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ABSTRACT

The well-known Cauchy-Schwarz and Kantorovich inequalities may be expressed
in terms of vectors and a positive definite matrix. We consider what happens to these
inequalities when the vectors are replaced by matrices, the positive definite matrix is
allowed to be positive semidefinite singular, and the usual inequalities are replaced by
Lowner partial orderings. Some examples in the context of linear statistical models are
presented.
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1. INTRODUCTION AND PRELIMINARIES

Let x and y be n X 1 nonnull real vectors. Then

(x'y)" < (xXx)(y'y) (1.1)

is the vector version of the well-known Cauchy-Schwarz inequality (prime
denotes transpose). Equality holds in (1.1) if and only if x and y are linearly
dependent, i.e.,

(x'y) = (xx)(y'y) @ xay. (1.2)

Let A be an n X n positive definite symmetric real matrix—throughout this
paper all vectors and matrices are assumed to be real (but our results may be
readily extended to complex vectors and matrices). Then there exists an
n X n nonsingular matrix F such that

A = FF'. (1.3)

Let t be an n X 1 vector. Then substituting x = F't and y = F~ 't in (1.1)
gives

(t't)® < (VAY)(YA~'t). (1.4)

Equality holds in (1.4) if and only if At « t, i.e., t is an eigenvector of A.
When t't = 1, we may express (1.4) as

YA~ 't > (tAY) . (1.5)
A “reversal” to (1.5) is provided by

(Al + /\n)

At <
40 A,

(vAy) ™', (1.6)

where A, and A, are the largest and smallest eigenvalues of A. Equality holds
in (1.6) when t = (h, + h,)/ V2, where h, and h, are orthonormal eigen-
vectors of A corresponding to A, and A,; when the eigenvalues A, and A, are
both simple (i.e., each has multiplicity 1), then this condition is also neces-
sary.
The inequality (1.6) is a vector version of the well-known Kantorovich
inequality (cf. Marcus and Minc, 1992, pp. 110, 117); see also Wang and Shao
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(1992), who considered a constrained version of (1.6) with the vector t being
restricted to a specific subspace. We note that the scalar multiplier on the
right-hand side of (1.6) is the square of the ratio of the arithmetic and
geometric means of A, and A,.

Marshall and Olkin (1990) extended (1.5) and (1.6) by replacing the
vector t with an n X ¢ matrix T and the usual scalar inequality with the
Lowner partial ordering. The n X n matrices K and L satisfy the Lowner
partial ordering whenever the difference L. — K = FF’ for some matrix F,
ie., L — K is nonnegative definite and symmetric; cf., e.g., Marshall and
Olkin (1979, p. 462). We then say that K is below L (with respect to the
Lowner partial ordering) and write K < L. Note that this ordering has
usually been applied (particularly in statistics) when K and L are symmetric;
this is, however, not necessary.

Further extensions of (1.5) and (1.6) were obtained by Baksalary and
Puntanen (1991a), with the matrix A positive semidefinite singular and the
inverse A™! replaced by the Moore-Penrose inverse A*.

Some further related inequalities are, for example, the following—we
continue to assume that t't = 1 and that A is positive definite symmetric:

1

2
t'At——tK_—lté(‘/x—m), (1.7)

A%t (A +A,)°

< ) 1.8
(YAD)® 4NN, (18)
A—A)°
(VA2t)"? — tAt < (—‘—L), (1.9)
4(A +A)
A — A
vA’t — (YAt < (—14—). (1.10)
Equality holds in (1.7) if and only if
1
tAt= A + A, — /A, and tAT't= — (1.11)
1%n

while equality holds in (1.8)—(1.10) if and only if At and t'At are, respec-
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tively, equal to:

. 2MA,
in (1.8) PV and AjA,, (1.12)

1 n

A+ A, MA, A+ A
in (1.9) . " - 1+/\ an (—‘—4——), (1.13)
1 n
A+ A, A+ A2

in (1.10) 3 an 3 (1.14)

Furthermore, equality holds in (1.7)—(1.10) when the vector t = ah, +
Bh, for certain scalar multipliers & and B where, as above, h, and h,, are
eigenvectors of A corresponding to A, and A_; when the eigenvalues A, and
A, are both simple (i.e., each has multiplicity 1) then this condition is also
necessary. The scalar multipliers a and B are, respectively, equal to the
positive square roots of:

/i Vi

for (1.7 1 ad 1.15
or (1) N Y e (113
A, A
for (1.8) , (1.16)
A+ A, A+ A,

o (Lo N3N BA A, .
or (1.9) an+r) A+ (1.17)
for (1.10) 3 and 3. (1.18)

We note, therefore, that equality in (1.10) holds simultaneously with equality
in the Kantorovich inequality (1.6).

