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ABSTRACT. We consider the estimation of regression coefficients in a partitioned
linear model, shortly denoted as M12 = {y, X1β1 +X2β2, V}. We call M12 a full model,
and correspondingly, M1 = {y, X1β1, V} a small model. We introduce a necessary and
sufficient condition for the equality between the ordinary least squares estimator (OLSE)
of β1 and the best linear unbiased estimator (BLUE) of β1 under the full model M12

assuming that they are equal under the small model M1. This condition can then be
applied to generalize some results of Nurhonen and Puntanen (1992) concerning the effect
of deleting an observation on the equality of OLSE and BLUE.

1 Introduction

In this paper we consider the partitioned linear model

y = X1β1 + X2β2 + ε, (1.1)

or shortly,
M12 = {y, Xβ, V} = {y, X1β1 + X2β2, V}, (1.2)

where E(y) = Xβ, E(ε) = 0, cov(y) = cov(ε) = V. We denote the expec-
tation vector and covariance matrix, respectively, by E(·) and cov(·).

In the model M12 the vector y is an n × 1 observable random vector,
ε is an n × 1 random error vector, X is a known n × p matrix, partitioned
columnwise as X = (X1 : X2) with X1 (n×p1) and X2 (n×p2), β is a p×1
vector of unknown parameters, and V is a known n×n nonnegative definite
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matrix. We omit the variance multiplier σ2 from the covariance matrix of
y since our main focus lies in the efficiency of ordinary least squares (OLS)
estimator of β and therein σ2 has no role.

We will use the symbols A′, A−, A+, C (A), C (A)⊥ and r(A) to denote,
respectively, the transpose, a generalized inverse, the Moore–Penrose inverse,
the column space, the orthogonal complement of the column space and the
rank of the matrix A. Furthermore we will write PA = AA+ = A(A′A)−A′

to denote the orthogonal projector (with respect to the standard inner prod-
uct) onto C (A). In particular,

Pi = PXi , Mi = I−Pi, i = 1, 2; H = PX, M = I−H. (1.3)

In addition to M12, which we call the full model, we will consider the
small model

M1 = {y, X1β1, V}, (1.4)

and the reduced model

M12·1 = {M1y, M1X2β2, M1VM1}. (1.5)

The model M12·1 is obtained by premultiplying the full model equation (1.1)
by the orthogonal projector M1. We define the models M2 and M12·2 simi-
larly to the models M1 and M12·1.

We assume the model to be consistent in that

y ∈ C (X : V) = C (X : VM). (1.6)

Note that whenever we have a statement in this paper that is related to
the random vector y, such a statement holds with probability 1, i.e., the
statement holds for all y satisfying (1.6). In particular, if the column space
inclusion C (X) ⊂ C (V) holds, then (1.6) becomes y ∈ C (V).

When X has full column rank, then the vector β is estimable, and the or-
dinary least squares estimator (OLSE) and the best linear unbiased estimator
(BLUE) of β under the full model M12 are, respectively,

OLSE(β) = β̂ =
(
β̂1

β̂2

)
= (X′X)−1X′y = β̂(M12), (1.7)

BLUE(β) = β̃ =
(
β̃1

β̃2

)
= (X′V−1X)−1X′V−1y = β̃(M12), (1.8)

when V is positive definite. The corresponding covariance matrices are

cov(β̂) = (X′X)−1X′VX(X′X)−1
, cov(β̃) = (X′V−1X)−1, (1.9)
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and hence we have the Löwner ordering

(X′X)−1X′VX(X′X)−1 ≥ (X′V−1X)−1, (1.10)

i.e., the matrix (X′X)−1X′VX(X′X)−1 − (X′V−1X)−1 is nonnegative defi-
nite.

In this paper we consider the so-called weakly singular model (or Zyskind–
Martin model) which means that V may be singular but then the column
space inclusion

C (X) ⊂ C (V) (1.11)

must hold; see, e.g., Zyskind and Martin (1969). Under this model, the
BLUE(β) can be expressed as

β̃ = (X′V+X)−1X′V+y (1.12)

(V+ being replaceable with any V−), and its covariance matrix can be writ-
ten as (X′V+X)−1 and hence, the Watson efficiency (Watson 1955, p. 330)
becomes

φ12 = eff(β̂ |M12) =
|cov(β̃)|
|cov(β̂)|

=
|X′X|2

|X′VX| · |X′V+X|
. (1.13)

All expressions in (1.12) and (1.13) are invariant for all choices of generalized
inverses; see, e.g., Rao and Mitra (1971, Lemma 2.2.4).

