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ABSTRACT 

The well-known Cauchy-Schwarz and Kantorovich inequalities may be expressed 
in terms of vectors and a positive definite matrix. We consider what happens to these 
inequalities when the vectors are replaced by matrices, the positive definite matrix is 
allowed to be positive semidefinite singular, and the usual inequalities are replaced by 
ISSwner partial orderings. Some examples in the context of linear statistical models are 
presented. 
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1. INTRODUCTION AND PRELIMINARIES 

Let x and y be n × 1 nonnull real vectors. Then 

(x 'y)  2 < ( x ' x ) ( y ' y )  (1.1) 

is the vector version of the well-known Cauchy-Schwarz inequality (prime 
denotes transpose). Equality holds in (1.1) if and only if x and y are linearly 
dependent, i.e., 

(x 'y)  2 = (x ' x ) (y ' y )  ¢*x  ~ y. (1.2) 

Let A be an n x n positive definite symmetric real matrix--throughout this 
paper all vectors and matrices are assumed to be real (but our results may be 
readily extended to complex vectors and matrices). Then there exists an 
n × n nonsingular matrix F such that 

A = FF ' .  (1.3) 

Let t be an n × 1 vector. Then substituting x = F ' t  and y = F - i t  in (1.1) 
gives 

( t ' t )  2 ~< ( t 'A t ) ( t 'A -~ t ) .  (1.4) 

Equality holds in (1.4) if and only if At ¢t t, i.e., t is an eigenvector of A. 
When t ' t  = 1, we may express (1.4) as 

t ' A - l t  >t ( t 'At)  -1 (1.5) 

A "reversal" to (1.5) is provided by 

(A 1 -[- An) 2 
t 'A- It <~ (t'At) - 1, (1 .6)  

4A 1 h. 

where )t 1 and A n are the largest and smallest eigenvalues of A. Equality holds 
in (1.6) when t = (h I + h , )  / ~/2, where h I and h n are orthonormal eigen- 
vectors of A corresponding to h 1 and An; when the eigenvalues h I and h n are 
both simple (i.e., each has multiplicity 1), then this condition is also neces- 
sary. 

The inequality (1.6) is a vector version of the well-known Kantorovich 
inequality (cf. Marcus and Minc, 1992, pp. 110, 117); see also Wang and Shao 
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(1992), who considered a constrained version of (1.6) with the vector t being 
restricted to a specific subspace. We note that the scalar multiplier on the 
right-hand side of (1.6) is the square of the ratio of the arithmetic and 
geometric means of A l and A,. 

Marshall and Olkin (1990) extended (1.5) and (1.6) by replacing the 
vector t with an n × t matrix T and the usual scalar inequality with the 
Lfwner partial ordering. The n × n matrices K and L satisfy the L6wner 
partial ordering whenever the difference L - K = FF '  for some matrix F, 
i.e., L -  K is nonnegative definite and symmetric; cf., e.g., Marshall and 
Olkin (1979, p. 462). We then say that K is below L (with respect to the 
L~wner partial ordering) and write K ~ k L. Note that this ordering has 
usually been applied (particularly in statistics) when K and L are symmetric; 
this is, however, not necessary. 

Further extensions of (1.5) and (1.6) were obtained by Baksalary and 
Puntanen (1991a), with the matrix A positive semidefinite singular and the 
inverse A -1 replaced by the Moore-Penrose inverse A ÷. 

Some further related inequalities are, for example, the following--we 
continue to assume that t ' t  = 1 and that A is positive definite symmetric: 

1 
t'At t'A-1-----t ~ (~-I -- ~ -n )  2, (1.7) 

t'A2t (* l  + ~,,)2 
( t ' l t )  2 ~< 4A1X,, , ( 1 . 8 )  

( , ~  _ , . ) 2  ( 1 . 9 )  ( t 'A2t)  1/2 - t'At ~< 4(A1 + A . )  ' 

(~1 - A.)2 
t'A2t - ( t 'At)  2 ~< ( 1 . 1 0 )  

4 

Equality holds in (1.7) if and only if 

t'At = A~ + A n - ~r~-~A n 
1 

and t 'A- i t  ,t-:---w-, , (1.11) 
~/Ala,, 

while equality holds in (1.8)-(1.10) if and only if t'At and t'A2t are, respec- 
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tively, equal to: 