The inequality (1.7) is due to Mond and Shisha (1970); cf. also Styan
(1983); for (1.8), cf. Kantorovich (1948) and Greub and Rheinboldt (1959);
for (1.9), cf. Mond and Shisha (1970); for (1.10), cf. Styan (1983). Mond and
Pecarié¢ (1993) provided matrix versions of (1.7), (1.8), and (1.9).

In this paper we introduce a new general matrix version of the Cauchy-
Schwarz inequality, and collect together some forms of the Cauchy-Schwarz
inequality that have recently appeared in the literature. We also provide
matrix extensions of (1.7)—(1.10) by replacing the n X 1 vector t with an
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n X t matrix T, allowing the symmetric matrix A to be nonnegative definite,
and using the Lowner partial ordering.

2. A GENERALIZED MATRIX VERSION OF THE
CAUCHY-SCHWARZ INEQUALITY

For a given n X ¢ matrix Y, we write #(Y) for the column space (range)
of Y, and Py for the orthogonal projector onto #(Y). A generalized inverse
Y™ of Y is a matrix Y~ that satisfies YY"Y = Y; if in addition Y"YY =Y~
and both YY™ and Y7Y are symmetric, then Y™ = Y*, the (unique) Moore-
Penrose inverse of Y.

The projector Py = Y(Y'Y)°Y = Y(YY'Y)'Y', since the product
Y(Y'Y)"Y' is invariant with respect to the choice of generalized inverse
(Y'Y)™ in view of the following result (Rao and Mitra, 1971, Lemma 2.2.4
and Complement 14, p. 43):

LEMMA 2.1. Let A #+ 0 and C # 0. Then

AB ' C=AB'C fordl B~ & #(A)C®(B) and #(C) C Z(B).
(2.1)

The idempotent matrix I — Py is the orthogonal projector on the ortho-
complement of #(Y) and is nonnegative definite:

I-Y(YY) Y >_0. (2.2)
If Xis an n X m matrix, then (2.2) implies (cf. Chipman, 1964, p. 1093) that
XY(YY) YX <, X'X, (2.3)

which is a matrix version of (1.1). Equality in (2.3) holds if and only if
X' — Py)X = 0, which is equivalent to #(X) c #(Y), i.e.,

XYYY) YX=XX o #X)c#(Y) o X=YF (24)

for some g X m matrix F. We note that when m = g = 1, then (2.4) reduces
to (1.2), the condition for equality in the (usual) Cauchy-Schwarz inequality.
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For our generalization of (2.3) below (Theorem 2.1) we introduce the
following notation for powers of a matrix A, symmetric but not necessarily
nonnegative definite:

A?, p=12,..., (2.52)
APt = [P, = A(AA) A, p=0, (2.5b)
(A" p=-1,-2.... (2.5¢)

If we let A be n X n with rank r, then we write the spectral decomposition
A = WAW', (2.6)

where W is an n X r matrix such that WW =1 _and A =(A)isan r X r
diagonal matrix with the nonzero eigenvalues A; on its diagonal. Then

APy = WAPW',  p= .. -2 -1012,..., (2.7)

where A? = (A}), and so the nonzero eigenvalues of A"} are precisely the
pth powers of the nonzero eigenvalues of A. When p = 0 these eigenvalues
are all equal to one; when p is negative they are the reciprocals of the
nonzero eigenvalues of A raised to the power |p| = —p.

When A is nonnegative definite, then its nonzero eigenvalues are all
positive, and by taking positive square roots of the eigenvalues in (2.7) we
may define the nonnegative definite matrices

AP} = A%, P=3lz., (2.8a)
A", p=-1 -1, (2.8b)

When A is symmetric but not nonnegative definite, then A has at least one
negative eigenvalue and the matrix A2 is not real.

