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ABSTRACT

In this paper we consider the linear model {y, Xβ, σ2V}, where X has full column
rank. Denote the ordinary least squares estimator (OLSE) of β as β̂ and the best linear
unbiased estimators (BLUE) of β as β̃. Then in the statistical literature it is common to
write β̂ = β̃ when we mean that the OLS method gives the BLU estimator for β. In this
note we discuss some unusual and possibly confusing interpretations of the equality β̂= β̃.
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1 INTRODUCTION

In this paper we consider the general linear model

y = Xβ+ε, or shortly M = {y, Xβ, σ
2V}, (1.1)

where X is a known n× p model matrix, the vector y is an observable n-dimensional random
vector, β is a p× 1 vector of unknown parameters and ε is an unobservable vector of the
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random errors with the expectation E(ε) = 0 and the covariance matrix cov(ε) = σ2V,
where σ2 > 0 is an unknown constant while the nonnegative definite (possibly singular)
matrix V is known.

Before proceeding, let us introduce some notation. We will use the symbols A′, A−,
A+, C (A), C (A)⊥, and N (A) to denote, respectively, the transpose, a generalized inverse,
the Moore–Penrose inverse, the column space, the orthogonal complement of the column
space, and the null space, of the matrix A. By (A : B) we denote the partitioned matrix
with A and B as submatrices. By A⊥ we denote any matrix satisfying C (A⊥) = N (A′) =
C (A)⊥. Furthermore, we will write PA = AA+ = A(A′A)−A′ [which is invariant with
respect to the choice of (A′A)−] to denote the orthogonal projector (with respect to the
standard inner product ) onto C (A). In particular,

H = PX , M = In−H. (1.2)

One choice for X⊥ is of course the projector M.
We recall that an unbiased linear estimator Gy for Xβ is the best linear unbiased esti-

mator (BLUE) for Xβ under M if

cov(Gy)≤L cov(Ly) for all L : LX = X, (1.3)

where “≤L” refers to the Löwner partial ordering. It is well-known, cf., e.g., Rao (1967)
and Zyskind (1967), that Gy is the BLUE for Xβ if and only if G satisfies the equation

G(X : VX⊥) = (X : 0) . (1.4)

The corresponding condition for Ay to be the BLUE of an estimable parametric function
K′β is

A(X : VX⊥) = (K′ : 0) . (1.5)

The vector K′β is said to be estimable if it has a linear unbiased estimator, which happens
if and only if C (K)⊂ C (X′).

Consider now two linear models

M1 = {y, Xβ, V1} , M2 = {y, Xβ, V2} , (1.6)

which differ only in their covariance matrices. For the proof of the following proposition
and related discussion, see, e.g., Rao (1968, Lemma 5; 1971, Th. 5.2, Th. 5.5; 1973, p. 289),
Mitra and Moore (1973, Th. 3.3, Th. 4.1–4.2), and Baksalary and Mathew (1986, Th. 3).
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Proposition 1.1. Consider the linear models M1 = {y, Xβ, V1} and M2 = {y, Xβ, V2},
and let the notation

{BLUE(Xβ |M1)} ⊂ {BLUE(Xβ |M2)} (1.7)

mean that every representation of the BLUE for Xβ under M1 remains the BLUE for Xβ
under M2. Then the following statements are equivalent:

(a) {BLUE(Xβ |M1)} ⊂ {BLUE(Xβ |M2)} ,

(b) {BLUE(K′β |M1)} ⊂ {BLUE(K′β |M2)} for every estimable K′β ,

(c) C (V2X⊥)⊂ C (V1X⊥) .

