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Preface

International conference on Linear Algebra and its Applications–ICLAA 2017,

third in its sequence, following CMTGIM 2012 and ICLAA 2014, held in Manipal

Academy of Higher Education, Manipal, India in December 11-15, 2017.

Like its preceding conferences, ICLAA 2017 is also focused on the theory of

Linear Algebra and Matrix Theory, and their applications in Statistics, Network Theory

and in other branches of sciences. Study of Covariance Matrices, being part of Matrix

Method in Statistics, has applications in various branches of sciences. It plays crucial

role in the study of measurement of uncertainty and naturally in the study of Nuclear

Data. Theme meeting, which initially planned to be a preconference meeting, further

progressed into an independent event parallel to ICLAA 2017, involving discussion on

different methodology of generating the covariance information, training modules on

different techniques and deliberations on presenting new research.

About 167 delegates have registered for ICLAA 2017 alone (37 Invited+ 75 Con-

tributory + 04 Poster) and are from 17 different countries of the world. Interestingly,

more than 80% are repeaters from the earlier conference and the remaining 20% are

young students or scholars. In spite of a few dropouts due to unavoidable constraints,

it is felt evident that the group of scholars with focus area of Linear Algebra, Matrix

Methods in Statistics and Matrices and Graphs are not only consolidating, also grow-

ing as a society with a strong bond. ICLAA 2017 provided a platform for renowned

Mathematicians and Statisticians to come together and discuss research problems, it

provided ample of time for young scholars to present their contribution before eminent

scholars. Every contributory speaker got not less than thirty minutes to present their re-

sults. Also, ICLAA 2017 was with several special lectures from senior scientists aimed

at encouraging young scholars.

The sponsors of ICLAA 2017 are NBHM, SERB, CSIR and ICTP. Dr. Ebrahim

Ghorbani and Dr. Zheng Bing are the two international participants benifited from

ICTP grant for their international travel.

The conference was opened with an informal welcome and opening remark by K.

Manjunatha Prasad (Organizing Secretary) and R. B. Bapat (Chairman, Scientific Com-

mittee). Invited talks and the special lectures were organized in 13 different sessions

and contributory talks in 17 sessions. Poster presentation was arranged on December

12, 2017.

In an informal discussion, it has been consented by the present scientific commit-

tee and the organizing committee members that

(i) MAHE would continue to organize ICLAA 2020 in December 2020, the fourth

in its sequence

(ii) Manjunatha Prasad would put up a proposal to organize ILAS conference in the

earliest possible occasion (2022/23), in consultation with Kirkland



(iii) Manjunatha Prasad to initiate a dialog with the members in the present network

to have Indian Society for Linear Algebra and its Application

The organizers are very proud of bringing out two special issues related to the

conference, the one with Bulletin of Kerala Mathematics Association and the other one

with Special Matrices (De Gruyter). The organizers are thankful to managerial team of

BKMA, particularly Samuel Mattathil, and the chief editor Carlos Martins da Fonseca

of Special Matrices for their kind support in bringing up these special issues. They are

also thankful to all the authors for submitting their articles and reviewers for sparing

their valuable time.

Ravindra B Bapat, ISI, Delhi, India

Steve Kirkland, University of Manitoba, Canada

K. Manjunatha Prasad, MAHE, Manipal, India

Simo Puntanen, University of Tampere, Finland
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Abstract. In this paper we consider the linear statistical model y = Xβ+ε, which

can be shortly denoted as the tripletM = {y,Xβ,V}. Here X is a known n × p
fixed model matrix, the vector y is an observable n-dimensional random vector, β

is a p × 1 vector of fixed but unknown parameters, and ε is an unobservable vector

of random errors with expectation E(ε) = 0, and covariance matrix cov(ε) =
V, where the nonnegative definite matrix V is known. In our considerations it is

essential that the covariance matrix V is known; if this is not the case the statistical

considerations become much more complicated.

Our main focus is to define and introduce, in the general form, without rank

conditions, the key properties of the best linear unbiased estimator, BLUE, of Xβ.

In particular we consider some specific properties of the covariance matrix of the

BLUE. We also deal shortly with the best linear unbiased predictor, BLUP, of y∗,

when y∗ is assumed to come from y∗ = X∗β + ε∗, where X∗ is a known matrix,

β is the same vector of unknown parameters as in M , and ε∗ is a q-dimensional

random error vector. This article is of review type, providing easy-to-read collection

of useful results concerning specific properties of the covariance matrix of the BLUE.

Most results appear in literature but our aim is to create a convenient “package” of

some essential results.
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1. Introduction

We will consider the general linear model

y = Xβ + ε , or shortly the tripletM = {y,Xβ,V} , (1.1)

where X is a known n× p model matrix, the vector y is an observable n-dimensional

random vector (so-called response vector), β is p-dimensional vector of unknown but

fixed parameters, and ε is an unobservable vector of random errors with expectation

E(ε) = 0, and covariance matrix cov(ε) = V. Often the covariance matrix is of the

type cov(ε) = σ2V, where σ2 is an unknown nonzero constant. However, in most

of our considerations σ2 has no role and in such cases we omit it. The nonnegative

definite matrix V is known and can be singular. The set of nonnegative definite n× n
matrices is denoted as NNDn.

As the covariance matrix is so central concept for our considerations, we might

recall that underM it is defined as

V = cov(y) = E(y − µ)(y − µ)′, where µ = Xβ = E(y) , (1.2)

and ′ denotes the transpose of the matrix argument. Thus obviously,

cov(Ay) = AVA′, (1.3)

where A ∈ Rm×n, the set of m × n real matrices. Instead of “covariance matrix”,

some authors use the name “variance-covariance matrix” or “dispersion matrix”. The

cross-covariance matrix between random vectors u and v is defined as

cov(u,v) = E[u− E(u)][v − E(v)]′. (1.4)

Then some words about the notation. The symbols A−, A+, C (A), and C (A)⊥,

denote, respectively, a generalized inverse, the (unique) Moore–Penrose inverse, the

column space, and the orthogonal complement of the column space of the matrix A.

The Moore–Penrose inverse A+ is defined as a unique matrix satisfying the following

four conditions:

AA+A = A, A+AA+ = A+, (AA+)′ = AA+, (A+A)′ = A+A. (1.5)

1 Corresponding author
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Notation A− refers to any matrix satisfying AA−A = A. By (A : B) we denote the

partitioned matrix with Aa×b and Ba×c as submatrices. The symbol A⊥ stands for

any matrix satisfying C (A⊥) = C (A)⊥. Furthermore, we will use PA = AA+ =
A(A′A)−A′ to denote the orthogonal projector (with respect to the standard inner

product) onto the column space C (A), and QA = I − PA, where I refers to the

identity matrix of conformable dimension. In particular, it appears to be useful to

denote

H = PX , M = In −PX , (1.6)

in which case, for any vector y ∈ Rn,

min
µ∈C (X)

‖y − µ‖2 = min
β
‖y −Xβ‖2 = ‖y − µ̂‖2 = y′My , (1.7)

where µ̂ = Hy = Xβ̂, with β̂ being any (least-squares) solution to so-called normal

equation

X′Xβ = X′y . (1.8)

Notice that in (1.7) and (1.8) we use y, β, β̂ and µ as “merely mathematical” vectors,

not random vectors nor parameters of the modelM .