THEOREM 2.1. Let A be an n X n symmetric matrix with A"} defined
by (2.5) and (2.7); let the matrices T and U be n X t and n X u, respec-
tively, and let h and k be integers ( possibly negative or zero). Then

TAGR+ DY (UARY) T UARROIT < TAMT (2.9)
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whenever either

(a) the matrix A is nonnegative definite, or
(b) the integers h and k are both even or zero.

The following three equivalent conditions characterize equality in (2.9):

Z(APT) C Z(AGYD), (2.10a)
#z(P,T) c F(A M), (2.10b)
Z(AT) C (AL +3k-hiy)y, (2.10c)

We note that, in view of (2.1), the left-hand side of (2.9) is invariant with
respect to the choice of generalized inverse. Moreover, when A >_ 0 then
(2.9) holds for all integers h, k: positive, negative, or zero. When h and k are
both even or zero and A is symmetric but not nonnegative definite, then the
matrices Al Al#F) and A2 +5) are all real; when h is odd, however, the
matrix A%} w111 not be real.

Proof of Theorem 2.1. When either (a) the matrix A is nonnegative
definite or (b) the integers h and k are both even or zero, the matrices Al= h)
and A3 are both well defined and real. We may then substitute X = AGT
and Y = AZMU into (2.3) and (2.4), respectively, to yield (2.9) and (2.10a)
directly. It is straightforward to show that the three conditions in (2.10) are
equivalent. [ |

Many special cases of (2.9) have appeared in the literature. The case of
A> 0, T=U, h= -1, and k = 1 was given by Baksalary and Puntanen
(1991a) as follows:

COROLLARY 2.1. Let A be an n X n nonnegative definite symmetric
matrix, and let T be an n X t matrix. Then

T'P,T(T'AT) TPT <, TA'T (2.11)
with equality if and only if

Z(AT) = Z(P,T). (2.12)
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Moreover, if in addition A and T are such that T'P,T is idempotent:

T'P,T = (T'P,T)®, (2.13)
then
(TAT) <, TA*T (2.14)
with equality if and only if
P,TT'AT = AT. (2.15)

The idempotency condition (2.13) is equivalent to the condition
P,T(T'P,)P,T = P,T, (2.16)

since P, > 0, and so T'P,T is idempotent if and only if (P,T) is a
generalized inverse of P, T. Such a matrix is called a partial isometry; cf. Horn
and Johnson (1994, p. 152). It follows that then T'P,T = Py.,, the orthogo-
nal projector onto the column space #(T'A).

Following Baksalary and Puntanen (1991a), we see that if T has full
column rank, A >_ 0, and #(T) C #(A), then T'AT is positive definite,
P, T = T, and (2.11) may be written as

T'T(T'AT) 'T'T <, TA*T (2.17)
with equality if and only if
&(AT) = €(T). (2.18)

When Z(T) c #(A), we may, in view of (2.1), replace the Moore-Penrose
inverse A in (2.17) with any generalized inverse A~, and then (2.17)
coincides with Lemma 2.1 in Gaffke and Krafft (1977), which generalizes
Lemma 2c¢ in Rao (1967).

Furthermore, if A is positive definite, then P, = I, and (2.16) becomes
TT'T = T, and (2.17) leads to

(TAT)" <, TA™'T. (2.19)
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Marshall and Olkin (1990) considered the special case of (2.19) with T
suborthogonal, i.e., T'T = I,.

Let us now partition conformably the n X n nonnegative definite sym-
metric matrix T and its Moore-Penrose inverse A* as follows:

A A
A=( H 12) and AT= (2.20)

Bll B12
Bll2 B22 ’

with A;t X t. Then with T = (I,:0), Baksalary and Puntanen (1991a)
showed that Corollary 2.1 implies the following:

rank A = rankA |, + rankA,, = A} < B, (2.21)

with equality if and only if A}, = 0; see also Baksalary and Kala (1980,
Proposition 1), Chollet (1982), and Marcus (1982).

