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Overview of ICLAA 2017 & The
Fourth DAE-BRNS Theme

Meeting
We are very pleased to organize International Conference on Linear
Algebra and its Applications 2017 (ICLAA 2017) and The Fourth
DAE-BRNS Theme Meeting on the Generation and Use of Covari-
ance Matrices in the Application of Nuclear Data. ICLAA 2017 is
the third in the sequence of conferences CMTGIM 2012 and ICLAA
2014. Preceding conferences, like ICLAA 2017, were also focused
on the theory of Linear Algebra and Matrix Theory, and their ap-
plications in Statistics, Network Theory and in other branches sci-
ences. Study of Covariance Matrices, being part of Matrix Method in
Statistics, has applications in various branches of sciences. It plays
crucial role in the study of measurement of uncertainty and natu-
rally in the study of Nuclear Data. Theme meeting, which initially
planned to be a preconference meeting, further progressed into an
independent event parallel to ICLAA 2017, involving discussion on different methodology of
generating the covariance information, training modules on different techniques and deliber-
ations on presenting new research.
The theme of ICLAA 2017 shall focus on

(i) Classical Matrix Theory covering different aspects of Linear Algebra
(ii) Matrices and Graphs

(iii) Combinatorial Matrix Theory
(iv) Matrix & Graph Methods in Statistics, and
(v) Covariance Analysis & Applications.

Linear Algebra and Graph Theory are important branches of mathematics having appli-
cations in each and every branch of applied science. The topic ‘Matrix Methods in Statistics’
is a branch of linear algebra and matrix theory containing a variety of challenging problems
in linear statistical models and statistical inference having applications in various branches
of applied statistics such as natural sciences, medicine, economics, electrical engineering,
Markov chains, Digital Signal Processing, Pattern Recognition and Neural Network to name
a few. Advances in combinatorial Matrix theory were motivated by a wide range of subjects
such as Networks, Chemistry, Genetics, Bioinformatics, Computer Science, and Information
Technology etc. The area of classical matrix theory and combinatorial matrix theory inter-
act with each other, which is evident from the interplay between graphs and matrices. The
generalized inverses of matrices such as the incidence matrix and Laplacian matrix are math-
ematically interesting and have great practical significance. Covariance matrices play an im-
portant role in the study of uncertainty associated with data related to measurements which
is an important part of applied Mathematics and Statistics.

The ICLAA 2017 shall provide a platform for leading mathematicians, statisticians, and
applied mathematicians working around the globe in the theme area to discuss several re-
search issues on the topic and to introduce new innovations. The main goal of the conference
is to bring experts, young researchers, and students together and those to present recent
developments in this dynamic and important field. The conference also aims to stimulate
research and support the interaction between the scientists by creating an environment for
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Invited Delegates

participants to exchange ideas and to initiate collaborations or professional partnerships.
The topic ‘Matrix methods in Statistics’ is a branch of linear algebra and matrix theory

containing a variety of challenging problems in linear statistical models, statistical inference
and error analysis, having applications in various branches of science which concern with
measurements. Measurement and evaluation of nuclear data is one such very important
branch of science having practical significance in designing and monitoring the advanced
nuclear system.

The design of advanced nuclear system demands the assessment of confidence margins in
nuclear power plant parameters. The errors in the design parameters of advanced nuclear
system due to errors arising from the uncertainty in basic nuclear data are addressed by the
nuclear community by and large through covariance matrix theory. The total Monte Carlo
methodology is also being developed. A number of countries have studied error propagation
in nuclear engineering using errors and covariance among nuclear data. The basic evaluated
nuclear data files, such as ENDF/B-VII.1 (USA), JEFF-3.2 (EU), JENDL-4.0 (Japan), TENDL-
2015 (EU), etc., (see the IAEA-BARC mirror website : http://www.nds.indcentre.org.in ) are
widely used in several applications including energy (e.g., advanced nuclear reactors) and
non-energy (e.g., nuclear medicine) . The evaluated nuclear data are specified in evaluated
nuclear data files in forms of estimates of mean values and their covariances. Efforts in India
under the DAE-BRNS have been initiated in scientific evaluation of nuclear data, in partic-
ular, the extraction of recommended (estimates) values and their covariance from uncertain,
incomplete and error afflicted experimental data required reasoning and inference techniques
(statistics, Bayesian, variants of Kalman filter) in the face of uncertainty and correlation of
errors in raw experimental data.