The notation PX;V−1 , where V is positive definite, refers to the orthogonal pro-

jector onto C (X) with respect to the inner product matrix V−1, i.e.,

min
µ∈C (X)

(y − µ)′V−1(y − µ) = min
β
‖y −Xβ‖2

V−1 = ‖y − µ̃‖2
V−1 , (1.9)

where ‖a‖2
V−1 = a′V−1a for a ∈ Rn, and

µ̃ = Xβ̃ = PX;V−1y = X(X′V−1X)−X′V−1y , (1.10)

with β̃ being any solution to the generalized normal equation

X′V−1Xβ = X′V−1y . (1.11)

We shall concentrate on the linear unbiased estimators, LUEs, and hence we need

the concept of estimability. The parametric function η = Kβ, where K ∈ Rq×p, is

estimable underM if and only if there exists a matrix B ∈ Rq×n such that

E(By) = BXβ = Kβ for all β ∈ Rp, i.e., BX = K . (1.12)

Such a matrix B exists only when

C (K′) ⊂ C (X′) , (1.13)

which, therefore, is the condition for η = Kβ to be estimable. The LUE By is the best

linear unbiased estimator, BLUE, of estimable Kβ if By has the smallest covariance

matrix in the Löwner sense among all linear unbiased estimators of Kβ:

cov(By) ≤L cov(B#y) for all B# : B#X = K , (1.14)
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that is, cov(B#y)− cov(By) is nonnegative definite for all B# : B#X = K.

We assume the modelM to be consistent in the sense that the observed value of

y lies in C (X : V) with probability 1. Hence we assume that under the modelM ,

y ∈ C (X : V) = C (X : VX⊥) = C (X : VM) = C (X)⊕ C (VM) , (1.15)

where ⊕ refers to the direct sum. For the equality C (X : V) = C (X : VM), see,

e.g., Rao [61, Lemma 2.1]. All models that we consider are assumed to be consistent

in the sense of (1.15).

Let A and B be m × n matrices. Then, in the consistent linear model M , the

estimators Ay and By are said to be equal with probability 1 if

Ay = By for all y ∈ C (X : V) , (1.16)

which will be a crucial property in our considerations. Sometimes, when talking about

the equality of estimators, we drop off the phrase “with probability 1”. For the equality

of two estimators, see, e.g., Groß & Trenkler [22].

As for the structure of this article, in Section 2 we consider some properties of the

ordinary least squares estimator, OLSE. We introduce a simple version of the Gauss–

Markov theorem and use that to find the BLUE when V is positive definite. While

doing that we touch the concept of linear sufficiency. The covariance matrix of OLSE
is studied in Section 3. The fundamental BLUE equation is given Section 4 and it

is utilized for finding general expressions for the BLUE in Section 5. We study the

relative efficiency of OLSE with respect to BLUE in Section 6. The further sections

deal with weighted sum of squares of errors (needed in particular in hypothesis test-

ing), peculiar connection between the BLUE’s covariance matrix and specific proper

eigenvalues, and the shorted matrix. The paper is completed with a short section on the

best linear unbiased prediction. Our aim is to call main results Theorems while Lem-

mas refer to more technical results. This is a review-type article attempting to provide

a readable summary of some useful properties related to the concept of BLUE and in

particular, to the covariance matrix of the BLUE.

2. Ordinary least squares estimator and the Gauss–Markov

theorem

Consider now the model {y,Xβ,V}. Then the ordinary least squares estimator,

OLSE, for β is the solution minimizing the quantity ‖y − Xβ‖2 with respect to β

yielding to the normal equation X′Xβ = X′y . Thus, if X has full column rank, the

OLSE of β is

β̂ = (X′X)−1X′y = X+y , (2.1)

while its covariance matrix is

cov(β̂) = cov(X+y) = (X′X)−1X′VX(X′X)−1. (2.2)
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Notice that in (2.1) we keep y as a random vector. The set of all vectors β̂ satisfying

X′Xβ = X′y, can be written as

β̂ = (X′X)−X′y + [Ip − (X′X)−X′X]t , (2.3)

where (X′X)− is an arbitrary (but fixed) generalized inverse of X′X and t ∈ Rp is

free to vary. On the other hand, every solution to the normal equation can be written as

β̂ = (X′X)−X′y for some (X′X)−. Of course, it is questionable whether it is quite

correct to call β̂ an estimator when it is not unique (after y is being observed); might

be then better to call it a least-squares-solution.

If Kβ, where K ∈ Rq×p, is estimable, then Kβ̂, i.e., the OLSE of Kβ is unique

whatever choice of β̂ we use. This can be seen by premultiplying (2.3) by K yielding

Kβ̂ = K(X′X)−X′y , (2.4)

and utilizing Lemma 2.2.4 of Rao & Mitra [64] saying the following:

LEMMA 2.1. For nonnull matrices A and C the following holds:

(a) AB−C = AB+C for all B− ⇐⇒ C (C) ⊂ C (B) & C (A′) ⊂ C (B′).

(b) AA−C = C or some (and hence for all) A− ⇐⇒ C (C) ⊂ C (A).

One obvious choice in (2.4) is K = X yielding

OLSE(Xβ) = X(X′X)−X′y = PXy = Hy = µ̂ , (2.5)

and

cov(µ̂) = HVH underM = {y,Xβ,V}. (2.6)

Obviously Hy is a linear unbiased estimator for Xβ as E(Hy) = HXβ = Xβ. Let

By be another LUE of Xβ, i.e., B satisfies BX = X and thereby BH = H = HB′.

Thus, under the model A = {y,Xβ, In}:

cov(By −Hy) = cov(By) + cov(Hy)− cov(By,Hy)− cov(Hy,By)

= BB′ +H−BH−HB′

= BB′ −H , (2.7)

which implies

BB′ −H = cov(By)− cov(µ̂) = cov(By − µ̂) ≥L 0 , (2.8)

where the Löwner inequality follows from the fact that every covariance matrix is non-

negative definite. Now (2.8) means that under A = {y,Xβ, In} we have the Löwner

ordering

cov(µ̂) ≤L cov(By) for all B: BX = X . (2.9)
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Thus we have proved a simple version of the Gauss–Markov theorem:

THEOREM 2.2. Under the model A = {y,Xβ, In},

OLSE(Xβ) = BLUE(Xβ) , i.e., µ̂ = µ̃ with probability 1, (2.10)

and for any estimable η = Kβ,

OLSE(Kβ) = BLUE(Kβ) , i.e., η̂ = η̃ with probability 1. (2.11)

Consider now the model M = {y,Xβ,V}, where V is positive definite, and

suppose that V1/2 is the positive definite square root of V. Premultiplying M by

V−1/2 gives the transformed model

M# = {V−1/2y, V−1/2Xβ, In} = {y#, X#β, In} . (2.12)

Now, in light of (2.10), the BLUE of Xβ underM# equals the OLSE underM#:

BLUE(X#β |M#) = OLSE(X#β |M#) = V−1/2X(X′V−1X)−X′V−1y ,
(2.13)

so that

V−1/2 BLUE(Xβ |M#) = V−1/2X(X′V−1X)−X′V−1y , (2.14)

and thus

BLUE(Xβ |M#) = X(X′V−1X)−X′V−1y = PX,V−1y , (2.15)

where PX,V−1 , as in (1.10), is the orthogonal projector onto C (X) when the inner

product matrix is V−1. Here is a crucial question: is the BLUE of Xβ underM# the

same as under M , in other words, has the transformation done via V−1/2 any effect

on the BLUE of Xβ? The answer is that indeed there is no effect and that

PX,V−1y = BLUE(Xβ |M ) = BLUE(Xβ |M#) = OLSE(Xβ |M#) . (2.16)

The result (2.16), sometimes referred to as the Aitken-approach, see Aitken [1,

1936], is well known in statistical textbooks. However, usually the textbooks give

the proof by assuming that the expression BLUE(Xβ | M ) = PX,V−1y is known.

