X is 

r x = n = X(X'X)- X'. (1.5) 

But to obtain the BLUE using generalized inverses in (1.3) is not that simple. 
Consider, for example, the following estimator of X13: 

I~(V +) = X(X'V+X)- X'V+y, (1.6) 

where V + denotes the (unique) Moore-Penrose inverse of V and (X'V+X) - 
is a member of the class {(X'V+X)-}. One important problem in this context 
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is whether (1.6) is invariant with respect to the choice of a generalized inverse 
(X'V+X) -. This is clearly not always the case. One further problem related to 
the estimator (1.6) is that it must be understood in such a way that in this 
expression we have chosen one fixed member from the class {(X'V+X) - } and 
hence we have a properly defined estimator. If we choose another member 
from the class {(X'V÷X)-}, then we might get another estimator. 

There will be several situations where we are interested in the invariance 
of a product of the type AB-C with respect to the choice of generalized 
inverse B-.  The following important result is proved by Rao and Mitra 
(1971, Lemma 2.2.4 and Complement 14, p. 43); see also Rao, Mitra, and 
Bhimasankaram (1972, Lemma 1), Mitra and Odell (1986, Lemma 1.1). 

LEMMA 1.1. Let A :/: 0 and C --/: O. Then 

(a) A B - C  = AB+C for every B- if and only if ~(A')  c ~(B ' )  and 
~(C)  c ~'(B), and in particular, 

(b) AA-C = C for some A- (and hence for every A-)  if and only if 
~(C)  a ~(A). 

In the sequel we will also use the following rank formula [cf. Zyskind and 
Martin (1969, p. 1194), Marsaglia and Styan (1974, p. 276)]: 

rankAB = rankA - dim[g~(A ') n ~ ' (B±) ] ,  (1.7) 

where B ± is any matrix such that ~(B-t)  is the null space of the transpose 
of B. 

We note, in view of Lemma 1.1, that H in (1.5) is clearly invariant with 
respect to the choice of (X'X)-, and furthermore, ~(V +) in (1.6) is invariant 
with respect to the choice of a generalized inverse (X'V÷X) - if and only if 

~ ( X ' )  a ~(X'V÷X).  (1.8) 

Since ~'(X'V+X) = ~(X'V) and ~(X'V) c ~(X'), (1.8) becomes ~'(X') = 
~'(X'V), or equivalently 

rank X = rank X'V. (1.9) 

Therefore, by means of (1.7), the estimator ~t(V ÷) is invariant with respect to 
the choice of a generalized inverse (X'V÷X) - if and only if 

V(X) n V(V 1) = {0). (1.10) 

Recently Searle (1994) gave (as he states on p. 139) "some new forms and 
shortened proofs for results on the linear model with singular dispersion 
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matrix." The purpose of our paper is to give some further simplifications and 
generalizations of Searle's results. Particular attention is paid to the problems 
related to the invariance of some specific matrix expression with respect to 
the choice of generalized inverses. Our considerations are strongly based on 
the use of the consistency condition (1.2) and Lemma 1.1. Their use offers an 
interesting approach to problems raised by Searle. In Section 3, we consider 
so-called natural restrictions, which are consequences of the consistency 
condition (1.2). 

2. PROPERTIES OF THE BLUE 

As mentioned in the introductory section, the estimator By is said to be 
the BLUE of  X ~  whenever the dispersion matrix of By is smallest, in the 
L/Swner sense, among all linear unbiased estimators of X[I. One characteriza- 
tion [cf. Drygas (1970, p. 55), Rao (1973b, p. 282)] of BLuE(XI~) is 

if and only if 

By = BLUE(X~) under .~"= {y, XI~,V} (2.1) 