We now consider an application of (2.17) in the context of the linear
statistical model. To do this, we let X be an n X m matrix with full column
rank m, and we let V be an n X n positive definite symmetric matrix.
Replacing T by X and A by V! we rewrite (2.17) in the form

(X'VIX) T < (X'X) X VR(X'X) (2.22)

This inequality has an important statistical interpretation. For this purpose,
we consider the full-rank linear model

{y.XB.V}, (2.23)

where y is an n X 1 observable random vector with n X 1 expectation vector
&(y) = XPB and n X n dispersion (or covariance) matrix 2(y) = V. Here the
n X m design (or model) matrix X has rankX = m > 0, and is known, while
the m X 1 vector B is unknown, and the n X n dispersion matrix V is
positive definite symmetric and known. Then Cy is said to be the best linear
unbiased estimator (BLUE) of B whenever the dispersion matrix of Cy is
smallest (in the Lowner sense) among all linear unbiased estimators of @.
Since

BLUE B = (X’V‘IX)_IX’V“y and oLSEB = (X'X) 'X'y, (2.24)

the left-hand side of (2.22) is the dispersion matrix of the BLUE of B and the
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right-hand side is the dispersion matrix of the OLSE of B, and so we have:
D (BLUEB) < Z(OLSE B). (2.25)

We notice that in view of (2.18), equality holds in (2.25) if and only if
Z(VX) = @(X) (cf. Rao, 1967, and Zyskind, 1967); for a general discussion of
the conditions for the equality of the OLSE and the BLUE and of the conditions
for the equality of their dispersion matrices, see Puntanen and Styan (1989).

Furthermore, premultiplying (2.22) by X and postmultiplying by X' gives

X(X'V7IX) T'X' <, PyVPy, (2.26)
which in statistical terms means
2(BLUEXB) < Z(oLsEXP). (2.27)

The inequality (2.27) is, of course, also true when X has less than full rank.
Since the random vector y itself is an unbiased estimator for X, we must
have

P(BLUEXB) = X(X'V™!X) 'X' <, V =92(y), (2.28)
which follows from (2.9) with appropriate substitutions. As a related matter,
we may mention that equality in (2.27) holds if and only if (cf. Baksalary and
Puntanen, 1990)

P,VP, < V. (2.29)

In this context, we note that Chipman (1968, p. 120, Lemma 2.1.2; 1976, p.
562, Lemma 2.1.2) has given the following “generalized Schwarz inequality”:
Let X be an n X m matrix as above, let V now be an n X n nonnegative
definite symmetric matrix, and let X~ satisfy the two conditions

XX~“X=X and XX~V = (XX"V). (2.30)
Then for any n X m matrix F,

FXX "~ VX“'X'F' <, FVF, (2.31)
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with equality if and only if
FV = FXX" V; (2.32)

cf. Chipman (1968, p. 120, Lemma 2.1.2; 1976, p. 562, Lemma 2.1.2). Rao
and Mitra (1971, p. 46) refer to the transpose X~' of X~ , as defined by
(2.30), as a minimum-V-seminorm generalized inverse of X'. Moreover, if X~
satisfies (2.30), then XX~y is the BLUE of XB under {y,XB,V}, and
therefore (2.31) is a parallel statement to (2.26) without any rank assump-
tions.

Let us now return to Theorem 2.1 and suppose that ¢ = u = 1; then T
and U are n X 1 nonnull vectors, which we will now denote by t and w,
respectively. Then with A >_ 0 and with A!” defined by (2.5) and (2.7), we
obtain

(VARG (VAP (WARY)  for R k= ..., —1,0,1,2,...,
(2.33)

with equality if and only if [cf. (2.10c)]
At o AL+ Rly (2.34)
If h=1and k = —1, then with A > 0 the inequality (2.33) becomes
(t'l;,u)2 < (YAt)(WA*u) (2.35)
with equality if and only if
At « P,u. (2.36)
And so when A >, 0 we have
(Yu)® < (YAt) (WA u) (2.37)

for all u € #(A) [cf. (1.1) and (1.4)]; the quadratic form w'A”u in (2.37) is
invariant with respect to the choice of generalized inverse A~ when u € #(A)
[cf. (2.1)]. For a statistical proof of (2.37), see Dey, Hande, and Tiku (1994,
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Theorem 2.1). Equality holds in (2.37) if and only if
At o u. (2.38)

In his comment on Olkin (1992), Chaganty (1993) gave (2.37) with the
Moore-Penrose inverse A* instead of an arbitrary generalized inverse A,
and commented that he could not find a proof of this result in the literature.
He pointed out that the condition t = A*u is sufficient for equality to hold in
(2.37), but gave no necessary condition. It is easy to see that t = A*u is a
special case of (2.38) when u € (A).