Interestingly, a more common approach would be to consider whether V−1/2y would

be a linearly sufficient statistics for Xβ. We describe this concept now briefly. Let F be

an f×n matrix. Then Fy is called linearly sufficient for Xβ underM = {y,Xβ,V}
if there exists a matrix Aq×f such that AFy is the BLUE for Xβ. The transformed

model

Mt = {Fy,FXβ,FVF′} (2.17)
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has very strong connection with the concept of linear sufficiency. The equality of

BLUEs under the original model and the transformed model can be characterized via

linear sufficiency. The following Lemma 2.3 collects some useful related results. For

proofs, see, e.g., Baksalary & Kala [5, 6], Drygas [19], Tian & Puntanen [69, Th. 2.8],

and Kala et al. [34, Th. 2].

LEMMA 2.3. Let µ = Xβ be estimable underMt. Then the following statements are

equivalent:

(a) Fy is linearly sufficient for µ = Xβ.

(b) BLUE(Xβ |M ) = BLUE(Xβ |Mt), or shortly, µ̃ = µ̃t with probability 1.

(c) cov(µ̃) = cov(µ̃t).

(d) C (X) ⊂ C (WF′), where W ∈ W , withW being defined as in (4.6).

For the class W of nonnegative definite matrices of type W = V + XUU′X′,

where C (W) = C (X : V), see Lemma 4.2 in Section 4. It is clear from part (d)

of Lemma 2.3 that for any nonsingular F, the statistics Fy is linearly sufficient, in

particular, this holds for V−1/2y. We may mention that according to Kala et al. [33,

Th. 4], in (d) above,W can be replaced withW∗; see (4.7) in Section 4.

In view of (1.13), the vector β itself is estimable if and only if C (Ip) ⊂ C (X′),

i.e., X has full column rank. We denote the BLUE of β as β̃ = (β̃1, . . . , β̃p)
′. Because

the Löwner ordering is so strong ordering, see, e.g., Puntanen et al. [56, p. 12], we have

the following inequalities:

var(β̃i) ≤ var(β#
i ), i = 1, . . . , p , (2.18a)

trace cov(β̃) ≤ trace cov(β#) , (2.18b)

det cov(β̃) ≤ det cov(β#) , (2.18c)

chi[cov(β̃)] ≤ chi[cov(β
#)] , i = 1, . . . , p , (2.18d)

‖cov(β̃)‖F ≤ ‖cov(β#)‖F , (2.18e)

‖cov(β̃)‖2 ≤ ‖cov(β#)‖2 , (2.18f)

for any β# which is a linear unbiased estimator of β. Above var(·) refers to the

variance of a random variable, ‖·‖F and ‖·‖2 refer to the Frobenius norm and the

spectral norm, respectively, det(·) refers to determinant, and chi(·) refers to the ith
largest eigenvalue.

3. OLSE’s covariance matrix in the full rank model

Let us first recall that when X has a full column rank and V is positive definite, in

which case we say that M = {y,Xβ,V} is a full rank model, then the OLSE and
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BLUE of β are, respectively, β̂ = (X′X)−1X′y, and β̃ = (X′V−1X)−1X′V−1y,

while the corresponding covariance matrices are

cov(β̂) = (X′X)−1X′VX(X′X)−1, cov(β̃) = (X′V−1X)−1. (3.1)

Hence we have the Löwner ordering

(X′X)−1X′VX(X′X)−1 ≥L (X′V−1X)−1, (3.2)

i.e., the matrix

(X′X)−1X′VX(X′X)−1 − (X′V−1X)−1 = D (3.3)

is nonnegative definite. If X does not have a full column rank (but V is positive defi-

nite) then

Xβ̂ = µ̂ = Hy, Xβ̃ = µ̃ = PX;V−1y = X(X′V−1X)−X′V−1y, (3.4a)

cov(µ̂) = HVH ≥L X(X′V−1X)−X′ = cov(µ̃) , (3.4b)

and

HVH−X(X′V−1X)−X = E , (3.5)

where E is nonnegative definite. What is very interesting here is that there is an alter-

native useful expression for D (as well as for E) available as shown in Theorem 3.1.

Among the first places where Theorem 3.1 occurs are probably the papers by

Khatri [35, Lemma 1] and Rao [57, Lemmas 2a–2c]; see also Rao [59, Problem 33,

p. 77].

THEOREM 3.1. Consider the linear model M = {y,Xβ,V}, where X has full

column rank and V is positive definite, and denote H = PX, M = In −H. Then

cov(β̃) = (X′V−1X)−1

= (X′X)−1[X′VX−X′VM(MVM)−MVX](X′X)−1

= X+[V −VM(MVM)−MV](X+)′

= cov(β̂)− (X′X)−1X′VM(MVM)−MVX(X′X)−1, (3.6)

and hence

(a) cov(β̂)− cov(β̃) = X+VM(MVM)−MV(X+)′,

(b) cov(Xβ̂)−cov(Xβ̃) = HVH−X(X′V−1X)−X′ = HVM(MVM)−MVH ,

(c) X(X′V−1X)−X′V−1 = In −VM(MVM)−M ,

(d) X(X′V−1X)−X′V−1 = H−HVM(MVM)−M .
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In (b)–(d) the matrix X does not need to have full column rank.

Proof. To prove (3.6) we first observe following:

X(X′V−1X)−X′ = V1/2V−1/2X(X′V−1X)−X′V−1/2V1/2

= V1/2PV−1/2XV1/2

= V1/2(In −P(V−1/2X)⊥)V
1/2

= V1/2(In −PV1/2M)V1/2

= V −VM(MVM)−MV. (3.7)

Above we have used the fact that for a positive definite V we have

C (V−1/2X)⊥ = C (V1/2M) . (3.8)

For properties of ⊥, we refer to [39]. Supposing that X has full column rank, then

post- and premultiplying (3.7) by (X′X)−1X′ gives (3.6). Claim (c) follows from

postmultiplying (3.7) by V−1 and (d) comes from premultiplying (c) by H.

Notice that if V is positive definite, then by Theorem 3.1, we have

µ̃ = PX;V−1y = H−HVM(MVM)−My = [In −VM(MVM)−M]y , (3.9)

and the covariance matrix of µ̃ has representations

cov(µ̃) = X(X′V−1X)−X′ = HVH−HVM(MVM)−MVH

= V −VM(MVM)−MV, (3.10)

and

cov(µ̂)− cov(µ̃) = HVM(MVM)−MVH = cov(µ̂− µ̃) . (3.11)

Because µ̂ and µ̃ coincide if (and only if) their covariance matrices coincide, the “size”

of the matrix HVM(MVM)−MVH in a way describes the goodness of µ̂ with

respect to µ̃. We will later see that the last two presentations in (3.10) are actually

valid even if V is singular and the same concerns (3.11).