B(x: VM) = (X: 0), (2.2) 

here M = I - H, with H defined as in (1.5) and I denoting the n × n 
identity matrix. It is noteworthy that the matrix B satisfying (2.2) is unique if 
and only if the columns of (X : VIM) span the whole Euclidean n-dimensional 
space ~ " .  On the other hand, since y ~ ~(X : V) = ~(X : VIM), the numeri- 
cal value of BLuE(XI3) is unique with probability 1, and furthermore, (1.2) 
can be replaced by 

y ~ ~ ( X :  VM) with probability 1. (2.3) 

One representation for BLOE(XI3), as noted by Searle (1994, p. 140) and 
Albert (1973, p. 182), is 

BLUE(X~) = [H -- I ~ ' M ( M V M )  + M]y (2.4a) 

= OLSE(X[3) -- HVM(MVM) + My. (2.4b) 

The well-known matrix identity 

M(MVM) +M = M(MVM) + = (MVM ) + M = (MVM) + (2.5) 

offers other equivalent ways to express (2.4). The result (2.5) comes at once 
from the identity A + = (A'A)+A ' = A'(AA') + for any matrix A. Note further 
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that from (2.4b) it is easy to conclude that the equality between BLuE(XI]) 
and OLSE(Xll) holds if and only if [cf. Rao (1967) and Zyskind (1967)] 

H'VI~ ~ O. 

Searle (1994, p. 141) raises the question of whether 

[H - I-IVM(MVM)- M ly  

(2.6) 

(2.7) 

is invariant with respect to the choice of generalized inverse (MVM)-, and 
hence, in view of (2.4), is the BLUE of XI~. There are various ways to study 
this invariance. We use the consistency condition (2.3) and Lemma 1.1, and 
then the proof becomes fairly short and simple. It is crucial to note that when 
discussing the invariance under the choice of a generalized inverse of a 
representation like (2.7), invariance is to be interpreted as invariance for all y 
satisfying the consistency condition y ~ ~ (X : V). Similarly, two linear estima- 
tors Ay and By are to be regarded equal if they have the same value for all 
y ~ ~f(X : V). 

THEOREM 2.1. Under the model ~," = {y, Xlt, V}, we have 

(a) BLUE(XI[~) = [H - I - IVI~( I~V~¢I ) -n ]y  for" any choice of (MVM)-; 
(b) BLuE(XII) = [I -- VM(MVM)-Mly for any choice of (MVM)-. 

Proof. We first observe that (2.7) is invariant with respect to the choice 
of generalized inverse (MVM)- if and only if 

My ~ ~ ( M V ) .  (2.8) 

By the consistency condition (2.3) we know that with probability 1, y is 
expressible as 

y = Xa + VMb for some vectors a and b. (2.9) 

From (2.9) the requirement (2.8) follows at once, and (a) is proved. Replacing 
H by I - M in (2.7) yields the following representation for the BLUE: 

BLUE(XI~) = [I - V M ( M V M ) -  M]y  - Cy, (2.10) 

where C = M - MVM(MVM)-M.  Using again (2.9), we see that Cy = 0 
and hence one representation for the BLUE is 

BLUE(XI~ ) = I t  -- V '~[ (MVI~[) -  M]y, (2.11) 

which clearly is invariant for any choice of (MVM)-, • 
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From Theorem 2.1 we obtain the following formulas for the dispersion 
matrix of BLuE(X[3): 

~ [ B L U E ( X [ 3 ) ]  = H V I t  - H V M ( M V M ) - M V H  (2.12a) 

= V - VM(MVM)-  MV, (2.12b) 

where both expressions are invariant with respect to the choice of (MVM)-. 
If the rank of V is v, then we may write the spectral decomposition 

V = Q A Q ' ,  (2.13) 

where Q is an n × v matrix such that Q 'Q  = I~ and A is a v × v diagonal 
matrix with the nonzero eigenvalues of V on its diagonal. Let us further 
denote the nonnegative definite symmetric square root of V as 

V 1/2 = QAi /2Q  ' = T, say. (2.14) 

Then (2.12b) can be written as 

~ [ B L U E ( X ~ ) ]  = T( I  - PTM)T-  (2 .15)  

Using (1.7), we obtain 

rank{Z/~[BLVE(X~)]} = r ank [ r ( I  - PTM)] 

= rankT - d im[W(T) f3 W(TM)] 

= rank T " rank TM 

= dim[W(V) (~ W(X)].  (2.16) 

Hence it is clear that ~v-[BLuE(Xg)] = 0 if and only if W(V) n W(X) = {0). 
In the following theorem we collect together some related results. 