In a further comment on Olkin (1992), Trenkler (1994) gave the following
inequality (cf. Baksalary and Kala, 1983):

(Yu)® < ktAt (2.39)

for all n X 1 vectors t if and only if A >_ 0, u € #(A), and k > u'A™u; cf.
also Baksalary and Trenkler (1991) and Baksalary, Schipp, and Trenkler
(1992), and the recent discussion between Bancroft (1994), Neudecker and
Liu (1994), and Chaganty and Vaish (1994).

If we now let t = u € #(A), then (2.37) simplifies further to

(t1)” < (FAL)(YAY) (2.40)

for all t € #(A) and for all choices of generalized inverse A™; when t # 0,
then equality holds in (2.40) if and only if t is an eigenvector of A. This result
is given by Dey and Gupta (1977, Lemma 2.1).

3. GENERALIZED MATRIX VERSIONS OF THE
KANTOROVICH INEQUALITY

Let A be an n X n positive definite symmetric matrix, and let T be an
n X ¢ matrix such that

TT=1,, (3.1)
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i.e., T is suborthogonal. For such A and T, Marshall and Olkin (1990) proved
the following matrix version of the Kantorovich inequality (1.6):

(M + 2

TA T
LT

(T'AT) ™! (3.2)

n

and Mond and Pedari¢ (1993) proved the following matrix versions of (1.7,
(1.8), and (1.9):

TAT - (TA™'T) " < (V& - V&)L, (3.3)
TAT <, (—L——)(T'AT) (3.4)
AN,
(Al - An)2
TAT)" - TAT g, ———~ 3.5
(TaT)" - TAT < o, (35)

Mond and Pedarié (1994) extended (3.2)—(3.5) to sums of matrices.
It is easy to see that (1.10) generalizes similarly to
TAT - (TAT)® <_ (A, — )L, (3.6)
In this section we allow A to be nonnegative definite, thus being possibly
singular, and so generalize (3.2)-(3.6).
Baksalary and Puntanen (1991a) gave the following generalization of (3.2):
Let A be an n X n nonnegative definite symmetric matrix of rank r with

nonzero eigenvalues A; > -+ > A, > 0, and let T be an n X ¢ matrix. Then
TA*T Mt A “T'P,T ! T'AT. 3.7

< - — .
Lo, PRI - e (3.7)

If we now assume that A and T are such that
T'P,T is idempotent, (3.8)

i.e., P,T is a partial isometry [cf. (2.13) and (2.16)], then (3.7) simplifies to

’a + (Al + Ar)2 ’ +
TA'T <L T(TAT) . (3.9)
1

r
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Equality holds in (3.9) if and only if

AL+ A,

2A A,

2 A1 + /\r 2
(TAT)’ = ——TAT and (TA'T)" = TA*T, (3.10)

so that both T'AT and T'A* T are scalar-potent. It follows that (3.10) holds if
and only if either AT = 0 or all the nonzero eigenvalues of T'AT and T'A*T
are, respectively, equal to (A; + A,)/2 and (A, + A,)/(2A,A).