We may say a few words about the matrix M(MVM)−M which we denote as

Ṁ = M(MVM)−M . (3.12)

If V is positive definite and Z is a matrix with the property C (Z) = C (M), then we

obviously have

Ṁ = M(MVM)−M = V−1/2PV1/2MV−1/2

= V−1/2PV1/2ZV
−1/2 = Z(Z′VZ)−Z′, (3.13)
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which is clearly unique. In general, when V is nonnegative definite, the matrix Ṁ is

not necessarily unique with respect to the choice of (MVM)−. It can be shown that

M(MVM)−M = M(MVM)+M ⇐⇒ rank(X : V) = n. (3.14)

However, we always have

M(MVM)+M = (MVM)+M = M(MVM)+ = (MVM)+. (3.15)

The matrix Ṁ and its versions appear to be very handy in many ways related to linear

modelM = {y,Xβ,V}. For example, consider the partitioned linear modelM12 =
{y,X1β1+X2β2,V}, where X = (X1 : X2) has full column rank and V is positive

definite. PremultiplyingM12 by M1 = In −PX1
yields a reduced model

M12·1 = {M1y, M1X2β2, MVM} . (3.16)

Now it appers, see, e.g., Gross & Puntanen [21], that

β̃2(M12) = β̃2(M12·1) = (X′
2Ṁ1X2)

−1X′
2Ṁ1y, (3.17)

and cov(β̃2) = (X′
2Ṁ1X2)

−1, where Ṁ1 = M1(M1VM1)
−M1.

For a review of the properties of Ṁ, see Puntanen et al. [56, Ch. 15].

4. The fundamental BLUE equation

Theorem 4.1 below provides so-called fundamental BLUE equations. For the proofs,

see, e.g., Drygas [18, p. 55], Rao [60, p. 282], and Puntanen et al. [56, Th. 10].

THEOREM 4.1. Consider the linear modelM = {y,Xβ,V} and let η = Kβ, where

K ∈ Rq×p, be estimable, so that C (K′) ⊂ C (X′). Then the linear estimator By is

the BLUE of η = Kβ if and only if B ∈ Rq×n satisfies the equation

B(X : VX⊥) = (K : 0) . (4.1)

In particular, Cy is the BLUE for µ = Xβ if and only if C ∈ Rn×n satisfies the

equation

C(X : VX⊥) = (X : 0) . (4.2)

Of course, in (4.1) and (4.2) we can replace X⊥ with M. Equation (4.2) is always

solvable for C while (4.1) is solvable whenever Kβ is estimable.

It is clear that PX;V−1 = X(X′V−1X)−X′V−1 is one choice for C in (4.2) and

thus we have the well-known result, see (2.16):

µ̃ = PX;V−1y = X(X′V−1X)−X′V−1y . (4.3)
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Without rank conditions, one well-known solution for C in (4.2) appears to be

(see Theorem 5.1 below)

PX;W− := X(X′W−X)−X′W−, (4.4)

and for B in (4.1),

B = K(X′W−X)−X′W−, (4.5)

where W is a matrix belonging to the set of nonnegative definite matrices defined as

W =
{
W ∈ NNDn : W = V +XUU′X′, C (W) = C (X : V)

}
. (4.6)

We could replaceW with an extended set of matrices of the type

W∗ =
{
W ∈ Rn×n : W = V +XTX′, C (W) = C (X : V)

}
. (4.7)

Notice that W that belongs to W∗ is not necessarily nonnegative definite and it can

be nonsymmetric. In light of part (a) of Lemma 2.1, the matrix X(X′W−X)−X′ is

invariant for any choices of the generalized inverses involved and the same concerns

PX;W−y = X(X′W−X)−X′W−y for y ∈ C (X : V). (4.8)

Observe that

PX;W+ = X(X′W+X)−X′W+ = X(X′W−X)−X′W+, (4.9)

which is unique for any generalized inverses denoted as superscript −. It is worth

noting that PX;W+ may not be a “regular” orthogonal projector with respect to inner

product matrix W+ as W+ may not be positive definite. However, it can be shown

that for all y ∈ C (X : V) and for all β ∈ Rp the following holds:

(y −PX;W+y)′W+(y −PX;W+y) ≤ (y −Xβ)′W+(y −Xβ) , (4.10)

where the left-hand side can be expressed as y′Ṁy; see Section 7. For the concept

of generalized orthogonal projector with respect to nonnegative definite inner product

matrix, see Mitra & Rao [49] and Puntanen et al. [56, §2.5]. It is noteworthy that

PX;W−y can be expressed as Xβ̃, where β̃ is any solution to

X′W−Xβ̃ = X′W−y. (4.11)

The following lemma comprises some useful properties of the classW∗.

LEMMA 4.2. Consider the modelM = {y,Xβ,V} and letW∗ be defined as in (4.7).

Then the following statements concerning W belonging toW∗ are equivalent:

(a) C (X : V) = C (W) ,
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(b) C (X) ⊂ C (W) ,

(c) X′W−X is invariant for any choice of W−,

(d) C (X′W−X) = C (X′) for any choice of W−,

(e) X(X′W−X)−X′W−X = X for any choices of W− and (X′W−X)−.

Moreover, each of these statements is equivalent also to C (X : V) = C (W′),
and hence to the statements (b)–(e) by replacing W with W′.

Observe that obviously C (W) = C (W′) and that the invariance properties in (d)

and (e) concern not only the the choice of the generalized inverse of W but also the

choice of W ∈ W∗. For further properties ofW∗, see, e.g., Baksalary & Puntanen [8,

Th. 1], Baksalary et al. [10, Th. 2], Baksalary & Mathew [7, Th. 2], and Puntanen et

al. [56, §12.3].

5. General expressions for the BLUE

Using Lemma 4.2 and the equality

VM(MVM)−MVM = VM , (5.1)

which follows from part (b) of Lemma 2.1, it is easy to prove the following:

THEOREM 5.1. The solution for G satisfying

G(X : VM) = (X : 0) (5.2)

can be expressed, for example, in the following ways:

(a) G1 = X(X′W−X)−X′W−, where W ∈ W∗,

(b) G2 = In −VM(MVM)−M ,

(c) G3 = H−HVM(MVM)−M ,

and thus each Giy = BLUE(Xβ) underM = {y,Xβ,V} and

G1y = G2y = G3y for all y ∈ C (X : V) = C (W). (5.3)

It is important to observe that the multipliers Gi of y are not necessarily the same.

Equation (5.2) has a unique solution if and only if C (X : V) = Rn. It is also worth

noting that in light of part (b) of Theorem 5.1,

µ̃ = y −VM(MVM)−My, (5.4)
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and hence the BLUE’s residual ε̃, say, and its covariance matrix are

ε̃ = y − µ̃ = VM(MVM)−My, cov(ε̃) = VM(MVM)−MV. (5.5)

The linear modelM = {y,Xβ,V} where

C (X) ⊂ C (V) , (5.6)

is often called a weakly singular linear model or Zyskind–Martin model, see Zyskind

& Martin [72]. When dealing with such a model we can choose W = V ∈ W∗ and

thus by Theorem 5.1 we have

µ̃ = PX;V−y = X(X′V−X)−X′V−y, cov(µ̃) = X(X′V−X)−X′. (5.7)

All expressions in (5.7) are invariant with respect to the choice of generalized inverses

involved. Now one might be curious to know whether

X(X′V+X)−X′V+y, (5.8)

where (X′V+X)− is some given generalized inverse of X′V+X, is the BLUE for

Xβ, i.e., it satisfies the BLUE equation

X(X′V+X)−X′V+(X : VM) = (X : 0) , (5.9)

that is,

X(X′V+X)−X′V+X = X , (5.10a)

X(X′V+X)− X′PVM = 0 . (5.10b)

In light of part (b) of Theorem 5.1, (5.10a) implies that C (X′) ⊂ C (X′V+X) =
C (X′V) and thus

rank(X′) = rank(X′V) = rank(PVX) . (5.11)

Premultiplying (5.10b) by X′V+ and using (b) of Theorem 5.1 yields X′PVM = 0

and so

C (PVX) ⊂ C (X) . (5.12)

Now (5.11) and (5.12) together imply (5.6). Thus we have proved that

X(X′V+X)−X′V+y = BLUE(Xβ) ⇐⇒ C (X) ⊂ C (V) . (5.13)

The following lemma gives some “mathematical” equalities which are related to

“statistical” equalities in Theorem 5.1.; for further details, see, e.g., Isotalo et al. [29,

pp. 1444–1446].