2AIA n 
in (1.8) and hlA,, (1.12) 

A 1 + A,~ 

A 1 -{- A n A1A n ( A  1 -~- An)  2 
in (1.9) - -  + - -  and , (1.13) 

4 h 1 + h n 4 

A 1 "1- A n A 2 q- A2n 
in (1.10) 2 and 2 (1.14) 

Furthermore, equality holds in (1.7)-(1.10) when the vector t = a h  I + 
/3h n for certain scalar multipliers a and /3 where, as above, h 1 and h n are 
eigenvectors of A corresponding to A 1 and A.; when the eigenvalues A 1 and 
A n are both simple (i.e., each has multiplicity 1) then this condition is also 
necessary. The scalar multipliers a and /3 are, respectively, equal to the 
positive square roots of: 

for (1.7) ~ + ~ n  and ~ + 1 / ~ '  (1.15) 

A~ A 1 
for (1.8) A 1 + h. and A1 -[- An , (1.16) 

A 1 + 3A. 3A 1 + A n 

for(1.9)  4(h ,  -~- An) and 4(hi  + An), (1.17) 

± and i (1.18) for (1.10) 2 2. 

We note, therefore, that equality in (1.10) holds simultaneously with equality 
in the Kantorovich inequality (1.6). 

The inequality (1.7) is due to Mond and Shisha (1970); cf. also Styan 
(1983); for (1.8), cf. Kantorovich (1948) and Greub and Rheinboldt (1959); 
for (1.9), cf. Mond and Shisha (1970); for (1.10), cf. Styan (1983). Mond and 
PeSari6 (1993) provided matrix versions of (1.7), (1.8), and (1.9). 

In this paper we introduce a new general matrix version of the Cauchy- 
Schwarz inequality, and collect together some forms of the Cauchy-Schwarz 
inequality that have recently appeared in the literature. We also provide 
matrix extensions of (1.7)-(1.10) by replacing the n × 1 vector t with an 
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n X t matrix T, allowing the symmetric matrix A to be nonnegative definite, 
and using the l_/Swner partial ordering. 

2. A GENERALIZED MATRIX VERSION OF THE 
CAUCHY-SCHWARZ INEQUALITY 

For a given n × q matrix Y, we write ~(Y) for the column space (range) 
of Y, and Py for the orthogonal projector onto ~'(Y). A generalized inverse 
Y- of Y is a matrix Y- that satisfies YY-Y = Y; if in addition Y-YY- = Y- 
and both YY- and Y-Y are symmetric, then Y - =  Y+, the (unique) Moore- 
Penrose inverse of Y. 

The projector Py = Y(Y'Y)-Y' = Y(Y'Y)+Y', since the product 
Y(Y'Y)-Y' is invariant with respect to the choice of generalized inverse 
(Y'Y)- in view of the following result (Rao and Mitra, 1971, Lemma 2.2.4 
and Complement 14, p. 43)'. 

LEMMA 2.1. Let A ~ 0 and C ~ O. Then 

A B - C  = AB+C foral l  B-  ~ ~(h~) c ~ ' (B ' )  and ~' (C)  c ~ ( B ) ,  

(2.1) 

The idempotent matrix I - P~ is the orthogonal projector on the ortho- 
complement of ~(Y) and is nonuegative definite: 

I - Y ( Y ' Y ) -  Y' >~L O. (2 .2)  

If X is an n X m matrix, then (2.2) implies (cf. Chipman, 1964, p. 1093) that 

X 'Y(Y'Y)-  Y'X ~<L X'X, (2.3) 

which is a matrix version of (1.1). Equality in (2.3) holds if and only if 
X'(I - Pv)X = 0, which is equivalent to ~(X) c ~'(Y), i.e., 

X 'Y(Y 'Y) -Y 'X  = X'X ~ ~ ( X )  c ~(Y)  ¢~ X = YF (2.4) 

for some q x m matrix F. We note that when m = q = 1, then (2.4) reduces 
to (1.2), the condition for equality in the (usual) Cauchy-Schwarz inequality. 
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For  our generalization of  (2.3) below (Theorem 2.1) we introduce the 
following notation for powers of  a matrix A, symmetric but  not necessarily 
nonnegative definite: 