The previous theme meetings on nuclear data covariances were held in Manipal (2008),
Vel-tech, Chennai (2010), and in BARC, Mumbai (2013). The current theme meeting will
be held during December 09-13, 2017. The meeting will have special lectures, tutorials for
training the researchers in the measurements of covariance matrices, presentation research
articles and invited talks. The December 11-13, 2017 part of the theme meeting will run in
parallel to ICLAA 2017 to enable Mathematicians and Nuclear data science experts interact
together, as a unique event. All the sessions in the theme meeting, December 09-13, 2017
will be dedicated to discuss the importance and generation of covariance information which
are essentially involved in the different steps of measurements, processing, evaluation and
applications of nuclear data of importance to nuclear energy and non-energy applications,
helping all researchers and young scholars involved in this activity.

ICLAA 2017 and Theme Meetings together have attracted more than two hundred regis-
tration (more than fifty females) from about seventeen countries, five continents. The regis-
tered participants includes about fifty invited delegates delivering number of special lectures,
plenary talks, tutorials and invited talks. Also, more than sixty delegates have registered
for contributing their research for oral presentation. As output of the conference, two inter-
national journals, Bulletin of Kerala Mathematical Association and Special Matrices, come
forward to publish special issues of original articles presented in ICLAA 2017. ‘Springer’ has
come forward to publish the proceedings of the Fourth DAE-BRNS theme meeting.

Invited Delegates

ICLAA 2017

1. RAFIKUL ALAM, Indian Institute of Technology Guwahati, INDIA
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Delegates Contributing Paper