Consider now again the linear statistical model {y,XPB, V} [cf. (2.23)],
where X is an n X m matrix with full colamn rank m, and Vis an n X n
positive definite symmetric matrix. Suppose now that X is suborthogonal, i.e.,
X'X = I,,. Then, in view of (2.22) and (3.9), we obtain

2
(XVIX) ' g X'VX < ('\;jLi”--)—(x'v-IX)‘1 (3.11)
-t TN ’ ’
1%n
or equivalently
()‘1 + An)2

P (BLUEB) <. Z(OLSEB) <, PZ(BLUEB). (3.12)

40,

As noted in Section 2, equality holds in the left-hand inequality of (3.12) if
and only if #(VX) = @(X). The question of equality in the right-hand
inequality of (3.12) was raised by Magness and McGuire (1962, p. 470), who
conjectured that equality cannot be attained if V is irreducible. This conjec-
ture was disproved, using (3.10), by Baksalary and Puntanen (1991b). We
note that equality in the left-hand inequality of (3.12) may be interpreted as
the OLSE being “as good as possible” or “fully efficient” with respect to the
BLUE. The question of how “bad” the OLSE can be is more complicated, since
there is no unique way to measure the relative goodness of the OLSE; cf.
Watson (1955), Bloomfield and Watson (1975), and Puntanen (1987). Rao
(1985) measured the goodness of the OLSE as the trace of the difference
X'VX — (X'V™!X)"! and, while keeping V fixed and letting X vary, found an
upper bound.
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We may note that corresponding to (3.11), we also have that

()‘l + Ar)2
rankA = rankA |, + rankA,, = Af < B}, g, ———A{;;
ANA,
(3.13)

cof. (2.19) and (2.21).
We generalize (3.3) in the following Theorem 3.1; generalizations of
(3.4)-(3.6) appear in Theorem 3.2.

THEOREM 3.1. Let A be an n X n nonnegative definite symmetric
matrix of rank r with nonzero eigenvalues A, > --- > A, > 0 and orthogonal
projector P,, and let T be an n X t matrix such that P,T is a partial
isometry, i.e.,

T'P,T is idempotent ; (3.14)
cf. (3.8). Then
2
TAT - (TA*T) < (VA — VA, ) TRT, (3.15)

with equality if and only if both T'AT and T'A*T are scalar-potent with

TA'T.

(TAT)® = (A, + A, — YA X )JTAT and (TA'T)" =

1
VA,

(3.16)

It follows [cf. (3.10)] that equality holds in (3.15) if and only if either
AT = 0 or all the nonzero eigenvalues of T'AT and T'A™T are equal,

respectively, to A, + A, — y/A;A, and 1/ {/AjA,.

Proof of Theorem 3.1. The key inequality that we will use in our proof
[cf. Marshall and Olkin (1964, p. 509) and Styan (1983)] is

A

r

A<A+A - i=12,...,r (3.17)

i
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where A; > =+ > A; > - > A, > 0 are the eigenvalues of A. The inequal-
ity (3.17) follows at once from

(A = A)(A = A) =0 (3.18)
Equality holds in (3.18) if and only if equality holds in (3.17) if and only if the
largest i or the smallest n — i nonzero eigenvalues of A are all equal, ie.,

either A, = =+ = A, or A, = =+ =A,i=12...,r
We write (3.17) in the matrix form

A< (A +A)L = (MA)AT (3.19)
where, as before, A is an r X r diagonal matrix with the nonzero eigenvalues
Ay > 2 A > > A >0 on the diagonal. As in (2.6), we use the
spectral decomposition A = WAW', where W is an n X r matrix such that

W'W = 1. Premultiplying (3.19) by T'W and postmultiplying by W’'T, and
subtracting (T'A*T)* from both sides, we have

TAT - (TA*T)" < (A, + A,)T'R,T - LMATA'T — (TA*T)"

= (VA& - V&) TRT - F, (3.20)

where the symmetric matrix

F = /A, (TA*T)? - [(TA"T)" ] (3.21)
To confirm the equality in (3.20), we observe that
(TA*T)2[(TA*T) " |* = Py, (3.22)

the orthogonal projector onto #(T’A), and from the idempotency condition
(3.14) we have

Py, = T'P,T. (3.23)

The inequality (3.20) then implies (3.14), since F? is nonnegative definite.
Equality holds in (3.15), therefore, if and only if equality holds throughout

(3.20) and F = 0; these two conditions are easily seen to be equivalent,

respectively, to the two conditions in (3.16). n
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We now generalize (3.4)-(3.6):