Notice that obviously the following statements are equivalent:

{BLUE(Xβ |M1)}= {BLUE(Xβ |M2)} , (1.8a)

C (V2X⊥) = C (V1X⊥) . (1.8b)

The ordinary least squares estimator, OLSE, for K′β is defined as K′β̂ where β̂ is an
arbitrary solution to the normal equation

X′Xβ = X′y . (1.9)

The general solution to the normal equation (which is always consistent) can be expressed
as

β̂ = (X′X)−X′y+[Ip− (X′X)−X′X]z , (1.10)

where z ∈ Rp is free to vary and (X′X)− is an arbitrary (but fixed) generalized inverse of
X′X.

When X does not have full column rank, then the vector β̂ = (X′X)−X′y is not unique
and is not a proper estimator: it is merely a solution to the normal equations – “. . . this point
cannot be overemphasized”, as stated by Searle (1971, p. 169). The very same concerns
trivially the parametric function K′β. However, as can be seen from (1.10), the OLSE of an
estimable K′β is unique; it is K′X+y. Notice that of course

OLSE(Xβ) = Xβ̂ = X(X′X)−X′y = XX+y = Hy. (1.11)

In view of (1.4), it is obvious that under MI = {y, Xβ, σ2I}, the estimator Gy is the
BLUE for Xβ if and only if

G(X : X⊥) = (X : 0) , (1.12)
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whose only solution is G = H = PX, and so we have the well-known result:

Hy = OLSE(Xβ) is the BLUE for Xβ under MI = {y, Xβ, σ
2I}. (1.13)

Let us now consider the equality
β̂ = β̃, (1.14)

and let us present some interpretations for its real (statistical) meaning. First we observe
that there is no possibility for (1.14) to hold unless β is estimable; of course β cannot
have the BLUE if it does not have a linear unbiased linear estimator. So we necessarily
need to assume, while considering (1.14), that X has full column rank, in which case β̂ =
(X′X)−1X′y = X+y.

Let us replace the models M1 and M2 of (1.6) with

MI = {y, Xβ, σ
2I}, and MV = {y, Xβ, σ

2V}, (1.15)

and ask the following question:

When does every BLUE of β under MI

continue to be the BLUE of β also under MV and vice versa? (1.16)

In view of Proposition 1.1, the answer follows from the equivalence of the following two
statements:

{BLUE(Xβ |MI)}= {BLUE(Xβ) |MV )} , (1.17a)

C (VX⊥) = C (X⊥) , (1.17b)

where the latter equality is obviously equivalent to

C (VM) = C (M), or equivalently, C (VX) = C (X). (1.18)

However, the condition (1.18) is not exactly the same as the classic condition of Rao (1967)
and Zyskind (1967) for OLSE(β) to be equal to the BLUE of β which can be written in the
following equivalent forms:

(a) C (VX)⊂ C (X), (b) C (VM)⊂ C (M), (c) HVM = 0. (1.19)

For further equivalent conditions, see, e.g., Puntanen and Styan (1989).
What is now the explanation for the difference between the conditions (1.18) and

(1.19)? To give a clarifying answer to this question is the main goal of this paper, and
this is what we do in the next section.

A Note on the Interpretation of the Equality of OLSE and BLUE130



2 Conclusions

According to Mitra and Moore (1973, p. 139), the comparison of the BLUEs for Xβ under
the models M1 and M2, can be divided into three questions:

(a) When is a specific linear representation of the BLUE of Xβ under M1 also a BLUE

under M2?

(b) When does Xβ have a common BLUE under M1 and M2?

(c) When is the BLUE of Xβ under M1 irrespective of the linear representation used in
its expression, also a BLUE under M2?

We may cite Mitra and Moore (1973):

“When V1 is singular, it is conceivable that the BLUE of an estimable linear
functional p′β may have distinct linear representations which are equal with
probability 1 under M1, but need not be so under M2. This shows, in such
cases, it is important to recognize the existence of three separate problems as
stated above. . . . When

rank(V1X⊥) = n− rank(X) , (2.1)

the BLUE of p′β has a unique linear presentation. Here, naturally, the three
problems merge into one.”