( Ap'  

A {p} = { P A  = A(ALA) 

t (A+)  Ipl ' 

p = 1,2 . . . . .  (2.5a) 

p = o ,  ( 2 . 5 h )  

p = - 1,  - 2 . . . . .  ( 2 . 5 c )  

I f  we let A be n × n with rank r, then we write the spectral decomposition 

A = W A W ' ,  ( 2 . 0 )  

where W is an n × r matrix such that W ' W  = I r and A = (A i) is an r × r 
diagonal matrix with the nonzero eigenvalues Ai on its diagonal. Then  

A {p) = W A P W  ', p = . . . ,  - 2 ,  - 1 , 0 ,  1 ,2  . . . . .  (2.7) 

where A p = (A/P), and so the nonzero eigenvalues of  A {p} are precisely the 
p th  powers of  the nonzero eigenvalues of  A. When  p = 0 these eigenvalues 
are all equal to one; when p is negative they are the reciprocals of  the 
nonzero eigenvalues of  A raised to the power I pl  = - p .  

When A is nonnegative definite, then its nonzero eigenvalues are all 
positive, and by taking positive square roots of  the eigenvalues in (2.7) we 
may define the nonnegative definite matrices 

lAP,  p = ½, 1½ . . . . .  (2.8a)  
A{p} 

1 1 ( 2 . 8 b )  ~ A + / I p l ,  P =  2, 1~ . . . . .  

When  A is symmetric but  not nonnegative definite, then A has at least one 
negative eigenvalue and the matrix A 1/2 is not real. 

THEOREM 2.1. Let A be an n × n symmetric matrix with A {p} defined 
by (2.5) and (2.7); let the matrices T and U be n × t and n × u, respec- 
tively, and let h and k be integers ( possibly negative or zero). Then 

TtA{½(h + k))u(UrA{k)U) - UtA{½(h + k)}T ~<t. T'A{h}T (2.9)  
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whenever either 

(a) the matrix A is nonnegative definite, or 
(b) the integers h and k are both even or zero. 

The following three equivalent conditions characterize equality in (2.9): 

~'(A{}h}T) c ~(A{}k}U), 

~(PA T) C ~(A{½(k-h)}u), 

~ ( A T )  c ~ ( A  {1 +-~(k-a)}U)" 

461 

(2.10a) 

(2.lOb) 

(2.10c) 

We note that, in view of (2.1), the left-hand side of (2.9) is invariant with 
respect to the choice of generalized inverse. Moreover, when A >~L 0 then 
(2.9) holds for all integers h, k: positive, negative, or zero. When h and k are 
both even or zero and A is symmetric but not nonnegative definite, then the 
matrices A {}h}, A {}k}, and A {~(h+k)} are all real; when h is odd, however, the 
matrix A { ~h} will not be real. 

Proof of Theorem 2.1. When either (a) the matrix A is nonnegative 
definite or (b) the integers h and k are both even or zero, the matrices A t }h} 
and A {½k~ are both well defined and real. We may then substitute X = A{½h}T 
and Y = A{½kIU into (2.3) and (2.4), respectively, to yield (2.9) and (2.10a) 
directly. It is straightforward to show that the three conditions in (2.10) are 
equivalent. • 

Many special cases of (2.9) have appeared in the literature. The case of 
A >~L 0, T = U, h = - 1 ,  and k = 1 was given by Baksalary and Puntanen 
(1991a) as follows: 

COROLLARY 2.1. Let A be an n × n nonnegative definite symmetric 
matrix, and let T be an n × t matrix. Then 

T'PAT(T'AT) T'PAT ~<L T'A+T 

with equality i f  and only i f  

 (AT) :  (PAT). 

(2.11) 

(2.12) 
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Moreover, if in addition A and T are such that T'PAT is idempotent: 

T'PAT = (T'PAT) 2, (2.13) 

then 

with equality if and only if 

(T'AT) + ~<L T'A+T (2.14) 

PATI["AT = AT. (2.15) 

The idempotency condition (2.13) is equivalent to the condition 

PAT(T'PA)PA T = PA T, (2.16) 

since PA >~t_ 0, and so T'PAT is idempotent if and only if (PAT)' is a 
generalized inverse of PA T. Such a matrix is called a partial isometry; cf. Horn 
and Johnson (1994, p. 152). It follows that then T'PAT = PT'A, the orthogo- 
nal projector onto the column space W(T'A). 