LEMMA 5.2. Using the earlier notation and letting W ∈ W∗, the following matrix

equalities hold:
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(a) VM(MVM)−MV +X(X′W−X)−X′ = W,

(b) PWṀPW = W+ −W+X(X′W−X)−X′W+,

(c) PX;W+ = X(X′W−X)−X′W+

= H−HVM(MVM)−MPW

= H−HVM(MVM)+M

= PW −VM(MVM)−MPW ,

where Ṁ = M(MVM)−M. In particular, in the above representations, we use the

Moore–Penrose inverse whenever the superscript + is used while the superscript −

means that we can use any generalized inverse.

Using Theorem 5.1 and Lemma 5.2 it is straightforward to introduce the following

representations for the covariance matrix of the µ̃ = BLUE(Xβ).

• General case:

cov(µ̃) = HVH−HVM(MVM)−MVH

= V −VM(MVM)−MV

= V −VṀV

= X(X′W−X)−X′ −XTX′, (5.14)

where Ṁ = M(MVM)−M, and W = V +XTX′ ∈ W∗.

• C (X) ⊂ C (V), i.e., the model is weakly singular:

cov(µ̃) = X(X′V−X)−X′

= Xb(X
′
bV

−Xb)
−X′

b

= H(HV−H)−H

= (HV−H)+, (5.15)

where Xb is a matrix with a property C (Xb) = C (X).

• V is positive definite:

cov(µ̃) = X(X′V−1X)−X′

= Xb(X
′
bV

−1Xb)
−1X′

b

= H(HV−1H)−H

= (HV−1H)+. (5.16)
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In passing we may note that in view of (5.14) and (5.5) we have cov(µ̃) = V −
VM(MVM)−MV and thereby

cov(y) = cov(µ̃) + cov(ε̃) , (5.17)

where ε̃ = y − µ̃ = VM(MVM)−My refers to the residual of the BLUE of Xβ.

There is one further special situation worth attention. This concerns the case when

there are no unit canonical correlations between Hy and the vector of the OLS residuals

My. We recall, see, e.g., Anderson [2, §12.2] and Styan [68], that when

cov

(
Hy

My

)
=

(
HVH HVM

MVH MVM

)
:= Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (5.18)

then the nonzero canonical correlations between Hy and My are the nonzero eigen-

values of the matrix Ψ, say, where

Ψ = Σ+
11Σ12Σ

+
22Σ21 = (HVH)+HVM(MVM)+MVH . (5.19)

The number of unit canonical correlations, say u, appears to be

u = rank(HPVM) = dimC (VH) ∩ C (VM)

= dimC (V1/2H) ∩ C (V1/2M) , (5.20)

see, e.g., Baksalary et al. [10, p. 289], Puntanen et al. [56, §15.10], and Puntanen &

Scott [53, Th. 2.6]. Now the following can be shown.

• The situation when HPVM = 0, i.e., there are no unit canonical correlations

between Hy and My:

cov(µ̃) = Xo(X
′
oV

+Xo)
+X′

o

= H(HV+H)+H

= PVH(HV+H)−HPV

= PVXo(X
′
oV

+Xo)
−X′

oPV

= PVX(X′V+X)−X′PV , (5.21)

where Xo is a matrix whose columns form an orthonormal basis for C (X).

It is interesting to observe that the covariance matrix of µ̃ is a special Schur com-

plement: it is the Schur complement of MVM in Σ in (5.18):

cov(µ̃) = HVH−HVM(MVM)−MVH := Σ11·2 . (5.22)

Since the rank is additive on the Schur complement, see, e.g., Puntanen & Styan [55,

§6.3.3], that is,

rank(Σ) = rank(Σ22) + rank(Σ11·2) , (5.23)
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we have

rank(Σ) = rank(V) = rank(MVM) + rank[cov(µ̃)] , (5.24)

and so

rank[cov(µ̃)] = rank(V)− rank(VM) = dimC (X) ∩ C (V) , (5.25)

where we have used the rank rule of Marsaglia & Styan [40, Cor. 6.2], which gives

rank(VM) = rank(V)− dimC (X) ∩ C (V).

6. The relative efficiency of OLSE

Consider the linear modelM = {y,Xβ,V}, where X has full column rank and V is

positive definite. Then the covariance matrices of OLSE and BLUE of β are

cov(β̂) = (X′X)−1X′VX(X′X)−1, cov(β̃) = (X′V−1X)−1. (6.1)

By Lemma 3.1,

cov(β̃) = (X′V−1X)−1

= (X′X)−1[X′VX−X′VM(MVM)−MVX](X′X)−1

= cov(β̂)−X+VM(MVM)−MV(X+)′, (6.2)

and hence

cov(β̂)− cov(β̃) = (X′X)−1X′VM(MVM)−MVX(X′X)−1. (6.3)

The relative efficiency, so-called Watson efficiency, see [70, p. 330], of OLSE vs.

BLUE is defined as the ratio determinants of the covariance matrices:

eff(β̂) =
|cov(β̃)|
|cov(β̂)|

. (6.4)

We have 0 < eff(β̂) ≤ 1, with eff(β̂) = 1 if and only if β̂ = β̃. Moreover, the

efficiency can be expressed as

eff(β̂) =
|cov(β̃)|
|cov(β̂)|

=
|X′X|2

|X′VX| · |X′V−1X|

=
|X′VX−X′VM(MVM)−MVX|

|X′VX|
= |Ip −X′VM(MVM)−MVX(X′VX)−1|
= (1− κ2

1) · · · (1− κ2
p)

= θ21 · · · θ2p , (6.5)
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where κi and the θi are the canonical correlations between X′y and My, and β̂ and β̃,

respectively. Notice that

cov

(
X′y

My

)
=

(
X′VX X′VM

MVX MVM

)
, (6.6a)

cov

(
β̂

β̃

)
=

(
cov(β̂) cov(β̃)

cov(β̃) cov(β̃)

)

=

(
(X′X)−1X′VX(X′X)−1 (X′V−1X)−1

(X′V−1X)−1 (X′V−1X)−1

)
, (6.6b)

and thus

{θ21, . . . , θ2p} = ch
[
[cov(β̂)]−1 cov(β̃)

]
, (6.7)

where ch(·) denotes the set of the eigenvalues of the matrix argument. On account of

(6.3), it can be shown that indeed

{θ21, . . . , θ2p} = ch[Ip − (X′VX)−1X′VM(MVM)−MVX] . (6.8)

The efficiency formula (6.5) in terms of κi’s and θi’s was first introduced by Bart-

mann & Bloomfield [11]. It is interesting to observe that in view of (6.7), the squared

canonical correlations θ2i ’s are the roots of the equation

|cov(β̃)− θ2 cov(β̂)| = 0 , (6.9)

and thereby they are solutions to

cov(β̃)w = θ2 cov(β̂)w, w 6= 0 . (6.10)

Here θ2 is an eigenvalue and w the corresponding eigenvector of cov(β̃) with respect

to cov(β̂); see (8.6) in Section 8.

It can be shown that the nonzero canonical correlations between X′y and My

are the same as those between Hy and My. For the further references regarding

the relative efficiency and canonical correlations, see Chu et al. [14, 15] and Drury et

al. [17].