2. S. ARUMUGAM, Kalasalingam University, INDIA

3. RAVINDRA B. BAPAT, Indian Statistical Institute, Delhi, INDIA

4. B. V. RAJARAMA BHAT, Indian Statistical Institute Bangalore, INDIA

5. S. PARAMESHWARA BHATTA, Mangalore University, INDIA

6. ZHENG BING, Lanzhou University, CHINA

7. SOMNATH DATTA, University of Florida, UNITED STATES

8. N. EAGAMBARAM, Former DDG, INDIA

9. EBRAHIM GHORBANI, K.N. Toosi University of Technology, IRAN, ISLAMIC REPUBLIC OF

10. MUDDAPPA SEETHARAMA GOWDA, University of Maryland, Baltimore County, UNITED STATES

11. STEPHEN JOHN HASLETT, Australian National University, AUSTRALIA

12. JEFFREY HUNTER, Auckland University of Technology, NEW ZEALAND

13. STEPHEN JAMES KIRKLAND, University of Manitoba, Canada, CANADA

14. BHASKARA RAO KOPPARTY, Indiana University Northwest, UNITED STATES

15. S. H. KULKARNI, Indian Institute of Technology Madras, INDIA

16. HELMUT LEEB, TU Wien, Atominstitut, AUSTRIA

17. ANDRÉ LEROY, Université d’ Artois, FRANCE

18. AUGUSTYN MARKIEWICZ, Poznan University of Life Sciences, POLAND

19. S. K. NEOGY, Indian Statistical Institute Delhi Centre, INDIA

20. SUKANTA PATI, Indian Institute of Technology Guwahati, INDIA

21. SIMO PUNTANEN, University of Tampere, FINLAND

22. T. E. S. RAGHAVAN, University of Illinois at Chicago, UNITED STATES

23. SHARAD S. SANE, Indian Institute of Technology Bombay, INDIA

24. AJIT IQBAL SINGH, The Indian National Science Academy, New Delhi, INDIA

25. MARTIN SINGULL, LinkÃűping University, SWEDEN

26. K. C. SIVAKUMAR, Indian Institutes of Technology Madras, INDIA

27. SIVARAMAKRISHNAN SIVASUBRAMANIAN, Indian Institute of Technology Bombay, INDIA

28. MURALI K. SRINIVASAN, Indian Institute of Technology Bombay, INDIA

29. MICHAEL TSATSOMEROS, Washington State University, UNITED STATES

DAE-BRNS Theme Meeting
30. RUDRASWAMY B., Banagalore University, INDIA

31. S. GANESAN, Bhabha Atomic Research Centre, INDIA

32. BETYLDA JYRWA, North-Eastern Hill University, INDIA

33. ARJAN KONING, IAEA, AUSTRIA

34. B. LALREMRUATA, Mizoram University, INDIA

35. HELMUT LEEB, TU Wien, Atominstitut, AUSTRIA

36. JAYALEKSHMI M. NAIR, VES Institute Of Technology, INDIA

37. KALLOL ROY, Bharatiya Nabhikiya Vidyut Nigam Ltd, Kalpakkam, INDIA

38. ALOK SAXENA, Bhabha Atomic Research Centre, INDIA

39. PETER SCHILLEBEECKX, European Commission - Joint Research Centre, BELGIUM

40. HENRIK SJÖSTRAND, Uppsala University, SWEDEN

41. S. V. SURYANARAYANA, Bhabha Atomic Research Centre, INDIA

Delegates Contributing Paper

ICLAA 2017

1. ADENIKE OLUSOLA ADENIJI, University of Abuja, Abuja, NIGERIA

2. FOUZUL ATIK, Indian Statistical Institute, Delhi Centre, INDIA
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Delegates Contributing Paper