Following Baksalary and Puntanen (1991a), we see that if T has full 
column rank, A >~L 0, and ~ ' ( T ) c  ~(A), then T'AT is positive definite, 
PA T = T, and (2.11) may be written as 

T 'T (T 'AT) -~T 'T  ~<t. T'A+T (2.17) 

with equality if and only if 

~'(AT) = W(T).  (2.18) 

When W(T) c W(A), we may, in view of (2.1), replace the Moore-Penrose 
inverse A ÷ in (2.17) with any generalized inverse A-,  and then (2.17) 
coincides with Lemma 2.1 in Gaffke and Krafft (1977), which generalizes 
Lemma 2c in Rao (1967). 

Furthermore, if A is positive definite, then PA = 10 and (2.16) becomes 
T I "T  = T, and (2.17) leads to 

(T'AT) + ~<L T'A- iT. (2.19) 
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Marshall and Olkin (1990) considered the special case of (2.19) with T 
suborthogonal, i.e., T 'T  = I t .  

Let us now partition conformably the n × n nonnegative definite sym- 
metric matrix T and its Moore-Penrose inverse A + as follows: 

A =  ~/~12 A22 and A+= 1Blz B22 , (2.20) 

with All t  × t. Then with T = (I t :0)', Baksalary and Puntanen (1991a) 
showed that Corollary 2.1 implies the following: 

rankA = rankA~l + rankA22 =* A~-I ~-</ Bll (2.21) 

with equality if and only if Al2 = 0; see also Baksalary and Kala (1980, 
Proposition 1), Chollet (1982), and Marcus (1982). 

We now consider an application of (2.17) in the context of the linear 
statistical model. To do this, we let X be an n x m matrix with full column 
rank m, and we let V be an n × n positive definite symmetric matrix. 
Replacing T by X and A by V -1, we rewrite (2.17) in the form 

(XtV- Ix)  -I  ~</(×iX)-  lXtVX(XtX)-1. (2.22) 

This inequality has an important statistical interpretation. For this purpose, 
we consider the full-rank linear model 

{y, XI~, V}, (2.23) 

where y is an n × i observable random vector with n × 1 expectation vector 
$'(y) = X[3 and n × n dispersion (or covariance) matrix .~(y) = V. Here the 
n × m design (or model) matrix X has rank X = m > 0, and is known, while 
the m × 1 vector I1 is unknown, and the n x n dispersion matrix V is 
positive definite symmetric and known. Then Cy is said to be the best linear 
unbiased estimator (BLUE) of 1~ whenever the dispersion matrix of Cy is 
smallest (in the L/Swner sense) among all linear unbiased estimators of I~. 
Since 

BLUE ~ = ( X ' V - l x ) - l x ' v - l y  and OLSE ~ = (X 'X)- IX 'y ,  (2.24) 

the left-hand side of (2.22) is the dispersion matrix of the BLUE of I~ and the 
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right-hand side is the dispersion matrix of the OLSE of 13, and so we have: 

.~(BLUE 13) ~<L -~(OLSE 13). (2.25) 

We notice that in view of (2.18), equality holds in (2.25) if and only if 
W(VX) = W(X) (cf. Rao, 1967, and Zyskind, 1967); for a general discussion of 
the conditions for the equality of the OLSE and the BLUE and of the conditions 
for the equality of their dispersion matrices, see Puntanen and Styan (1989). 

Furthermore, premultiplying (2.22) by X and postmultiplying by X' gives 

X(X 'V-  iX)- IX '  <L PxVPx, (2.26) 

which in statistical terms means 

.~(BLUEX~) ~<l..~(OLSEX~). (2.27) 

The inequality (2.27) is, of course, also true when X has less than full rank. 
Since the random vector y itself is an unbiased estimator for XI~, we must 

have 

~(BLUEX~) = X(X'V-IX)-Ix t <LV ~-~(y), (2.28) 

which follows from (2.9) with appropriate substitutions. As a related matter, 
we may mention that equality in (2.27) holds if and only if (cf. Baksalary and 
Puntanen, 1990) 