THEOREM 2.2. Under the model ~ = {y, X~, V}, the following state- 
ments are equivalent: 

(a) M(MVM)-M ~ {V-} for any choice of (MVM)-; 
(b) ~ ( x )  n ~ ( v )  = {0); 
(C) ~ ' [ B L U E ( X ~ ) ]  = 0. 

Furthermore, 

(d) M(MVM)-M ~ {(MVM)-} for any choice of (MVM)-; 
(e) M(MVM)-M = (MVM) + for any choice of (MVM)- if and only if 

~'(X: V) = ~t"; (2.17) 
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(0 [I - V(MVM)-M]y is invariant for any choice of (MVM)- /f and 
only if 

w(v (2.18) 

(g) [I - V(MVM)-ly is invariant fi~r any choice of (MVM)- if and only 
x = o .  

Proof. The equivalence of (a), (b), and (c) follows from (2.12b) and 
(2.16); see also Werner (1987). Part (d) is easy to check. The matrix 
M(MVM)- M is invariant with respect to the choice of (MVM)- if and only 
if 

~ ( M )  c ~ (MV) .  (2.19) 

Now (2.19) is equivalent to rankM = rankMV, and hence, by (1.7), to 

~ ( M )  N ~ ( V  ±) = {0}, (2.20) 

which further is equivalent to (2.17), in which case M(MVM)-M = (MVM) + 
for any choice of (MVM)-, and (e) is proved. To prove (f), we note that 

[I - V(MVM)-  M]y (2.21) 

is invariant with respect to the choice of (MVM)- if and only if 

~ ( V )  c ~ ( M V ) .  (2.22) 

It is easy to show that (2.22) is equivalent to V = MV = VM = MVM, i.e., 
I tV = 0, which can also be expressed as (2.18). To prove (g), we note that the 
necessary and sufficient conditions for the invariance of [I - V(MVM)-]y 
are the following: 

HV = 0 and y ~ ~ ( M V ) .  (2.23) 

It is easy to see that (2.23) holds if and only if X = 0, which is of no interest 
from a statistical point of view. • 

Let (MVM)" be a generalized inverse of MVM. Then the matrix 
M(MVM) -M = (MVM) = , say, is a generalized inverse of MVM, and 

[I - V(MVM) = ] y = BLuE(X[~). (2.24) 
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But as Searle (1994, p. 142) points out, the matrix (MVM)" in (2.24) cannot 
be replaced by an arbitrary generalized inverse of MVM. Part (g) of Theorem 
2.2 shows that such a replacement is possible if and only if X = 0. 

Note that if (2.18) holds, then [I - V(MVM)-M]y = Hy = BLUE(X~). 
We further note that it is easy to see that the vector y itself is the BLUE of  X[3 
if and only if VM = 0, or equivalently 

~(M) c ~ ( v  1). (2.25) 

The inclusion (2.25) is actually a necessary and sufficient condition for every 
unbiased estimator of XI3 to be the 13LUE. 