3. MOJTABA BAKHERAD, University of Sistan and Baluchestan, Zahedan, IRAN, ISLAMIC REPUBLIC OF

4. SASMITA BARIK, Indian Institute of Technology Bhubaneswar, INDIA

5. DEBASHIS BHOWMIK, Indian Institute of Technology Patna, INDIA

6. ANJAN KUMAR BHUNIYA, Visva-Bharati, Sa ntiniketan, INDIA

7. NIRANJAN BORA, Dibrugarh University Institute of Engineering & Technology, INDIA

8. MANAMI CHATTERJEE, Indian Institute of Technology Madras, INDIA

9. SRIPARNA CHATTOPADHYAY, NISER Bhubaneswar, INDIA

10. KSHITTIZ CHETTRI, SGC Tadong, Gangtok, INDIA

11. PROJESH NATH CHOUDHURY, Indian Institute of Technology Madras, INDIA

12. RANJAN KUMAR DAS, Indian Institute of Technology Guwahati, INDIA

13. SOUMITRA DAS, North Eastern Hill University, INDIA

14. RAJAIAH DASARI, Osmania University, INDIA

15. BISWAJIT DEB, Sikkim Manipal Institute of Technology, INDIA

16. AMITAV DOLEY, Dibrugarh University, INDIA

17. DIPTI DUBEY, Indian Statistical Institute Delhi Centre, INDIA

18. SUPRIYO DUTTA, Indian Institute of Technology Jodhpur, INDIA

19. RAMESH G., Indian Institute of Technology Hyderabad, INDIA

20. JADAV GANESH, Indian Institute of Technology Hyderabad, INDIA

21. ARINDAM GHOSH, Indian Institute of Technology Patna, INDIA

22. MAHENDRA KUMAR GUPTA, Indian Institute of Technology Madras, INDIA

23. SHAHISTHA H., Manipal Institute of Technology, Manipal, INDIA

24. AKHLAQ HUSAIN, BML Munjal University Gurgaon, INDIA

25. AHMAD JAFARIAN, Islamic Azad university, Urmia, IRAN, ISLAMIC REPUBLIC OF

26. TANWEER JALAL, National Institute of Technology, Srinagar, INDIA

27. SACHINDRANATH JAYARAMAN, IISER Thiruvananthapuram, INDIA

28. P. SAM JOHNSON, National Institute of Technology Karnataka, Surathkal, INDIA

29. NAYAN BHAT K., MAHE, Manipal, INDIA

30. KAMARAJ K., Anna University, INDIA

31. M. RAJESH KANNAN, Indian Institute of Technology Kharagpur, INDIA

32. NIJARA KONCH, Dibrugarh University, INDIA

33. MATJAZ KOVSE, Indian Institute of Technology Bhubaneswar, INDIA

34. VINAY MADHUSUDANAN, Manipal Institute of Technology, Manipal, INDIA

35. SUSHOBHAN MAITY, Visva-Bharati, Santiniketan, INDIA

36. RANJIT MEHATARI, Indian Institute of Technology Kharagpur, INDIA

37. VATSALKUMAR NANDKISHOR MER, IISER Thiruvananthapuram, INDIA

38. DAVID RAJ MICHEAL, MAHE, Manipal, INDIA

39. ASHMA DOROTHY MONTEIRO, MAHE, Manipal, INDIA

40. AKASH MURTHY, Euprime, INDIA

41. MUKESH KUMAR NAGAR, Indian Institute of Technology Bombay, INDIA

42. NUPUR NANDINI, MAHE, Manipal, INDIA

43. MOHAMMAD JAVAD NIKMEHR, K. N. Toosi University of Technology, IRAN, ISLAMIC REPUBLIC OF

44. DIVYA SHENOY P., Manipal Institute of Technology, Manipal, INDIA

45. RAMESH PRASAD PANDA, Indian Institute of Technology Guwahati, INDIA

46. RASHMIREKHA PATRA, Sambalpur University Institute of Information Technology, INDIA

47. SOMNATH PAUL, Tezpur University, Assam, INDIA

48. ABHYENDRA PRASAD, Indian Institute of Technology Patna, INDIA

49. RAJKUMAR R., The Gandhigram Rural Institute - Deemed University, INDIA

50. B. R. RAKSHITH, University of Mysore, INDIA

51. SONU RANI, Indian Institute of Technology Bhubaneswar, INDIA
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Delegates Presenting Poster

52. VEERAMANI S., Indian Institute of Technology Hyderabad, INDIA

53. GOKULRAJ S., Central University of Tamil Nadu, Thiruvarur, INDIA

54. DEBASHISH SHARMA, Gurucharan College, Silchar, INDIA

55. KHALID SHEBRAWI, Al Balqa’ Applied University, JORDAN

56. JYOTI SHETTY, Manipal Institute of Technology, Manipal, INDIA

57. ADILSON DE JESUS MARTINS DA SILVA, University of Cape Verde, CAPE VERDE

58. RANVEER SINGH, Indian Institute of Technology Jodhpur, INDIA

59. MANOJ SOLANKI, Barakatullah University (S. V. College, Autonomous), INDIA

60. M. A. SRIRAJ, Vidyavardhaka College of Engineering, Mysuru, INDIA

61. LAVANYA SURIYAMOORTHY, Indian Institute of Technology Madras, INDIA

62. KURMAYYA TAMMINANA, National Institute of Technology Warangal, INDIA

63. SHENDRA SHAINY V., Thiruvalluvar University, INDIA

64. BALAJI V., Thiruvalluvar University, INDIA

65. ANU VARGHESE, BCM College, Kottayam, INDIA

DAE-BRNS Theme Meeting
66. ABHISHEK PRAKASH CHERATH, INDIA

67. VIDYA DEVI, IET Bhaddal Ropar Punjab, INDIA

68. MEGHNA RAVIRAJ KARKERA, MAHE, Manipal, INDIA

69. SANGEETHA PRASANNA RAM, Vivekananand Education Society’s Institute of Technology, INDIA

70. UTTIYOARNAB SAHA, HBNI, IGCAR, INDIA

71. Y. SANTHI SHEELA, MAHE, Manipal, INDIA

Delegates Presenting Poster

ICLAA 2017

1. RAJESH KUMAR T. J., TKM College of Engineering, Kollam, Kerala, INDIA

2. MATHEW VARKEY T. K., TKM College of Engineering, Kollam, Kerala, INDIA

3. SANJEEV KUMAR MAURYA, Indian Institute of Technology (BHU) Varanasi, INDIA

4. DHANANJAYA REDDY, Government Degree College, Puttur, INDIA

5. P. G. ROMEO, Cochin University of Science and Technology, INDIA

6. MALATHY VISWANATHAN, VIT University, INDIA

I wish the platforms provided by ICLAA 2017 and the theme meeting benefit scientists
and scholars working in all the focus area.

(Dr. K. Manjunatha Prasad)
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Messages
It is great honor for the Department of Statistics to organize the
International Conference on Linear Algebra and its Applications,
2017 and The Fourth DAE-BRNS Theme Meeting on Generation
and Use of Covariance Matrices in the Applications of Nuclear Data
from December 09 to 15, 2017.

The conference and theme meeting aim at providing scientific
platforms to all the particpants to congregate and interact with sub-
ject experts. The ICLAA 2017 covers a number of plenary talks and
oral presentations on recent advances in Linear Algebra and its ap-
plications to different specialities. Theme meeting covers several
lectures, tutorials and presentation of new research on the method-
ology involving statistics and matrix theory in the applications of
nuclear data.

