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In this paper we consider linear sufficiency and linear completeness in the context of estimat-
ing the estimable parametric functionK′bunder the general Gauss–Markovmodel {y,Xb,�2V}.
We give new characterizations for linear sufficiency, and define and characterize linear com-
pleteness in a case of estimation of K′b. Also, we consider a predictive approach for obtaining
the best linear unbiased estimator of K′b, and subsequently, we give the linear analogues of
the Rao–Blackwell and Lehmann–Scheffé Theorems in the context of estimating K′b.
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1. Introduction

Consider the general Gauss–Markov model

y = Xb+ �,

where y is an n × 1 observable random vector, X is a known n × pmodel matrix, b is a p × 1 vector of unknown parameters, and
� is an n × 1 random error vector. The expectation and the covariance matrix of random vector y are

E(y) = Xb and cov(y) = �2V,

respectively, where �2 >0 is an unknown scalar and V is a known nonnegative definite matrix. In short, we use the notation

Mb = {y,Xb,�2V}

to describe the general Gauss–Markov model.
Furthermore, let Rm,n denote the set of m × n real matrices and Rm = Rm,1. The symbols A′, A−, A+, C(A), C(A)⊥, N(A),

and r(A) will stand for the transpose, a generalized inverse, the Moore–Penrose inverse, the column space, the orthogonal
complement of the column space, the null space, and the rank, respectively, of A ∈ Rm,n. By A⊥ we denote any matrix satisfying
C(A⊥) = N(A′) = C(A)⊥. Further we will write PA = AA+ = A(A′A)−A′ to denote the orthogonal projector (with respect to the
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