PxVPx ~<LV. (2.29) 

In this context, we note that Chipman (1968, p. 120, Lemma 2.1.2; 1976, p. 
562, Lemma 2.1.2) has given the following "generalized Schwarz inequality": 
Let X be an n × m matrix as above, let V now be an n × n nonnegative 
definite symmetric matrix, and let X ~ satisfy the two conditions 

X X ~ X = X  and X X ~ V =  (XX~V) ' .  (2.30) 

Then for any n x m matrix F, 

FXX ~ VX ~ 'X'F '  ~<L FVF' ,  (2.31) 
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with equality if and only if 

F V =  FXX~V; (2.32) 

cf. Chipman (1968, p. 120, Lemma 2.1.2; 1976, p. 562, Lemma 2.1.2). Rao 
and Mitra (1971, p. 46) refer to the transpose X ~' of X ~,  as defined by 
(2.30), as a minimum-V-seminorm generalized inverse of X'. Moreover, if X ~ 
satisfies (2.30), then XX~y  is the BLUE of XI~ under {y, XI~,V}, and 
therefore (2.31) is a parallel statement to (2.26) without any rank assump- 
tions. 

Let us now return to Theorem 2.1 and suppose that t = u = 1; then T 
and U are n × 1 nonnull vectors, which we will now denote by t and u, 
respectively. Then with A >~L 0 and with A ~p} defined by (2.5) and (2.7), we 
obtain 

(t'A{½(h+k)}u)2 ~< (t'A{h}t)(utA{k}U) for h,k= . . . , - 1 , 0 , 1 , 2  . . . . .  

(2.33) 

with equality if and only if [cf. (2.10c)] 

At at A 0 ÷ ½~k-h~}u. (2.34) 

If h = 1 and k = - 1, then with A >~L 0 the inequality (2.33) becomes 

(t'PAU) z ~< (t'At)(u'A+u) (2.35) 

with equality if and only if 

And so when A >~L 0 we have 

At a P,u. (2.36) 

(2.37) 

for all u ~ ~'(A) [cf. (1.1) and (1.4)]; the quadratic form u 'A-u  in (2.37) is 
invariant with respect to the choice of generalized inverse A- when u ~ ~(A) 
[cf. (2.1)]. For a statistical proof of (2.37), see Dey, Hande, and Tiku (1994, 

(t 'u) 2 ~< (t 'At)(u'A-u)  
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Theorem 2.1). Equality holds in (2.37) if and only if 

At u. (2.38) 

In his comment on Olldn (1992), Chaganty (1993) gave (2.37) with the 
Moore-Penrose inverse A ÷ instead of an arbitrary generalized inverse A-,  
and commented that he could not find a proof of this result in the literature. 
He pointed out that the condition t = A+u is sufficient for equality to hold in 
(2.37), but gave no necessary condition. It is easy to see that t = A+u is a 
special case of (2.38) when u ~ W(A). 

In a further comment on Olldn (1992), Trenkler (1994) gave the following 
inequality (cf. Baksalary and Kala, 1983): 

( t 'u )  2 .< kt'At (2 .39)  

for all n × 1 vectors t if and only if A >~L 0, u ~ W(A), and k ;~ u'A- u; cf. 
also Baksalary and Trenkler (1991) and Baksalary, Schipp, and Trenkler 
(1992), and the recent discussion between Bancroft (1994), Neudecker and 
Liu (1994), and Chaganty and Vaish (1994). 

If we now let t = u ~ ~(A), then (2.37) simplifies further to 

(t't) 2 < (t'At)(t'A-t) (2.40) 

for all t ~ W(A) and for all choices of generalized inverse A-;  when t * 0, 
then equality holds in (2.40) if and only if t is an eigenvector of A. This result 
is given by Dey and Gupta (1977, I_emma 2.1). 

3. GENERALIZED MATRIX VERSIONS OF THE 
KANTOROVICH INEQUALITY 

Let A be an n × n positive definite symmetric matrix, and let T be an 
n x t matrix such that 

T 'T  -- I t ,  (3.1) 
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i.e., T is suborthogonal. For such A and T, Marshall and Olkin (1990) proved 
the following matrix version of the Kantorovich inequality (1.6): 

( A  1 "1- An) 2 
T'A- 1T <t. (T'AT) - 1, (3.2) 

4A1 An 

and Mond and Pe~ari6 (1993) proved the following matrix versions of (1.7), 
(1.S), and (1.9): 

T'AT - ( T ' A - 1 T ) - t  ~<1. (V/~( - V:~ )2It, (3.3) 

( A  1 d- /~n) 2 
T'A2T ~<u (T'AT) 2, (3.4) 

4A1A. 