I am sure that all the participants will have an enlightening and enriching experiences
through the deliberations of this conference. It is noteworthy to mention that there is an
overwhelming response to conference. About 200 delegates across the country and also from
abroad are participating.

I am very thankful to our management and to all my colleagues for their unstinted help
in organizing this conference.

Dr. Asha Kamath
Associate Professor & Head
Department of Statistics, PSPH
Manipal Academy of Higher Education, Manipal
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Call for Papers

Special Matrices

Articles in the focus area of (i) Linear Algebra, (ii) Matrices & Graphs, and (iii) Matrix and
Graph Methods in Statistics, not necessarily presented in the conference, may be submitted
to a special issue of journal ‘SPECIAL MATRICES’ (https://www.degruyter.com/view/j/spma).
Acceptance of the articles for the possible publication is subject to review norms set by the
journal. For more details on the submission please visit the journal page given in the above
link.

• All submissions to the Special Issue must be made electronically at
http://www.editorialmanager.com/spma and will undergo the standard single-blind peer
review system.

• The deadline for submission is April 15, 2018.

• Individual papers will be reviewed and published online as they arrive.

• Contributors to the Special Issue will benefit from:

• fair and constructive peer review provided by recognized experts in the field,

• Open Access to your article for all interested readers,

• no publication fees,

• convenient, web-based paper submission and tracking system – Editorial Manager,

• free language assistance for authors from non-English speaking regions;

Bulletin of Kerala Mathematical Association

All the articles submitted to ICLAA 2017 are eligible for the possible publication in a special
issue of ‘Bulletin of Kerala Mathematical Association’ (indexed in MathSciNet), subject to
review of its original scientific contribution. Full article may be submitted to any member of
scientific advisory committee with the intention of submission of article for the special issue
of BKMA.

• Article for the Special Issue may be submitted electronically at http://iclaa2017.com/submit-
full-article-bkma/.

• Articles will undergo the standard single-blind peer review system.

• The template may be downloaded at www.iclaa2017.com

• The deadline for submission is December 31, 2017.

• Contributors to the Special Issue will benefit from:

• fair and constructive peer review provided by recognized experts in the field, no
publication fees,

• no publication fees,

• convenient, web-based paper submission
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Springer

Springer

Articles in the focus area of theme meeting on “Generation and use of covariance matrices in
the applications of nuclear data” not necessarily presented in the conference, may be submit-
ted to ‘SPRINGER’ Acceptance of the articles for the possible publication is subject to review
norms set by the journal.

1. Full Article should be submitted to kmprasad63@gmail.com and will undergo the stan-
dard single-blind peer review system.

2. The deadline for submission is February 28, 2018.
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Program: ICLAA 2017

December 11, 2017 (Monday)

09:00 - 09:10 K. Manjuantha Prasad and Ravindra B. Bapat: Welcome & Overview of the
conference

SESSION 1; Chair Person: Ravindra B Bapat

09:10 - 10:10 Stephen James Kirkland: Markov Chains as Tools for Analysing Graphs I

10:10 - 10:50 Sivaramakrishnan Sivasubramanian: The arithmetic Tutte polynomial of two
matrices associated to trees

10:50 - 11:10 Tea Break
SESSION 2; Chair Person: Michael Tsatsomeros

11:10 - 11:50 S K Neogy: On testing matrices with nonnegative principal

11:50 - 12:30 Rafikul Alam: Fiedler companion pencils for rational matrix functions and the
recovery of minimal bases and minimal indices"

12:30 - 13:10 K C Sivakumar: Nonnegative/nonpositive generalized inverses and applications
in LCP

13:10 - 14:30 Lunch Break
SESSION 3; Chair Person: S. Arumugam

14:30 - 15:30 Sharad S Sane: Some Linear Algebra related questions in the theory of Block
Design I

15:30 - 16:00 Matjaz Kovse: Distance matrices of partial cubes

16:00 - 16:20 Tea Break
SESSION 4; Chair Person: Sivaramakrishnan Sivasubramanian

16:20 - 17:00 S H Kulkarni: Continuity of the pseudospectrum

17:00 - 17:40 Murali K Srinivasan: Eigenvalues and eigenvectors of the perfect matching as-
sociation scheme