Now we can see that the question posed in (1.16) is of type (c) of Mitra and Moore
(1973), that is, we require that

every BLUE of β under MI remains the BLUE under MV , (2.2)

and
every BLUE of β under MV remains the BLUE under MI . (2.3)

As we know, the BLUE of β under MI is nothing but the OLSE of β, i.e.,

BLUE(β |MI) = OLSE(β |MI) = β̂ = X+y = (X′X)−1X′y, (2.4)

whose presentation is unique. Now (2.2) holds if and only if the classic condition (1.19),
holds. On the other hand, (2.3) holds if and only if

C (M)⊂ C (VM). (2.5)

Markiewicz, Puntanen and Styan 131



We observe that it is the requirement (2.3) that causes the unexpected equality in (1.18).
Moreover, (2.5) implies that rank(M)≤ rank(VM)≤ rank(M), and so

rank(M) = rank(VM), (2.6)

and thereby (2.5) can be equivalently written as

C (M) = C (VM). (2.7)

Now (X′X)−1X′y is the BLUE for β under MV = {y, Xβ, σ2V} if and only if

(X′X)−1X′(X : VM) = (Ip : 0), (2.8)

which obviously is equivalent to any of the conditions in (1.19). Thus we have confirmed
the classic Rao–Zyskind condition.

However, taking an arbitrary representation of the BLUE for β under MV , say β̃, this
arbitrary β̃ may not be a BLUE under the model MI ; in view of Proposition 1.1, this holds if
and only if (2.5) holds. We may confirm this quickly as follows. We first write the general
representation for G0 such that G0y is the BLUE for Xβ as

G0 = H+HVM(MVM)+M+F(In−P(X :V)), (2.9)

where F is free to vary; for the above expression, see, e.g., Rao (1973). Requesting that G0

also satisfies
G0(X : M) = (X : 0) (2.10)

for every F, forces G0 = H, which obviously holds if and only if

C (X : V) = Rn, and HVM = 0, (2.11)

i.e.,
C (X : V) = Rn, and C (VM)⊂ C (M). (2.12)

Because rank(X : V) = rank(X) + rank(VM), the first condition in (2.12) implies that
rank(VM) = rank(M), which together with the second condition means that C (VM) =
C (M). Thus we have proved the equivalence of (2.3) and (2.7).

Notice that condition C (VM) = C (M), or equivalently C (VX) = C (X), implies that V
is necessarily positive definite. This is seen from C (X : V) = Rn by replacing X with VX.

Our conclusion is that the classic condition

C (VM)⊂ C (M) (2.13)
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is the answer to the following question: What is a necessary and sufficient condition that
OLSE(β), i.e., (X′X)−1X′y, is the BLUE for β under the model MV = {y, Xβ, σ2V}?

Moreover, the “somewhat unexpected” condition

C (M)⊂ C (VM) (2.14)

is the answer to the following question: What is a necessary and sufficient condition
that every BLUE for β under MV = {y, Xβ, σ2V} is also the BLUE for β under MI =
{y, Xβ, σ2I}?

We find the latter question rather unusual and it is the former one that most statisticians
have in mind when they ask for the conditions for the equality β̂ = β̃ to hold.
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3. Puntanen, S. and Styan, G.P.H. (1989). The equality of the ordinary least squares es-
timator and the best linear unbiased estimator [with comments by Oscar Kempthorne
& by Shayle R. Searle and with “Reply” by the authors]. The American Statistician,
43, 153–164.

4. Rao, C.R. (1967). Least squares theory using an estimated dispersion matrix and its
application to measurement of signals. Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability: Berkeley, California, 1965/1966, vol. 1
(Lucien M. Le Cam & Jerzy Neyman, eds.), University of California Press, Berkeley,
pp. 355–372.

5. Rao, C.R. (1968). A note on a previous lemma in the theory of least squares and
some further results, Sankhyā, Ser. A, 30, 259–266.
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