Let us next consider the estimator of the type 

i ,(w) = x (x 'wx) -  X'Wy, (2.26) 

where W is now an arbitrary matrix such that X'WX # O. To satisfy the 
unbiasedness of I~.(W), we must have 

x(x 'wx) -  x 'wx  = x. (2.27) 

By Lemma 1.1, (2.27) holds if and only 

~(x')  c ~(x 'w'x) .  (2.28) 

Clearly (2.28) is equivalent to ~'(X') = cf(X'W'X) and similarly to cf(X') = 
~'(X'WX). How about the invariance of f~(W) with respect to the choice of 
(X'WX)-? Lemma 1.1 shows that the invariance holds if and only if both 
(2.28) and 

X'Wy ~ ~ (x 'wx)  (2.29) 

hold. Since (2.28) implies (2.29), we have proved the following theorem (cf. 
Baksalary and Puntanen, 1989, Lemma 1): 

THEORV.M 2.3. Consider the model .~" = {y, XI~, V}, and assume that 
X ' W X  ¢: O. Then the following three statements are equivalent: 

(a) ~(W) = X(X'WX)-X'Wy/s  an unbiased estimator for XIS; 
(b) I~(W) = X(X'WX)-X'Wy/s  invariantfor any choice of (X'WX)-; 
(c) rankX = rank(X'¥VX). 

Searle (1994, Theorem 1) provided a rather lengthy proof of Theorem 2.3 
in the situation where W is nonnegative definite and symmetric. 
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The statistical analysis under the model .~v = {y, Xl~, V} simplifies when 

c (2.30) 

holds. This was first noted by Goldman and Zelen (1964, p. 165), who 
asserted that the BLUE of X[~ is then expressible in the form 

~(V +) = X(X'V+X) - X'V+y. (2.31) 

In view of Theorem 2.3, ~(V ÷) is unbiased if and only if rankX = rankX'V 
or equivalently ~(X) N ~'(V ±) = {0}. This indeed holds if (2.30) holds. In 
order for ~(V +) to be the BLUE, the following equality must hold [cf. (2.2)]: 

x ( x ' v + x ) -  x ' v ÷ v M  = o. (2.32) 

Clearly (2.30) implies (2.32). 
The observation of Goldman and Zelen (1964) was generalized by Mitra 

and Rao (1968, p. 286), who pointed out that representation (2.31) is true 
under (2.30) not only with V ÷, but with any generalized inverse V-. A 
complete solution to the problem of the validity of (2.31) was given by 
Zyskind and Martin (1969, p. 1196), who showed that (2.30) is not only 
sufficient, but also necessary. Actually, their Corollary 1.1 may be generalized 
as follows. 

THEOREM 2.4. For the general linear model .jtr = {y, XI3, V}, consider 
the foUowing two statements: 

(a) BLuE(X~) = X(X'V-X)-X 'V-y ,  
(b) ~'(X) c ~'(V). 

Then (b) implies (a) irrespective of the choices of V-  and (X'V-X)- ,  and 
conversely, (b) must hold whenever (a) is satisfied for some V-  such that 
rank(X'V-X) = rank(X'V-V) and some (X'V-X)- .  

Proof. Condition (b) guarantees the invariance of ~ (V-)  = X(X'V-X)-  
X ' V - y  with respect to the choice of V-  and (X'V-X)- ,  and hence ~(V-)  
equals ~(V+), which is BLuE(XI3) in this situation. 

To prove the latter part, let V ~ be a fixed generalized inverse of V, such 
that 

rank(X'V - X) = rank(X'V - V), (2.33) 

and let ~(V ~) = X(X'V - X)-X'V - y be the gLUE of XI$. Then the unbi- 
asedness of i~(V ~) means that 

rank(X'V - X) = rank X, (2.34) 
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and hence (2.33) implies that 

r ank(X 'V ~ V) = rankX.  (2.35) 

Fur thermore ,  since I~(V ~) is the BLUE of  Xlt ,  we must have 

x ( x ' v  ~ x )  x ' v  - VM = 0. (2.36) 

Premultiplying (2.36) by X 'V  ~ and using X 'V  ~ X(X'V ~ X ) - X '  = X' ,  we see 
that (2.36) is equivalent to 

X 'V  ~ VM = O, (2.37) 

i.e., 

v(vv-'x) c v ( x ) .  (2.38) 

