Revisiting the BLUE in a Linear Model via Proper Eigenvectors

Jan Hauke, Augustyn Markiewicz, and Simo Puntanen

Abstract

We consider two linear models, $\mathscr{M}_{1}=\left\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \mathbf{V}_{1}\right\}$ and $\mathscr{M}_{2}=\left\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \mathbf{V}_{2}\right\}$, having different covariance matrices. Our main interest lies in question whether a particular given BLUE under \mathscr{M}_{1} continues to be a BLUE under \mathscr{M}_{2}. We give a thorough proof of a result originally due to Mitra and Moore (Sankhyā, Ser. A 35:139-152, 1973). While doing this, we will review some useful properties of the proper eigenvalues in the spirit of Rao and Mitra (Generalized Inverse of Matrices and Its Applications, 1971).

Keywords Best linear unbiased estimator • Gauss-Markov model • Linear model • Löwner ordering • Orthogonal projector • Proper eigenvalues

Mathematics Subject Classification (2010) 15A42•62J05 • 62H12 62 H 20

1 Introduction

In this article, we consider the general linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, denoted as a triplet $\mathscr{M}=\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \mathbf{V}\}$, where \mathbf{X} is a known $n \times p$ model matrix, the vector \mathbf{y} is an observable n-dimensional random vector, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown parameters, and $\boldsymbol{\varepsilon}$ is an unobservable vector of random errors with expectation $\mathrm{E}(\boldsymbol{\varepsilon})=\mathbf{0}$ and covariance matrix $\operatorname{cov}(\boldsymbol{\varepsilon})=\mathbf{V}$. The nonnegative definite matrix \mathbf{V} is known.
J. Hauke
Institute of Socio-Economic Geography and Spatial Planning, Adam Mickiewicz University,
Fredry 10, 61-701 Poznań, Poland
e-mail: jhauke@amu.edu.pl
A. Markiewicz
Department of Mathematical and Statistical Methods, Poznań University of Life Sciences,
Wojska Polskiego 28, 60637 Poznań, Poland
e-mail: amark@au.poznan.pl
S. Puntanen (区)
School of Information Sciences, University of Tampere, 33014 Tampere, Finland
e-mail: simo.puntanen@uta.fi