We will call φ12 the total Watson efficiency. Clearly we have

0 < φ12 ≤ 1, (1.14)

where the upper bound is attained if and only if the OLSE equals the
BLUE; see, e.g., Puntanen and Styan (1989). There are numerous equiv-
alent characterizations—originating from Anderson (1948), Rao (1967) and
Zyskind (1967)—for the equality between OLSE and BLUE, i.e., equality in
(1.10). For example, each of the following conditions is a necessary and
sufficient condition for the equality between the OLSE and BLUE:

C (VX) ⊂ C (X), HV = VH, HVM = 0, (1.15)

where H and V are replaceable with M and V+, respectively.
Chu et al. (2004, 2005) introduced a new decomposition for the total Wat-

son efficiency φ12. According to this decomposition, the total efficiency φ12

can be expressed as a product

eff(β̂ |M12) = eff(β̂1 |M1) · eff(β̂2 |M12) · α1, (1.16)
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where eff(· | ·) refers to the Watson efficiency of a particular parameter
vector under a particular model, and α1 is a specific determinant ratio. We
will not utilize this decomposition in this paper, but we will use the notation
eff(· | ·) for the Watson efficiency.

Taking a look at the models (X having full column rank), we can imme-
diately conclude that the OLS estimators of β2 under the models M12 and
M12·1 coincide:

β̂2(M12) = β̂2(M12·1) = (X′2M1X2)−1X′2M1y. (1.17)

The equality in (1.17) is just the result that Davidson and MacKinnon (2004,
§2.4) call the Frisch–Waugh–Lovell Theorem. Correspondingly, it can be
shown (Chu et al. 2004, p. 640) that the BLUEs of β2 under the full model
M12 and the reduced model M12·1 are equal, i.e.,

β̃2(M12) = β̃2(M12·1) = (X′2Ṁ1X2)−1X′2Ṁ1y, (1.18)

where Ṁ1 = M1(M1VM1)−M1. Now, in view of (1.17) and (1.18) we can,
following Groß and Puntanen (2000, p. 142) and Chu et al. (2004, p. 641),
conclude the following lemma:

Lemma 1.1. Consider a partitioned linear model M12, where X2 has full
column rank and the disjointness property

C (X1) ∩ C (X2) = {0} (1.19)

holds. Then the following statements are equivalent:

(a) β̂2(M12) = β̃2(M12),

(b) β̂2(M12·1) = β̃2(M12·1),

(c) C (M1VM1X2) ⊂ C (M1X2),

(d) the column space C (M1X2) has a basis comprising p2 orthonormal
eigenvectors of M1VM1.

We may note that the disjointness condition (1.19) means that X2β2

(and thereby X1β1) is estimable under M12. The disjointness together with
r(X2) = p2 guarantee the estimability of β2 under M12. Moreover, using
the rank rule of the matrix product (Marsaglia and Styan 1974, p. 276),

r(AB) = r(A)− dim C (A′) ∩ C (B)⊥, (1.20)
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we can conclude that r(X′2M1) = p2 holds if and only if (1.19) holds and
r(X2) = p2.

Later we will need also the following result, see, e.g.; Sengupta and Jam-
malamadaka (2003, Ch. 9):

Lemma 1.2. Consider a weakly singular partitioned linear model M12 where
X has full column rank. Then

β̃1(M12) = β̃1(M1)− (X′1V
+X1)−1X′1V

+X2β̃2(M12). (1.21)

2 Main results

In this section we shall pay particular attention to the case when β̂1 is fully
efficient under the small model M1 = {y, X1β1, V}. We then add new
explanatory variables into the model, or delete observations from the model
and study the consequences. Our particular aim is to find conditions under
which β̂1 remains fully efficient in the transformed model.

We begin with the main theorem of this paper.

Theorem 2.1. Consider a weakly singular partitioned linear model M12 =
{y, Xβ, V}, where X has full column rank. Let us assume that β̂1 is fully
efficient in the small model M1 = {y, X1β1, V}, i.e.,

eff(β̂1 |M1) = 1, or equivalently, M1V = VM1. (2.1)

Then the following statement holds:

eff(β̂1 |M12) = 1 ⇐⇒ X′1X2β̃2(M12) = X′1X2β̂2(M12). (2.2)

Proof. We first note that Lemma 1.2 implies that

β̃1(M12) = β̃1(M1)− (X′1V
+X1)−1X′1V

+X2β̃2(M12), (2.3)

β̂1(M12) = β̂1(M1)− (X′1X1)−1X′1X2β̂2(M12). (2.4)

Assuming that β̃1(M1) = β̂1(M1), we have the equality

(X′1V
+X1)−1X′1V

+ = (X′1X1)−1X′1, (2.5)

and hence can rewrite (2.3) as

β̃1(M12) = β̂1(M1)− (X′1X1)−1X′1X2β̃2(M12). (2.6)
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Combining (2.4) and (2.6) yields

β̃1(M12) = β̂1(M12) ⇐⇒ X′1X2[β̃2(M12)− β̂2(M12)] = 0, (2.7)

and thus (2.2) is proved. �

The equality (2.5) may deserve a further comment. Namely, even though
it is clear that β̃1(M1) = β̂1(M1) means that

(X′1V
+X1)−1X′1V

+y := Gy = (X′1X1)−1X′1y = X+
1 y (2.8)

holds, it does not necessarily mean that G = X+
1 . This is so since in view

of the consistency condition (1.6), the equality (2.8) need to be valid only
for all vectors y ∈ C (V). However, using the commutativity of P1V+ [see
(1.15)], we obtain

(X′1V
+X1)−1X′1V

+ = (X′1V
+X1)−1X′1P1V+

= (X′1V
+X1)−1X′1V

+P1

= (X′1V
+X1)−1X′1V

+X1X+
1

= X+
1 = (X′1X1)−1X′1. (2.9)

It is noteworthy that if the columns of X1 and X2 are orthogonal to each
other, i.e., X′1X2 = 0, [and eff(β̂1 | M1) = 1] then adding new regressors
(columns in X2) keeps β̂1 fully efficient in M12.