17:40 -18:40 S. Arumugam: Vector spaces associated with graphs

19:15 - 20:00 Inaugural Day Function of ICLAA 2017

20:00 - 21:00 DINNER
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Program: ICLAA 2017

December 12, 2017 (Tuesday)

SESSION 5; Chair Person: TES Raghavan

09:00 - 10:00 Sharad S Sane: Some Linear Algebra related questions in the theory of Block
Design II

10:00 - 11:00 Stephen James Kirkland: Markov Chains as Tools for Analysing Graphs II

11:00 - 11:30 Tea Break

11:30 - 13:00 Contributory Talks ( CT - 1)

13:00 - 14:30 Lunch Break
SESSION 6; Chair Person: S K Neogy

14:30 - 15:30 T E S Raghavan: On completely mixed games

15:30 - 16:10 B V Rajarama Bhat: Two states

16:10 - 16:30 Tea Break

16:30 - 18:30 Contributory Talks ( CT - 2)
December 13, 2017 (Wednesday)

SESSION 7; Chair Person: Vasudev Guddattu

09:00 - 09:40 Simo Puntanen: Upper bounds for the Euclidean distances between the BLUPs"

09:40 - 10:20 Stephen John Haslett: Linear models and sample surveys

10:20 - 11:00 Ebrahim Ghorbani: Eigenvectors of chain graphs

11:00 - 11:30 Tea Break

11:30 - 13:00 Contributory Talks ( CT - 3)

13:00 - 14:15 Lunch Break
SESSION 8; Chair Person: Muddappa Seetharama Gowda

14:15 - 15:00 Ajit Iqbal Singh: Fibonacci fervour in linear algebra and quantum information
theory

15:10 - 15:50 Arup Bose: To be announced

16:00 - 19:00 Cultural Program at Karantha Bhavan, KOTA

19:00 - 20:00 Dinner at Karantha Bhavan, KOTA
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December 14, 2017 (Thursday)

SESSION 9; Chair Person: Helmut Leeb

09:00 - 09:50 Jeffrey Hunter: Mean first passage times in Markov Chains - How best to com-
pute?

09:50 - 10:30 Augustyn Markiewicz: Approximation of covariance matrix by banded Toeplitz
matrices

10:30 - 11:10 Martin Singull: The use of antieigenvalues in statistics

11:10 - 11:30 Tea Break/Photo Session

11:30 - 13:00 Contributory Talks ( CT - 4)

13:00 - 14:30 Lunch Break
SESSION 10; Chair Person: Asha Kamath

14:30 - 15:10 Michael Tsatsomeros: Stability and convex hulls of matrix powers

15:10 - 15:50 Muddappa Seetharama Gowda: On the solvability of matrix equations over the
semidefinite cone

15:50 - 16:20 Somnath Datta: A combined PLS and negative binomial regression model for
inferring association networks from next-generation sequencing count data

16:20 - 16:40 Tea Break

16:40 - 18:40 Contributory Talks ( CT - 5)
December 15, 2017 (Friday)

Session 11; Chair Person: Augustyn Markiewicz

09:00 - 09:50 Helmut Leeb: R-matrix based solution of Schrödinger equations with complex
potentials

09:50 - 10:30 Zheng Bing: Condition numbers of the multidimensional total least squares
problem

10:30 - 11:10 N Eagambaram: An approach to General Linear Model using hypothetical vari-
ables

11:10 - 11:30 Tea Break
SESSION 12; Chair Person: Steve J Kirkland

11:30 - 12:10 André Leroy: When singular nonnegative matrices are products of nonnegative
idempotent matrices?

12:10 - 13:00 Sukanta Pati: Inverses of weighted graphs

13:00 - 14:30 Lunch Break
SESSION 13; Chair Person: Simo Puntanen

14:30 - 15:30 Bhaskara Rao Kopparty: Generalized inverses of infinite matrices

15:30 - 16:15 Tea Break

16:15 - 16:45 VALEDICTORY

17
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Contributory Talks

December 12, 2017 (Tuesday)

CT 1 – A; Chair Person : Sukanta Pati Venue: Bhargava Hall

11:30 – 12:00 Fouzul Atik: On the distance and distance signless Laplacian eigenvalues of
graphs and the smallest Gersgorin disc