In this context we may also mention the following Löwner inequality:

(X′X)−1X′VX(X′X)−1 ≤L

(λ1 + λn)
2

4λ1λn
(X′V−1X)−1, (6.11a)

cov(β̃) ≤L cov(β̂) ≤L

(λ1 + λn)
2

4λ1λn
cov(β̃) . (6.11b)

Further generalizations of the matrix inequalities of the type (6.11) appear in Baksalary

& Puntanen [9], Pecaric et al. [51], and Drury et al. [17].
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As regards the lower bound of the OLSE’s efficiency, we may mention that [12]

and [36] proved the following inequality:

eff(β̂) ≥ 4λ1λn

(λ1 + λn)2
· 4λ2λn−1

(λ2 + λn−1)2
· · · 4λpλn−p+1

(λp + λn−p+1)2
= τ21 τ22 · · · τ2p , (6.12)

i.e.,

min
X

eff(β̂) =

p∏

i=1

4λiλn−i+1

(λi + λn−i+1)2
=

p∏

i=1

τ2i , (6.13)

where λi = chi(V), and τi = ith antieigenvalue of V. The concept of antieigenvalue

was introduced by Gustafson [23]. For further papers in the antieigenvalues, see, e.g.,

Gustafson [24, 25], and Rao [62, 63].

We conclude this section by commenting on the equality of OLSE and BLUE
which happens precisely when they have identical covariance matrices. In view of of

(5.14), we have

cov(µ̃) = HVH−HVM(MVM)−MVH

= cov(µ̂)−HVM(MVM)−MVH , (6.14)

which means that µ̂ = µ̃ (with probability 1) if and only if

HVM(MVM)−MVH = 0 . (6.15)

It is easy to conclude that (6.15) holds if and only if HVM = 0. In Theorem 6.1

we collect some characterizations for the OLSE and the BLUE to be equal. For the

proofs, see, e.g., Rao [57] and Zyskind [71], and for a detailed review, see Puntanen &

Styan [54].

THEOREM 6.1. Consider the general linear modelM = {y,Xβ,V}. Then OLSE(Xβ) =
BLUE(Xβ) if and only if any one of the following six equivalent conditions holds:

(a) HV = VH, (b) HVM = 0, (c) C (VX) ⊂ C (X),

(d) C (X) has a basis comprising a set of r = rank(X) orthonormal eigenvectors

of V,

(e) V = HN1H+MN2M for some N1,N2 ∈ NNDn,

(f) V = αIn+HN3H+MN4M for some α ∈ R, and N3 and N4 are symmetric.

7. Weighted sum of squares of errors

The ordinary, unweighted sum of squares of errors SSE is defined as

SSE(I) = min
β
‖y −Xβ‖2 = y′My , (7.1)
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while the weighted SSE, when V is positive definite, is

SSE(V ) = min
β
‖y −Xβ‖2

V−1 = ‖y −PX;V−1y‖2
V−1

= y′[V−1 −V−1X(X′V−1X)−X′V−1]y

= y′M(MVM)−My = y′Ṁy . (7.2)

In the general case, the weighted SSE can be defined as

SSE(W ) = (y − µ̃)′W−(y − µ̃) , (7.3)

where W ∈ W∗. Then, recalling that by (5.5), the BLUE’s residual is

ε̃ = y − µ̃ = VM(MVM)−My = VṀy, (7.4)

it is straightforward to confirm the following:

SSE(W ) = (y − µ̃)′W−(y − µ̃)

= ε̃′W−ε̃ = y′ṀVW−VṀy

= y′ṀWW−WṀy = y′ṀWṀy

= y′ṀVṀy = y′ṀVV−VṀy

= ε̃′V−ε̃ = y′Ṁy . (7.5)

Note that SSE(W ) is invariant with respect to the choice of W−.

In light of part (b) of Lemma 5.2, the following holds:

PWṀPW = W+ −W+X(X′W−X)−X′W+. (7.6)

From (7.6) it follows that for every y ∈ C (W) = C (X : V),

y′PWṀPWy = y′[W+ −W+X(X′W−X)−X′W+]y, (7.7)

i.e.,

SSE(W ) = y′Ṁy = y′[W− −W−X(X′W−X)−X′W−]y. (7.8)

It can be further shown that SSE(W ) provides an unbiased estimator of σ2:

E(y′Ṁy/f) = σ2, where f = rank(VM) . (7.9)

The weighted SSE has an essential role in testing linear hypothesis. Consider the

model M = {y,Xβ, σ2V}, where rank(X) = r, V is positive definite, y follows

normal distribution with parameters Xβ and σ2V, i.e., y ∼ Nn(Xβ, σ2V), and F is

the F -statistic for testing linear hypothesis H: Kβ = d, where d ∈ Rq , η = Kβ is

estimable and rank(Kq×p) = q. Denoting η̃ = BLUE(Kβ), we have, for example,

the following:
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(a) F =
Q/q

SSE(V )/(n− r)
∼ F(q, n− r, δ), (b) SSE(V )/σ2 ∼ χ2(n− r),

(c) cov(η̃) = σ2K(X′V−1X)−K′,

(d) Q = (η̃ − d)′[cov(η̃)]−1(η̃ − d)σ2, (e) Q/σ2 ∼ χ2(q, δ),

(f) δ = (Kβ − d)′[cov(η̃)]−1(Kβ − d)/σ2,

where F(·, ·, ·) and χ2(·) refer to F - and χ2-distributions, respectively.

8. BLUE’s covariance matrix and the proper eigenvalues

Let us begin with a simple example when the linear model is M = {y,Xβ,V},
where X has full column rank and V is positive definite and we have the following

determinant equation

det(V − λH) = 0, i.e, det[V − λX(X′X)−1/2(X′X)−1/2X′] = 0, (8.1)

Let our task be to solve the scalar λ from (8.1). Premultiplying (8.1) by V−1 and

assuming that λ 6= 0 yields

det[V−1X(X′X)−1/2(X′X)−1/2X′ − 1
λIn] = 0 . (8.2)

Hence 1
λ is a nonzero eigenvalue of V−1X(X′X)−1/2(X′X)−1/2X′. Because the

matrix products AB and BA have the same the nonzero eigenvalues, we observe that

V−1X(X′X)−1/2(X′X)−1/2X′ and (X′X)−1/2X′V−1X(X′X)−1/2 have the same

nonzero eigenvalues:

1
λ ∈ nzch[(X′X)−1/2X′V−1X(X′X)−1/2] (8.3)

and thus

λ ∈ nzch[(X′X)1/2(X′V−1X)−1(X′X)1/2]

= nzch[X′X(X′V−1X)−1]

= nzch[X(X′V−1X)−1X′]

= nzch[cov(µ̃)] , (8.4)

where µ̃ = BLUE(Xβ) and nzch(·) denotes the set of nonzero eigenvalues. Putting

into words: the nonzero roots of (8.1) are the nonzero eigenvalues of the covariance

matrix of the BLUE of Xβ. This, somewhat surprising result can be generalized

(done below), but before that we need to recall the concept of the proper eigenvalue

and eigenvector in the spirit of Rao & Mitra [64, §6.3]; see also Mitra & Rao [48], as

well as de Leeuw [16], Mitra & Moore [42, Appendix], Scott & Styan [66], Isotalo et

al. [30, §2], and Hauke et al. [28].
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For this purpose, let A and B be two symmetric n × n matrices of which B is

nonnegative definite and thus possibly singular. Let λ ∈ R be a scalar and w a vector

such that

Aw = λBw , Bw 6= 0 . (8.5)

In (8.5), we call λ a proper eigenvalue and w a proper eigenvector of A with respect to

B, or shortly, (λ,w) is a proper eigenpair for (A,B). The set of all proper eigenvalues

of pair (A,B) is denoted as ch(A,B). For a positive definite B we obviously have

ch(A,B) = ch(B−1A, In) = ch(B−1A) = ch(B−1/2AB−1/2) , (8.6)

where ch(·) refers to the set of the eigenvalues (including multiplicities) of the matrix

argument. If B is singular, we might wonder whether, for example, the following might

be true:

ch(A,B) = ch(B+A) ? (8.7)

Statement (8.7) does not always hold, but if C (A) ⊂ C (B), then indeed (8.7) holds

for nonzero proper eigenvalues; see Lemma 8.1 below.

