FISFVIFR

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

Linear sufficiency and completeness in the context of estimating the parametric function in the general Gauss-Markov model

Jarkko Isotalo^{a,*}, Simo Puntanen^b

^aInstitute of Medical Technology, University of Tampere, FI-33014, Finland ^bDepartment of Mathematics and Statistics, University of Tampere, FI-33014, Finland

ARTICLE INFO

Article history: Received 6 September 2006 Accepted 21 November 2007 Available online 29 May 2008

MSC: 62J05 62B05

Keywords:
Best linear unbiased estimation
Linear sufficiency
Linear completeness
Linear estimation

ABSTRACT

In this paper we consider linear sufficiency and linear completeness in the context of estimating the estimable parametric function $\mathbf{K}'\boldsymbol{\beta}$ under the general Gauss–Markov model $\{\mathbf{y},\mathbf{X}\boldsymbol{\beta},\sigma^2\mathbf{V}\}$. We give new characterizations for linear sufficiency, and define and characterize linear completeness in a case of estimation of $\mathbf{K}'\boldsymbol{\beta}$. Also, we consider a predictive approach for obtaining the best linear unbiased estimator of $\mathbf{K}'\boldsymbol{\beta}$, and subsequently, we give the linear analogues of the Rao–Blackwell and Lehmann–Scheffé Theorems in the context of estimating $\mathbf{K}'\boldsymbol{\beta}$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider the general Gauss-Markov model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
,

where **y** is an $n \times 1$ observable random vector, **X** is a known $n \times p$ model matrix, β is a $p \times 1$ vector of unknown parameters, and ϵ is an $n \times 1$ random error vector. The expectation and the covariance matrix of random vector **y** are

$$E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$$
 and $cov(\mathbf{y}) = \sigma^2 \mathbf{V}$,

respectively, where $\sigma^2 > 0$ is an unknown scalar and **V** is a known nonnegative definite matrix. In short, we use the notation

$$\mathcal{M}_{\beta} = \{\mathbf{y}, \mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{V}\}$$

to describe the general Gauss-Markov model.

Furthermore, let $\mathbb{R}_{m,n}$ denote the set of $m \times n$ real matrices and $\mathbb{R}_m = \mathbb{R}_{m,1}$. The symbols \mathbf{A}' , \mathbf{A}^+ , $\mathscr{C}(\mathbf{A})$, $\mathscr{C}(\mathbf{A})^\perp$, $\mathscr{N}(\mathbf{A})$, and $\mathbf{r}(\mathbf{A})$ will stand for the transpose, a generalized inverse, the Moore–Penrose inverse, the column space, the orthogonal complement of the column space, the null space, and the rank, respectively, of $\mathbf{A} \in \mathbb{R}_{m,n}$. By \mathbf{A}^\perp we denote any matrix satisfying $\mathscr{C}(\mathbf{A}^\perp) = \mathscr{N}(\mathbf{A}') = \mathscr{C}(\mathbf{A})^\perp$. Further we will write $\mathbf{P}_{\mathbf{A}} = \mathbf{A}\mathbf{A}^+ = \mathbf{A}(\mathbf{A}'\mathbf{A})^-\mathbf{A}'$ to denote the orthogonal projector (with respect to the

^{*} Corresponding author. Tel.: +358 3 3117 4059. E-mail addresses: jarkko.isotalo@uta.fi (J. Isotalo), simo.puntanen@uta.fi (S. Puntanen).