12:00 – 12:30 Sasmita Barik: On the spectra of bipartite multidigraphs

12:30 – 13:00 Dipti Dubey: On principal pivot transforms of hidden Z matrices
CT 1 – B; Chair Person : Steve J Kirkland Venue: Shrikhande Hall

11:30 – 12:00 Sachindranath Jayaraman: Nonsingular subspaces of Mn(F), F a field

12:00 – 12:30 P Sam Johnson: Hypo–EP operators

12:30 – 13:00 Vatsalkumar Nandkishor Mer: Semipositivity of matrices over the n–dimensional
ice cream cone and some related questions

CT 1 – C; Chair Person : Murali K Srinivasan Venue: S K Mitra Hall

11:30 – 12:00 Mukesh Kumar Nagar: Immanants of q–Laplacians of trees

12:00 – 12:30 Anjan Kumar Bhuniya: A topological proof of Ryser’s formula for permanent
and a similar formula for determinant of a matrix

12:30 – 13:00 Manami Chatterjee: A relation between Fibonacci numbers and a class of ma-
trices

CT 2 – A; Chair Person : S. Arumugam Venue: Bhargava Hall

16:30 – 17:00 Debashis Bhowmik: Semi–equivelar maps on the surface of Euler characteristic
–2

17:00 – 17:30 Niranjan Bora: Study of spectrum of certain multi–parameter spectral problems

17:30 – 18:00 Ranjan Kumar Das: Generalized Fiedler pencils with repetition for polynomial
eigenproblems and the recovery of eigenvectors, minimal bases and minimal
indices

18:00 – 18:30 Supriyo Dutta: Graph Laplacian quantum states and their properties
CT 2 – B; Chair Person : K. C. Sivakumar Venue: Shrikhande Hall

16:30 – 17:00 Projesh Nath Choudhury: Matrix Semipositivity Revisited

17:00 – 17:30 Lavanya Suriyamoorthy: M–operators on partially ordered Banach spaces

17:30 – 18:00 Ramesh G: On absolutely norm attaining paranormal operators

18:00 – 18:30 Kurmayya Tamminana: Comparison results for proper double splittings of rect-
angular matrices

CT 2 – C; Chair Person : P Sam Johnson Venue: S K Mitra Hall
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16:30 – 17:00 Kshittiz Chettri: On spectral relationship of a signed lollipop graph with its
underlying cycle

17:00 – 17:30 Balaji V.: Further result on skolem mean labeling

17:30 – 18:00 Shendra Shainy V: Cordial labeling for three star graph

18:00 – 18:30 Ranveer Singh: B–partitions and its application to matrix determinant and per-
manent

CT 2 – D; Chair Person : G Sudhakar Venue: Berman Hall

16:30 – 17:00 Mohammad Javad Nikmehr: Nilpotent graphs of algebraic structures

17:00 – 17:30 Somnath Paul: Distance Laplacian spectra of graphs obtained by generalization
of join and lexicographic product

17:30 – 18:00 Pankaj Kumar Das: Necessary and sufficient conditions for locating repeated
solid burst

18:00 – 18:30 Mahendra Kumar Gupta: Causal detectability for linear descriptor systems
December 13, 2017 (Wednesday)

CT 3 – A; Chair Person : S. Sivasubramanian Venue: Bhargava Hall

11:30 – 12:00 Soumitra Das: On Osofsky’s 32–elements matrix ring

12:00 – 12:30 Sriparna Chattopadhyay: Laplacian–energy–like invariant of power graphs on
certain finite groups

12:30 – 13:00 Biswajit Deb: Reachability problem on graphs by a robot with jump: some recent
studies

CT 3 – B; Chair Person : Martin Singull Venue: Shrikhande Hall

11:30 – 12:00 Ashma Dorothy Monteiro: Prediction of survival with inverse probability weighted
Weibull models when exposure is quantitative

12:00 – 12:30 Debashish Sharma: Inverse eigenvalue problems for acyclic matrices whose
graph is a dense centipede

12:30 – 13:00 Gokulraj S: Strong Z–tensors and tensor complementarity problems
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CT 3 – C; Chair Person : Shreemati Mayya Venue: S K Mitra Hall

11:30 – 12:00 M Rajesh Kannan: On distance and Laplacian matrices of a tree with matrix
weights

12:00 – 12:30 Niraja Konch: Further results on AZI of connected and unicyclic graph