For completeness, we state the following two lemmas appearing in Rao & Mitra

[64, §6.3]; see also Mitra & Rao [48]. Using the notation nzch(·) for the set of the

nonzero eigenvalues and nzch(A,B) for the set of the nonzero proper eigenvalues of

A with respect to B we have the following lemma.

LEMMA 8.1. Let A and B be n × n nonnegative definite matrices and let N ∈
{B⊥}. Then the nonzero proper eigenvalues of A with respect to B are the same

as the nonzero eigenvalues of [A − AN(N′AN)−N′A]B− and vice versa for any

generalized inverses involved; i.e.,

nzch(A,B) = nzch
(
[A−AN(N′AN)−N′A]B−

)
. (8.8)

In particular,

C (A) ⊂ C (B) =⇒ nzch(A,B) = nzch(AB−) . (8.9)

THEOREM 8.2. Consider the linear model M = {y,Xβ,V}. The nonzero proper

eigenvalues of V with respect to H are the same as the nonzero eigenvalues of the

covariance matrix of the BLUE of Xβ.

Proof. Following Puntanen et al. [56, p. 376], consider the equation

Vw = λHw, Hw 6= 0. (8.10)

Lemma 8.1 immediately implies that the nonzero proper eigenvalues of V with respect

to H are the nonzero eigenvalues of

[V −VM(MVM)−MV]H−, (8.11)
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which are precisely the same as the nonzero eigenvalues of

H[V −VM(MVM)−MV]H , (8.12)

which is the covariance matrix of the BLUE of Xβ.

An alternative proof of Theorem 8.2 appears in Isotalo et al. [30, Th. 2.3].

9. BLUE’s covariance matrix as a shorted matrix

Following Isotalo et al. [30, §4], let us consider a simple linear model {y, 1β, V},
where V is positive definite. Let our task be to find a nonnegative definite matrix S

which belongs to the set

U = {U : 0 ≤L U ≤L V, C (U) ⊂ C (1) } , (9.1)

and which is maximal in the Löwner sense; that is, a nonnegative definite matrix which

is “as close to V as possible” in the Löwner partial ordering, but whose column space

is in that of 1. This matrix S is called the shorted matrix of V with respect to 1, and

denoted as Sh(V | 1).
Because S is nonnegative definite, we must have S = LL′ for some L of full

column rank. Further, the condition C (S) ⊂ C (1) implies that L = α1 for some

nonzero scalar α and hence S = α211′. Our objective is to find a scalar α so that

α211′ is maximal in the Löwner sense, which means that α2 must be maximal. The

choice of α2 must be made under the condition

α211′ ≤L V. (9.2)

We show that the maximal value for α2 is

α2 = (1′V−11)−1. (9.3)

It is well known that for two symmetric nonnegative definite matrices A and B the

following holds see, for example, Liski & Puntanen [38]:

A ≤L B ⇐⇒ (i) C (A) ⊂ C (B) and (ii) ch1(AB+) ≤ 1. (9.4)

Using (9.4) we observe that (9.2) is equivalent to α2 ≤ (1′V−11)−1. Hence the shorted

matrix is

Sh(V | 1) = (1′V−11)−111′ = 1(1′V−11)−11′ (9.5)

which is precisely the covariance matrix of BLUE(1β) under {y, 1β, V}. This result

can be also generalized as shown below.

Consider now a general case of U :

U = {U : 0 ≤L U ≤L V, C (U) ⊂ C (X) } . (9.6)
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The maximal element U in U is the shorted matrix of V with respect to X, and denoted

as Sh(V | X). The concept of shorted matrix (or operator) was first introduced by

Krein [37], and later rediscovered by Anderson [3], who introduced the term “shorted

operator”. As shown by Anderson [3], and Anderson & Trapp [4], the set U in (9.6)

indeed has a maximal element and it, the shorted matrix, is unique. Mitra & Puri [46,

47] were apparently the first to consider statistical applications of the shorted matrix

and the shorted operator.

Mitra & Puntanen [43] proved the following.

THEOREM 9.1. Consider the general linear modelM = {y, Xβ, V}. Then

cov[BLUE(Xβ)] = Sh(V | X) . (9.7)

Proof. Let us go through the proof which is rather easy, while the result (9.7)

itself is somewhat unexpected. To prove (9.7), let Gn×n be such a matrix that Gy =
BLUE(Xβ) and so

cov(Gy) = GVG′ ≤L V = cov(y) , (9.8)

because y is an unbiased estimator of Xβ. Let U be an arbitrary member of U , which

implies that U = HAA′H for some matrix A [here H = PX] and

U = HAA′H ≤L V. (9.9)

Premultiplying (9.9) by G and postmultiplying it by G′ yields

GUG′ = GHAA′HG′ = HAA′H = U ≤L GVG′, (9.10)

where we have used the fact that GH = H. Now (9.10) confirms that GVG′ is the

maximal element in the class U , i.e., (9.7) holds.

Definition of the shorted matrix via (9.6) is applicable only for nonnegative def-

inite matrix V. The generalization to rectangular matrices was made by Mitra &

Puri [47]. We do not go into this definition in details but we mention that if it is applied

into the case of nonnegative definite V, then, according to this generalized definition,

we consider the following set of matrices T:

T = {Tn×n : C (T) ⊂ C (X), C (T′) ⊂ C (X)} . (9.11)

Then the shorted matrix of V with respect to X is the matrix S satisfying the property

rank(V − S) ≤ rank(V −T) for all T ∈ T . (9.12)

This definition yields the same shorted matrix as done by maximizing the matrix U ∈
U in (9.6). The generalized definition is related to the concept of minus (or rank-

subtractivity) partial ordering for An×m and Bn×m defined as

A ≤− B ⇐⇒ rank(B−A) = rank(B)− rank(A) . (9.13)
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For the following lemma, see Mitra et al. [44].

LEMMA 9.2. The following statements are equivalent when considering the linear

model {y,Xβ,V} with X∼ being a generalized inverse of X.

(a) XX∼V(X∼)′X′ ≤L V,

(b) XX∼y is the BLUE for Xβ,

(c) XX∼V(X∼)′X′ ≤− V,

(d) XX∼V(X∼)′X′ = Sh(V | X).

For a review of shorted matrices and their applications in statistics, see Mitra et

al. [44] and Mitra et al. [41], and for relations of shorted matrices and matrix partial

orderings, see, e.g., Mitra & Prasad [45], Eagambaram et al. [20] and Prasad et al. [52].

10. Best linear unbiased predictor, BLUP

We can extend the modelM = {y,Xβ,V} by considering a q× 1 random vector y∗,

which is an unobservable random vector containing new future observations. These

new observations are assumed to be generated from

y∗ = X∗β + ε∗ , (10.1)

where X∗ is a known q × p matrix, β ∈ Rp is the same vector of fixed but unknown

parameters as in M , and ε∗ is a q-dimensional random error vector with E(ε∗) = 0.