( A1 -- An) 2 
(T'AZT) 1 / 2 -  T'AT ~<C 4 ~  1 +-X-~) It" (3.5) 

Mond and Pe~ari6 (1994) extended (3.2)-(3.5) to sums of matrices. 
It is easy to see that (1.10) generalizes similarly to 

T'A2T - (T'AT) 2 4t. 1( '~1 -- A,,)zIt • (3.6) 

In this section we allow A to be nonnegative definite, thus being possibly 
singular, and so generalize (3.2)-(3.6). 

Baksalary and Puntanen (1991a) gave the following generalization of (3.2): 
Let A be an n x n nonnegative definite symmetric matrix of rank r with 
nonzero eigenvalues A 1 /> .'- /> ~r > 0, and let T be an n × t matrix. Then 

A 1 + A r 1 
T'A+T <L - - T ' P A T  - - - T ' A T .  (3.7) 

A1A~ A1Ar 

If we now assume that A and T are such that 

T' PAT is idempotent, (3.s) 

i.e., PAT is a partial isometry [cf. (2.13) and (2.16)], then (3.7) simplifies to 

(/~1 "4- /~r) 2 
T'A+T ~<L (T'AT) +" (3.9) 

4)klA r 
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(T'AT) 2 A, -4- A r A 1 "3 u A r 
= T'AT and (T'A+T) 2 =  T'A+T, (3.10) 

2 2AIA ~ 

so that both T'AT and T'A+T are scalar-potent. It follows that (3.10) holds if 
and only if either AT = 0 or all the nonzero eigenvalues of T'AT and T'A+T 
are, respectively, equal to (A 1 + At)/2 and (A 1 + ) t r ) / (2)k l ) t r ) .  

Consider now again the linear statistical model {y,X[l, V} [cf. (2.23)], 
where X is an n x m matrix with full column rank m, and V is an n x n 
positive definite symmetric matrix. Suppose now that X is suborthogonal, i.e., 
X'X ---- Im. Then, in view of (2.22) and (3.9), we obtain 

(A1 + A.) 2 i 
( X ' V - ' X )  -1 ~<e X'VX ~<, (X 'V-1X) - , (3.11) 

4AIA. 

or equivalently 

 (BI UE 13)  (OLSE 
) t  2 

(A,+ ") (BLUEI3). (3.12) 
4AIA. 

As noted in Section 2, equality holds in the left-hand inequality of (3.12) if 
and only if $ ' (VX)= ~'(X). The question of equality in the right-hand 
inequality of (3.12) was raised by Magness and McGuire (1962, p. 470), who 
conjectured that equality cannot be attained if V is irreducible. This conjec- 
ture was disproved, using (3.10), by Baksalary and Puntanen (1991b). We 
note that equality in the left-hand inequality of (3.12) may be interpreted as 
the OLSE being "as good as possible" or "fully efficient" with respect to the 
BLUE. The question of how "bad" the OLSE can be is more complicated, since 
there is no unique way to measure the relative goodness of the OLSE; cf. 
Watson (1955), Bloomfield and Watson (1975), and Puntanen (1987). Ran 
(1985) measured the goodness of the OLSE as the trace of the difference 
X'VX - (X'V-  1X) -1 and, while keeping V fixed and letting X vary, found an 
upper bound. 
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We may note that corresponding to (3.11), we also have that 

rankA = rankA n + rankA22 
(A1 + A~) 2 

A~-I ~<L Bn ~<t_ A~I; 
4A1Ar 

(3.13) 

cf. (2.19) and (2.21). 
We generalize (3.3) in the following Theorem 3.1; generalizations of 

(3.4)-(3.6) appear in Theorem 3.2. 

