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given are relevant results involving Wishart matrices widely used in multivariate analysis,
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1. Introduction

It seems that the Wielandt inequality (WI) in the vector case was introduced by Bauer and Householder (1960) due to a
private communication from Wielandt; see Drury et al. (2002, Section 2). Let A be a positive definite symmetric n x n matrix with
eigenvalues /1 > --- >/, >0, and let x and y be two nonnull real vectors satisfying x'y = 0. Then
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(1.1)

We will refer to (1.1) as the “WI”. The first appearance of (1.1) in a statistical context seems to be by Eaton (1976). Let the random
vector h have the covariance matrix A; then the maximum of the squared correlation
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It is known that the WI can be viewed as a constrained version of the Cauchy-Schwarz inequality (CSI), which links with the
Frucht-Kantorovich inequality (FKI) in a nice way. We remind the reader about the FKI which can be expressed as follows:

XAX - XA71X (A1 + An)?
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For matrix, determinant and trace versions of the CSI and the FK], see, e.g., Liu (1995, 1999, 2000), Rao and Rao (1998), Magnus
and Neudecker (1999), Zhang (1999) and Liu and Heyde (2003). For a survey of matrix CSIs and FKIs, see Liu and Neudecker
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