We will also use the notations µ = Xβ and µ∗ = X∗β. The covariance matrix of y∗

and the cross-covariance matrix between y and y∗ are assumed to be known and thus

we have

E

(
y

y∗

)
=

(
µ

µ∗

)
=

(
X

X∗

)
β , cov

(
y

y∗

)
=

(
V V12

V21 V22

)
= Γ , (10.2)

where the (n+ q)× (n+ q) covariance matrix Γ is known. This setup can be denoted

shortly as

M∗ =

{(
y

y∗

)
,

(
X

X∗

)
β,

(
V V12

V21 V22

)}
. (10.3)

We are particularly interested in predicting the unobservable y∗ on the basis of the

observable y. While doing this, we look for linear predictors of the type Ay, where

A ∈ Rq×n.

The random vector y∗ is called predictable under M∗ if there exists a matrix A

such that the expected prediction error is zero, i.e., E(y∗ −Ay) = 0 for all β ∈ Rp.
Then Ay is a linear unbiased predictor (LUP) of y∗. Such a matrix A ∈ Rq×n exists

if and only if C (X′
∗) ⊂ C (X′), that is, X∗β is estimable under M . Thus y∗ is
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predictable under M∗ if and only if X∗β is estimable. Now a LUP Ay is the best

linear unbiased predictor, BLUP, for y∗, if we have the Löwner ordering

cov(y∗ −Ay) ≤L cov(y∗ −A#y) for all A# : A#X = X∗ . (10.4)

Theorem 10.1 below provides so-called fundamental BLUP equations, see, e.g.,

Christensen [13, p. 294], and Isotalo & Puntanen [32, p. 1015], For the reviews of the

BLUP-properties, see, Robinson [65] and Haslett & Puntanen [27].

THEOREM 10.1. Consider the linear model with new observations defined as M∗ in

(10.3), where C (X′
∗) ⊂ C (X′), i.e., y∗ is predictable. Then the linear predictor Ay

is the BLUP for y∗ if and only if A ∈ Rq×n satisfies the equation

A(X : VX⊥) = (X∗ : V21X
⊥) . (10.5)

Moreover, the linear predictor By is the BLUP for ε∗ if and only if B ∈ Rq×n satisfies

the equation

B(X : VX⊥) = (0 : V21X
⊥) . (10.6)

We will use the following short notations:

ỹ∗ = BLUP(y∗) , µ̃∗ = BLUE(µ∗) , ε̃∗ = BLUP(ε∗) . (10.7)

Suppose that the parametric function µ∗ = X∗β is estimable underM∗ which happens

if and only if C (X′
∗) ⊂ C (X′) so that

X∗ = LX for some matrix L ∈ Rq×f , µ∗ = X∗β = LXβ = Lµ . (10.8)

Now the BLUP(y∗) underM∗, see, e.g., Isotalo et al. [31, Sec. 4], can be written as

ỹ∗ = µ̃∗ + ε̃∗ , (10.9)

and further as

BLUP(y∗) = BLUE(µ∗) + BLUP(ε∗)

= LGy +V21V
−(In −G)y

= LGy +V21M(MVM)−My , (10.10)

where G = PX;W− = X(X′W−X)−X′W−, and W ∈ W∗.

What about the covariance matrix of BLUP(y∗)? We observe that the random

vectors µ̃∗ and ε̃∗ are uncorrelated and so

cov(ỹ∗) = cov(µ̃∗) + cov(ε̃∗) . (10.11)
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Now we have

cov(µ̃∗) = L cov(µ̃)L′, cov(ε̃∗) = V21M(MVM)−MV12 . (10.12)

For calculating the covariance matrix of the prediction error y∗ − ỹ∗, it is conve-

nient to express the prediction error as

y∗ − ỹ∗ = (y∗ −V21V
−y) + (V21V

−y − ỹ∗) , (10.13)

see Sengupta & Jammalamadaka [67, p. 292]. In view of (10.10), we get

y∗ − ỹ∗ = (y∗ −V21V
−y) + (V21V

− − L)Gy

= (y∗ −V21V
−y) +Nµ̃ , (10.14)

where N = V21V
−−L. The random vectors y∗−V21V

−y and Nµ̃ are uncorrelated

and hence

cov(y∗ − ỹ∗) = cov(y∗ −V21V
−y) + cov(Nµ̃)

= V22 −V21V
−V12 +N cov(µ̃)N′. (10.15)

The first term Γ22·1 := V22 −V21V
−V12 in (10.15) is the Schur complement of V

in

Γ =

(
V V12

V21 V22

)
, (10.16)

and as Sengupta & Jammalamadaka [67, p. 293] point out, Γ22·1 is the covariance

matrix of the prediction error associated with the best linear predictor, BLP, (supposing

that Xβ were known) while the second term represents the increase in the covariance

matrix of the prediction error due to estimation of Xβ.

We may complete our paper by briefly touching the concept of the best linear

predictor, BLP. Notice first that the word “unbiased” is missing in this concept. The

following lemma is essential when dealing with the best linear prediction; see, e.g.,

Puntanen et al. [56, Ch. 9].

LEMMA 10.2.

Let u and v be u- and v-dimensional random vectors, respectively, and let z =(
u
v

)
be a partitioned random vector with covariance matrix

cov(z) = cov

(
u

v

)
=

(
Ωuu Ωuv

Ωvu Ωvv

)
= Ω . (10.17)

Then

cov(v − Fu) ≥L cov(v −ΩvuΩ
−
uuu) for all F ∈ Rv×u, (10.18)
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and the minimal covariance matrix is

cov(v −ΩvuΩ
−
uuu) = Ωvv −ΩvuΩ

−
uuΩuv = Ωvv·u , (10.19)

the Schur complement of Ωuu in Ω.

A linear predictor Cu + c, where C ∈ Rv×u and c ∈ Rv , is the best linear

predictor, BLP, of the random vector v on the basis of u if it minimizes, in the Löwner

sense, the mean squared error matrix

E[v − (Cu+ c)][v − (Cu+ c)]′ = cov(v −Cu) + ‖µv − (Cµu + c)‖2, (10.20)

where µu = E(u) and µv = E(v). The random vector ṽ = µv + ΣvuΣ
−
uu(u −

µu) appears to be the BLP of v on the basis of u, and the covariance matrix of the

prediction error v − ṽ is Ωvv·u.

In Lemma 10.2 our attempt is to find a matrix F which minimizes the covariance

matrix of the difference v − Fu. This is strikingly close to the task of finding the

BLUP for y∗, where we are minimizing the covariance matrix of the prediction error

y∗ −Ay. However, the major difference between these two tasks is that in (10.18) we

have no restrictions to F while in (10.4) we assume that AX = X∗.
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Properties of the BLUE’s covariance matrix 41

[15] Chu K.L., Isotalo J., Puntanen S. & Styan G.P.H. (2005). Some further results

concerning the decomposition of the Watson efficiency in partitioned linear

models. Sankhyā, 67, 74–89.
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[18] Drygas H. (1970). The Coordinate-Free Approach to Gauss–Markov Estima-

tion. Springer, Berlin.

[19] Drygas H. (1983). Sufficiency and completeness in the general Gauss–Markov
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Correction

Display

E[v − (Cu + c)][v − (Cu + c)]′ = cov(v −Cu) + ‖µv − (Cµu + c)‖2, (10.20)

should be replaced with

E[v − (Cu + c)][v − (Cu + c)]′ = cov(v −Cu)

+ [µv − (Cµu + c)][µv − (Cµu + c)]′.
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