THEOREM 3.1. Let A be an n × n nonnegative definite symmetric 
matrix of  rank r with nonzero eigenvalues A 1 >i ... >1 A r > 0 and orthogonal 
projector PA, and let T be an n × t matrix such that PAT is a partial 
isometry, i.e., 

T' PA T is idempotent; (3.14) 

cf. (3.8). Then 

+ 2 p 

T'AT - (T'A+T) ~<t. (V~l  - V/~ ) T PAT, (3.15) 

with equality if  and only i f  both T'AT and T'A+T are scalar-potent with 

1 
(T'AT) 2 =  (A 1 + A, . -  Af~IA~)T'AT and (T'A+T) 2 =  ~ T ' A + T .  

1/A1Ar 

(3.16) 

It follows [cf. (3.10)] that equality holds in (3.15) if and only if either 
AT = 0 or all the nonzero eigenvalues of T'AT and T'A+T are equal, 
respectively, t o  /~1 -4- /~r - ~ and 1/AV/X~IA ~ . 

Proof of  Theorem 3.1. The key inequality that we will use in our proof 
[cf. Marshall and Olkin (1964, p. 509) and Styan (1983)] is 

A1Ar 
A i ~< A 1 + A r - - - ,  i = 1, 2 . . . . .  r,  (3.17) 

A~ 
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where A 1 > ... >/A t 1> ... >/ A r > 0 are the eigenvalues of A. The inequal- 
ity (3.17) follows at once from 

( a  1 - -  a i ) (  a i - Ar) >10. (318) 

Equality holds in (3.18) if and only if equality holds in (3.17) if and only if the 
largest i or the smallest n - i nonzero eigenvalues of A are all equal, i.e., 
eitherA 1 . . . . .  A t orA t . . . . .  A r , i =  1,2 . . . . .  r. 

We write (3.17) in the matrix form 

A ~<t.(a, + a r ) I  r - -  ( a i a r ) A  -1, (3.19) 

where, as before, A is an r × r diagonal matrix with the nonzero eigenvalues 
A 1 ~ "'" >t /~i >~ "'" ~> Ar > 0 o n  the diagonal. As in (2.6), we use the 
spectral decomposition A = WAW', where W is an n × r matrix such that 
W ' W  = I r. Premultiplying (3.19) by T ' W  and postmultiplying by W'T,  and 
subtracting (T'A+T) ÷ from both sides, we have 

T'AT - (T'A+T) + <L (A1 + Ar)T'PAT - A1Ar T'A+T - (T'A+T) + 

[ r:--- 2 t 
= - - 

v • ] 
(3.20) 

where the symmetric matrix 

r = A~-~IAr (T'A+T) 1 / 2 -  [(T'A+T) + ]1/2 (3.21) 

To confirm the equality in (3.20), we observe that 

(T,A+T)I/e[(T,A+T) + ]1 /2= PT'A, (3.22) 

the orthogonal projector onto W(T'A), and from the idempotency condition 
(3.14) we have 

PT'A ----- T' PAT. (3.23) 

The inequality (3.20) then implies (3.14), since F 2 is nonnegative definite. 
Equality holds in (3.15), therefore, if and only if equality holds throughout 

(3.20) and F = 0; these two conditions are easily seen to be equivalent, 
respectively, to the two conditions in (3.16). • 
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We now generalize (3.4)-(3.6): 

THEOREM 3.2. Let the matrices A, PA, and T be defined as in Theorem 
3.1. Then 

( ~ 1  + X r )  2 
T'A2T <L (T'AT) 2, (3.24) 

4A1A r 

(A 1 - At) 2 
(T'A2T) 1/2 - T'AT ~L 4(A1 + Ar ) T'PAT, (3.25) 

( A1 --  A r )  2 
T'AZT- (T'AT) 2 <L T'PAT, 

4 
(3.26) 

with equality if and only if both T'AT and T'AZT are scalar-potent, and for 
equality-- 

in (3.24): 

(T'AT) 2 =  2A1Ar T'AT and (T'A2T)2=A1ArT'AZT; (3.27) 
A 1 + A r 

in (3.25): 

(T,AT)2= ( AI+Ar A1Ar ) + ~ T'AT 
4 h 1 + A~ 

and 

(T,A2T)2 = (/~1 --I- Ar)2T,A2T; (3.28) 
4 

in (3.26): 

