Regression Analysis

A Useful Matrix Decomposition and Its Statistical Applications in Linear Regression

JARKKO ISOTALO ${ }^{1}$, SIMO PUNTANEN ${ }^{1}$, AND GEORGE P. H. STYAN ${ }^{2}$
${ }^{1}$ Department of Mathematics, Statistics, and Philosophy, University of Tampere, Tampere, Finland
${ }^{2}$ Department of Mathematics and Statistics,
McGill University, Montréal, Québec, Canada

It is well known that if \mathbf{V} is a symmetric positive definite $n \times n$ matrix, and $(\mathbf{X}: \mathbf{Z})$ is a partitioned orthogonal $n \times n$ matrix, then

$$
\begin{equation*}
\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1}=\mathbf{X}^{\prime} \mathbf{V} \mathbf{X}-\mathbf{X}^{\prime} \mathbf{V} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{V} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{V} \mathbf{X} \tag{*}
\end{equation*}
$$

In this article, we show how useful we have found the formula (*), and in particular, its version

$$
\begin{equation*}
\mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{V} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime}=\mathbf{V}^{-1}-\mathbf{V}^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1}:=\dot{\mathbf{M}} \tag{**}
\end{equation*}
$$

and present several related formulas, as well as some generalized versions. We also include several statistical applications.

Keywords BLUE; Frisch-Waugh-Lovell theorem; Löwner ordering; OLSE; Orthogonal projector; Partitioned linear model; Reduced linear model; Schur complement.

Mathematics Subject Classification 62J05; 62H12; 62H20.

1. Introduction

In this article, we consider the general linear model

$$
\begin{equation*}
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \tag{1.1}
\end{equation*}
$$

Received April 29, 2007; Accepted September 5, 2007
Address correspondence to Jarkko Isotalo, Department of Mathematics, Statistics, and Philosophy, University of Tampere, Tampere FI-33014, Finland; E-mail: jarkko.isotalo@uta.fi