Consider next some further properties of (2.2). First, we observe that
the implication

X′1X2[β̃2(M12)− β̂2(M12)] = 0 =⇒ β̃2(M12) = β̂2(M12) (2.10)

holds whenever the matrix X′1X2 has full column rank:

r(X′1X2) = r(X2) = p2. (2.11)

Hence we have the following result.

Corollary 2.1. Consider a weakly singular partitioned linear model M12 =
{y, Xβ, V}, where X has full column rank. Assume that

(i) eff(β̂1 |M1) = 1, and (ii) r(X′1X2) = p2. (2.12)

Then the following statements are equivalent:

(a) β̃1(M12) = β̂1(M12), i.e., eff(β̂1 |M12) = 1,

(b) β̃2(M12) = β̂2(M12), i.e., eff(β̂2 |M12) = 1,

(c) β̃(M12) = β̂(M12), i.e., eff(β̂ |M12) = 1.
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3 The situation when X2 = xp

It is of interest to comment on a special case of Corollary 2.1, where X2

comprises just one column and so p2 = 1. We write X2 = xp. The result is
presented in the following corollary.

Corollary 3.1. Consider a weakly singular partitioned linear model M12 =
{y, Xβ, V}, where X = (X1 : xp) has full column rank. Assume that

(i) eff(β̂1 |M1) = 1, and (ii) X′1xp 6= 0. (3.1)

Then the following statements are equivalent:

(a) β̃1(M12) = β̂1(M12),

(b) β̃p(M12) = β̂p(M12),

(c) β̃(M12) = β̂(M12),

(d) M1VM1xp = λ2M1xp for some nonzero λ ∈ R.

Proof. Corollary 2.1 implies immediately the equivalence of (a), (b) and
(c). The last statement (d) comes from part (d) of Lemma 1.1. This is
so because in view of part (d) of Lemma 1.1, the vector M1xp must be an
eigenvector of M1VM1, i.e., the equality

M1VM1xp = λ2M1xp (3.2)

must hold for some λ. It is easy to see that the scalar λ in (3.2) is necessarily
nonzero once we require M1xp 6= 0 and C (X) ⊂ C (V). Note that M1xp 6= 0
is equivalent to xp /∈ C (X1) which of course holds since we assume X to have
full column rank. �

There is one particular choice of xp that deserves special attention,

xp = ei = ith column of In. (3.3)

Let us now consider three (weakly singular) linear models:

M = {y, Xβ, V}, M(i) = {y(i), X(i)β, V(i)}, MZ = {y, Zγ, V}, (3.4)

where

Z = (X : ei), γ =
(
β
δ

)
. (3.5)
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By M(i) we mean such a version of M in which the ith case (ith observation)
is deleted; thus y(i) has n− 1 elements, X(i) has n− 1 rows, and cov(y(i)) =
V(i). The partitioned model MZ is an extended version of M . The extended
model MZ appears to be very useful in calculating regression diagnostics;
see, e.g., Beckman and Cook (1983), and Chatterjee and Hadi (1986).

We assume that the model MZ is a weakly singular model and that Z
has full column rank. Then, as pointed out by Puntanen (1996, Th. 3), the
model M(i) is a reduced version of MZ ; in other words, if MZ corresponds
to M12, then M(i) and M correspond to M12·2 and M1, respectively. Hence
we have, in short notation,

β̂(MZ) = β̂(M(i)) = β̂(i), β̃(MZ) = β̃(M(i)) = β̃(i). (3.6)

Using Corollary 3.1, we now obtain immediately the following result, which
is a generalized version of a result of Nurhonen & Puntanen (1992, p. 133)
who assumed V to be positive definite and used a different approach.

Corollary 3.2. Consider a weakly singular linear model

MZ = {y, Zγ, V} = {y, Z
(
β
δ

)
, V}, (3.7)

where Z = (X : ei) has full column rank, and denote M = {y, Xβ, V},
and let M(i) = {y(i), X(i)β, V(i)} be such a version of M in which the ith
observation is deleted. Assume X′ei 6= 0 (i = 1, . . . , n), and that OLSE(β)
equals BLUE(β) under M . Then

β̂(M(i)) = β̃(M(i)) holds for all i = 1, . . . , n, (3.8)

if and only if V satisfies

MVM = λ2M, for some nonzero scalar λ. (3.9)
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Montréal (Québec), Canada H3A 2K6

E-mail: styan@math.mcgill.ca