(T'AT) 2 A 1 -F /~t r /~t 2 -~- /~2 r T'AT and (T'A2T) 2 T'A2T. (3.29) 
2 2 

It follows [ef. the paragraph following (3.16)] that when AT = 0 equality 
holds throughout (3.24), (3.25), and (3.26). Then AT :/: 0, however, then 
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equality holds in (3.24), (3.25), and (3.26) if and only if all the nonzero 
eigenvalues of T'AT and T'A2T are, respectively, equal to: 

2hlhr 
for (3.24): and hlh r, (3.30) 

h I + h~ 

h I -}- h r /~lhr (h I "~ hr) 2 
for (3.25): ~ + - -  and , (3.31) 

4 h~ q- h r 4 

h, + hr + 
for (3.26): 2 and 2 (3.32) 

We observe, therefore, that equality in (3.26) coincidences with equality in 
the generalized Kantorovich inequality (3.9); cf. (3.10), (3.26), and (3.32). 

Proof of Theorem 3.2. To prove (3.24), we begin by multiplying (3.19) by 
A, so that 

A 2 ~<t(A, + Ar)A -- (A1Ar)I r. (3.33) 

Proceeding as in the proof of Theorem 3.1, we premultiply (3.33) by T'W 
and postmultiply by W'T [cf. (3.19) and (3.20)] to yield 

T'A~T ~<k (A1 + Ar)T'AT - A1ArT'PAT (3.34a) 

(A I -l- Ar) 2 

4A 1A~ 
(T'AT) ~ - G~, (3.34b) 

where the symmetric matrix 

A 1 + A~ 
G1 2 , r r - r - ' r ' A T  - V AIAr ~/ '~1  ~r T' PAT; (3.35) 

this follows because under the idempotency condition (3.14), 

T'ATT'PAT = T'PATT'AT = T'AT. (3.36) 

The inequality (3.24) then follows from (3.34), since G~ ~>t. 0. Equality holds 
in (3.24) if and only if G 1 = 0 and equality holds throughout (3.34); these two 



SOME FURTHER MATRIX EXTENSIONS 473 

conditions are easily seen to be equivalent, respectively, to the two conditions 
in (3.27). See also (3.30). 

To prove (3.25) we divide (3.34a) by A 1 + A r and add (T'A2T) 1/2 to both 
sides to yield 

(T'A2T) 1/2 - T'AT ~<L (T'A2T) 1/2 A'A---------L-~ T'PAT ~ T'A2T 
A 1 -4- A r A l -4- A r 

(3.37a) 

( / ~ 1  - -  / ~ r )  2 , 
T'PAT - G~, (3.3719) 

4( A1 + /~r) 

where the symmetric matrix 

G 2 = A1 + A r 

1/2 
_ _ T , A 2  T _ 1 ~(A 1 + Ar)I/2T'PAT; (3.38) 

this follows because under the idempotency condition (3.14), 

(T'A2T)I/~T'PA T = T'PAT(T'A2T) 1/2 = (T'A2T)I/2; (3.39) 

cf. (3.36). The inequality (3.25) then follows from (3.37), since GZ~ >-'L 0. 
Equality holds in (3.25) if and only if equality holds throughout (3.37) and 
G 2 = 0; these two conditions are easily seen to be equivalent, respectively, to 
the two conditions in (3.28), see also (3.31). 

To complete our proof of this theorem, we now establish (3.26) and 
(3.29). We start by rewriting (3.37a) as 

T'A2T ~<L (A1 + Ar)T'AT - A1ArT'PAT" (3.40) 

Subtracting (T'AT) 2 from both sides of (3.40) and using (3.36) gives 

T'A2T - (T'AT) 2 ~<L ( A1 + Ar)T'AT - (T'AT) 2 - A1ArT'PAT 

= I ( A  1 - Ar)2T'PA T - G~,  ( 3 . 4 1 )  
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where the symmetr ic  matrix 
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G 3 = T 'AT  - ½(A l + Ar)T'PAT. (3.42) 

The  equality (3.26) then follows from (3.41), since G~ >~L 0. Equality holds in 
(3.26) if and only if G 3 = 0 and equality holds throughout  (3.41); these two 
conditions are easily seen to be  equivalent, respectively, to the two conditions 
in (3.29). See also (3.32). • 
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