THEOREM 3.2. Let the matrices A, P,, and T be defined as in Theorem
3.1. Then

(Al + Ar)2 2
TAT g, ———(TAT)%, (3.24)
4A,
A=)
(T'A*T)"* — TAT <, (—1—————)—T’PAT, (3.25)
4( /\1 + Ar)
s a2 ’ 2 (/\l - Ar)2 ,
TA'T - (TAT)" <, ————TRT, (3.26)

with equality if and only if both T'AT and T'A*T are scalar-potent, and for
equality—

in (3.24):
2 200, 2
(TAT): = —LTAT and (TA'T) = A ATAT; (327)
A+ A, "
in (3.25):
rary = (A A L AN dr s
' - + '
(TAT) 4 A ¥ A, o
A+ )
(T'A’T)® = —(—1—4—)T’A2T; (3.28)
in (3.26):
LA

., A A .
(TAT)" = ———TAT and (TAT) - TAT. (3.29)

It follows [cf. the paragraph following (3.16)] that when AT = 0 equality
holds throughout (3.24), (3.25), and (3.26). Then AT # 0, however, then
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equality holds in (3.24), (3.25), and (3.26) if and only if all the nonzero
eigenvalues of T'AT and T'A’T are, respectively, equal to:

2N A,

for (3.24): A and AjA,, (3.30)
1 r
A+ A AA, (A + 1)
for (3.25): Tty ad (3.31)
1 r
A+ A, A+ A2
for (3.26): 3 an 5 (3.32)

We observe, therefore, that equality in (3.26) coincidences with equality in
the generalized Kantorovich inequality (3.9); cf. (3.10), (3.26), and (3.32).

Proof of Theorem 3.2.  To prove (3.24), we begin by multiplying (3.19) by
A, so that

A? <L(/\l + Ar)A - (’\IAr)Ir' (333)

Proceeding as in the proof of Theorem 3.1, we premultiply (3.33) by T'W
and postmultiply by W'T [cf. (3.19) and (3.20)] to yield

TA2T <, (A, + A,)T'AT — A, A, T'P,T (3.34a)
A+ A
= (—;—)\A—)(T'AT) - G2, (3.34b)
1

where the symmetric matrix

At

G- ‘/__ " TAT — /A A, T'RT; (3.35)

this follows because under the idempotency condition (3.14),
TATT'P,T = T'P,TTAT = TAT. (3.36)

The inequality (3.24) then follows from (3.34), since G >, 0. Equality holds
in (3.24) if and only if G, = 0 and equality holds throughout (3.34); these two
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conditions are easily seen to be equivalent, respectively, to the two conditions
in (3.27). See also (3.30).

To prove (3.25) we divide (3.34a) by A, + A, and add (T'A*T)"/* to both
sides to yield

A A
TAT)”® — TAT < (T'A2T)> - L T'P,T - TAT
( ) L( ) T ey
(3.37a)
A —A)
= —(—l——)T'PAT - G2, (3.37b)
4(A + A,)

where the symmetric matrix

G, =
oA+

r

1/2
T’A2T) - (A + A)*TRT, (3.38)

this follows because under the idempotency condition (3.14),
P y
(TA*T)*T'R,T = TP,T(TAT)* = (TA*T)"%,  (3.39)

cf. (3.36). The inequality (3.25) then follows from (3.37), since G > 0.
Equality holds in (3.25) if and only if equality holds throughout (3.37) and
G, = 0; these two conditions are easily seen to be equivalent, respectively, to
the two conditions in (3.28), see also (3.31).

To complete our proof of this theorem, we now establish (3.26) and
(3.29). We start by rewriting (3.37a) as

TAXT <, (A, + A,)TAT — AATP,T. (3.40)
Subtracting (T'AT)? from both sides of (3.40) and using (3.36) gives
TA2T — (T'AT)® < (A, + A,)TAT — (TAT)’ — A A TP,T

=1(A = A)T'RT - GE, (3.41)



474 JOSIP E. PECARIC ET AL.

where the symmetric matrix
G, = TAT — 5(A, + A,)T'P,T. (3.42)

The equality (3.26) then follows from (3.41), since G% >, 0. Equality holds in
(3.26) if and only if G, = 0 and equality holds throughout (3.41); these two

conditions are easily seen to be equivalent, respectively, to the two conditions
in (3.29). See also (3.32). [ ]
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