Combining (2.35) with (2.38) yields 

v ( v v  ~'x) = v ( x ) ,  (2.39) 

which clearly implies condition (b) of  the theorem. • 

As an example, let us consider the model  {y,(1 :X2), C}, where  1 = 
(1, 1 . . . . .  1)' and C = I - n - i l l  ', that is, C is the centering matrix. In this 
situation, it is easy to observe that the ordinary least squares est imator of  XI3 
equals SLUE(XI$), and hence (a) of  Theorem 2.4 holds when we take I as a 
generalized inverse of  V. But now neither  (b) nor the condition r ank (X 'V-X)  
= r ank (X 'V-V)  holds. This explains why the rather artificial-seeming rank 
condition needs to be included with (a). We can extend this to the situation 
where  the model  matrix is X = (X 1 : X 2) and ~ ( y )  = I - XI(X'IX1)-IX'I .  
This arises when y is the residual from fitting X 1. I f  we ignore it and fit the 
full model, we still get the BLUE. 

We note that choosing V ~ = V ÷ means that (2.33) holds, and so Theo- 
rem 2.4 could be  formulated by replacing V -  by V +. 

Searle (1994, Theorem 2) gives such a version of  the above theorem, 
where  he chooses V ~ = Vr~-, a symmetr ic  reflexive generalized inverse of  V. 
It  can be shown that 

r a n k ( X ' W , ~ )  = rank(X'Vr~-X ) = rankX'V,  (2.40) 

and hence Searle's result comes as a corollary to our Theorem 2.4. 
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The condition (2.30) plays a similar role when considering a representa- 
tion of the dispersion matrix of BLuE(XI~). Mitra and Rao (1968, p. 286) 
pointed out that if (2.30) holds, then 7/~[BLUE(XI~)] may be expressed in the 
same form as in the case of positive definite V, with the only difference that 
V-1 is replaced by a generalized inverse V-.  And again Zyskind and Martin 
(1969, p. 1196) showed that (2.30) is not only sufficient, but also necessary. 
We reformulate here (omitting the prooO their Corollary 1.3 as follows. 

THEOREM 2.5. For the general linear model ~ = {y, X13, V}, consider 
the following two statements: 

(a) ~[BLUE(XI~)] = X(X'V-X)-X' ,  
(b) ~(X) c ~(V). 

Then (b) implies (a) irrespective of the choices of V and (X'V-X)- ,  and 
conversely, (b) must hold whenever (a) is satisfied for some V-  such that 
rank(X'V-X) = rankX and some (X'V-X)- .  

We will conclude this section with some considerations related to repre- 
sentations of the dispersion matrix of BLUE(XI~). Specifically, it might be 
natural to ask for a "direct" proof of the equality between the expressions of 
(2.12) and of the type (a) of Theorem 2.5. We offer here a simple matrix-alge- 
braic proof. Consider the decomposition V = Q A Q '  as in (2.13), and let us 
d e n o t e  V 1/2 = QA1/ZQ ' and (V+) 1/2 = Q A - 1 / e Q  '. Then Vl/2(V+) 1/z = 
Pv. It is well known that 

PA -1- PB = P(A:B) ~ A'B = 0.  (2.41) 

Substituting A = (V+)I/2X and B = V1/2M into (2.41), we observe that the 
equality 

V1 /2M(MVM)-  MV1/2 + (V+)I /2X(X,V÷X)-  X,(V ÷)1/2 = Pv (2.42) 

holds if and only if X'P v M = 0. Pre- and postmultiplying (2.42) by V 1/2, we 
conclude that (2.42) is equivalent to 

VM(MVM) MV + PvX(X'V+X) X'P v = V. (2.43) 
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If ~(X) c ~(V), then (2.43) holds, and we can delete Pv from (2.43) and 
obtain the presentation (a) of Theorem 2.5. As a matter of fact, we have 
proved the following theorem: 

THEOREM 2.6. Under the model .jtr = {y, X13, V}, the following state- 
ments are equivalent: 

(a) H P v M  = 0; 
(b)  7/~'[BLUE(X13)] = PvX(X'V+X)-X'Pv . 

For further discussion of the dispersion matrix of 13LUE(X13), the reader is 
referred to Baksalary, Puntanen, and Styan (1990). 

3. NATURAL RESTRICTIONS 

In their main result, Zyskind and Martin (1969) show that whatever the 
matrices X and V and relationships between them are, it is always possible to 
represent BLUE(X13) and 7/~[BLUE(X13)] in the forms X(X'V ~ X)-X'V ~y 
and X(X'V ~ X)-X', respectively, with the use of a suitably chosen general- 
ized inverse V ~. From this point of view, therefore, the only difference 
between the models .ge which satisfy (2.30) and those which do not satisfy 
(2.30) is that the choice of V ~ is irrelevant in the first situation. 

The role of the condition (2.30) in statistical analysis under the model .~v 
seems to be more important from a different point of view. It has been 
pointed out by several authors that if V is singular, then 13 is subject to 
certain restrictions implied by the model structure, which will henceforth be 
called natural restrictions. They are expressed in the literature in various 
ways. We quote here only the form 

F'X13 = F'y, (3.1) 

where F is any matrix such that ~'(F) coincides with the orthocomplement 
of ~(V). The formulation (3.1) is used for instance by Kempthome (1976, 
p. 207), Mitra and Rao (1968, p. 282), Rao (1973b, p. 279), and Seely and 
Zyskind (1971, p. 693). For two alternative formulations of the natural 
restrictions, we refer the reader to Alalouf (1978, p. 68) and Feuerverger and 
Fraser (1980, p. 43). 

The interpretation of the equations (3.1) is somewhat murky, as they 
become completely specified restrictions on 13 only when y is replaced by its 
observed outcome. A consequence of the above is that there is no unique way 
of treating the equations (3.1) in statistical analysis under the model .4tr. In 
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the problem of linear unbiased estimation, some papers take (3.1) into 
account, which leads in particular to defining Ay as an unbiased estimator of 
XI~ if AXI~ = XI~ holds for every I~ satisfying (3.1); whereas some other 
papers ignore (3.1) and consider I~ to be free to vary over the entire space of 
p x 1 vectors, in which case the unbiasedness condition retains its classical 
stronger form AX = X. The former approach further leads to the so-called 
"wider definition of BLuE(XI~)"; cf., e.g., Harville (1981), Rao (1973b; 1979), 
and Sch6nfeld and Werner (1987). On the other hand, the crucial argument 
for the second approach is that the simplification involved in it does not lead 
to any loss of generality, because if there is an unbiased estimator A ,  y of XI~ 
not satisfying the equation A .  X = X, then there exists A such that AX = X 
and Ay = A . y  with probability one; cf., e.g., Kempthorne (1976) and Rao 
(1973a, pp. 297-298). In this context, the reader is also referred to Puntanen 
and Styan (1989, 1990), Christensen (1990), Harville (1990), and Baksalary, 
Rao, and Markiewicz (1992). 

In view of the above, the most important role of the condition (2.30) is 
that it reconciles the two approaches mentioned above, as the equations (3.1) 
are trivially fulfilled for every model ~¢ which satisfies (2.30) in addition to 
the consistency condition y ~ ~'(X:V). When the natural restrictions (3.1) 
vanish, i.e., when there is no deterministic component providing information 
on XI~, then the statistical analysis under the model ~ becomes so similar to 
that under the model with a positive definite V that it is justifiable to 
emphasize the fact that the condition (2.30) holds by calling the model 
"weakly singular.'" According to our knowledge, this term was proposed by 
Nordstr/Sm (1985, p. 243) as a result of his considerations concerning a 
decomposition of Jr'; cf. Rao (1984, Section 6). 

The authors wish to thank Jerzy K Baksalary for very helpful discussions. 
This research was completed when the first author was a Senior Research 
Fellow of the Academy of Finland. 
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