12:30 – 13:00 Malathi V.: Nordhaus gaddum type sharp bounds for graphs of diameter two
December 14, 2017 (Thursday)

CT 4 – A; Chair Person : Sharad S Sane Venue: Bhargava Hall

11:30 – 12:00 B R Rakashith: Some graphs determined by their spectra

12:00 – 12:30 Arindam Ghosh: A note on Jordan derivations over matrix algebras

12:30 – 13:00 Anu Varghese: Bounds for the distance spectral radius of split graphs
CT 4 – B; Chair Person : Ajit Iqbal Singh Venue: Shrikhande Hall

11:30 – 12:00 Ranjit Mehatari: On the adjacency matrix of complex unit gain graphs

12:00 – 12:30 Ramesh Prasad Panda: The Laplacian spectra of power graphs of cyclic and
dicyclic finite groups

12:30 – 13:00 Abhyendra Prasad: Study of maps on surfaces using face face incident matrix
CT 4 – C; Chair Person : Parameshwara Bhat Venue: S K Mitra Hall

11:30 – 12:00 T. Anitha: On Laplacian spectrum of reduced power graph of finite cyclic and
dihedral groups

12:00 – 12:30 Jyoti Shetty: Some properties of Steinhaus graphs

12:30 – 13:00 M A Sriraj: Partition energy of corona of complete graph and its generalized
complements

CT 5 – A; Chair Person : Pradeep G Bhat Venue: Bhargava Hall

16:40 – 17:10 Sonu Rani: On the distance spectra and distance Laplacian spectra of graphs
with pockets

17:10 – 17:40 Divya P Shenoy: Deteminants in the study of generalized inverses of matrices
over commutative ring

CT 5 – B; Chair Person : Kuncham Syam Prasad Venue: Shrikhande Hall

16:40 – 17:10 David Raj Micheal: Computational Methods to find Core–EP inverse

17:10 – 17:40 Nupur Nandini: Jacobi type identities
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Special Lectures & Plenary Talks

Vector spaces associated with a graph1

S. Arumugam

Adjunct Professor, Department of Mathematics, Amrita Vishwa Vidyapeetham,
Coimbatore-641112, India. s.arumugam.klu@gmail.com

Abstract

Let G = (V , E) be a graph of order n and size m. The set of all edge-induced subgraphs of
G forms a vector space over the field of integers modulo 2, under the operation symmetric
difference and usual scalar multiplication. This vector space is denoted by Ψ(G). A circuit in
G is a cycle or edge disjoint union of cycles in G. The set C (G) of all circuits of G is a subspace
ofΨ(G) and is called the circuit subspace of G. Let λ(G) denote the collection of all cutsets and
edge disjoint union of cutsets of G. The set λ(G) is a subspace of Ψ(G) and is called the cutset
subspace of G. In this talk we present a survey of some of the classical results on these vector
spaces, highlighting duality, orthogonality and applications. We also discuss how a graph
Γ(V ) can be associated with a finite vector space V and discuss some properties of Γ(V ).
Keywords: circuit space, cutsets, orthogonality
AMS subject classifications. 05C12, 05C25, 05C62
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Mean first passage times in Markov Chains - How best to
compute?

Jeffrey Hunter

Department of Mathematical Sciences School of Engineering, Computer and
Mathematical Sciences, Auckland University of Technology Auckland, New

Zealand. jeffrey.hunter@aut.ac.nz

Abstract

The presentation gives a survey of a variety of computational procedures for finding the mean
first passage times in Markov chains. The presenter has recently published a new accurate
computational technique [1] similar to that developed by Kohlas [2] based on an extension of
the Grassmann, Taksar, Heyman (GTH) algorithm [3] for finding stationary distributions of
Markov chains. In addition, the presenter has recently developed a variety of new perturba-
tion techniques for finding key properties of Markov chains including finding the mean first
passage times [4]. These procedures are compared with other well known procedures includ-
ing the standard matrix inversion technique of Kemeny and Snell, [5], some simple gener-
alized matrix inverse techniques developed by the presenter [6] and the FUND technique of
Heyman [7] for finding the fundamental matrix of a Markov chain. The accurate procedure
of the presenter is favoured following MATLAB comparisons using some test problems that
have been used in the literature for comparing computational techniques for stationary distri-
butions. One distinct advantage is that the stationary distribution does not have to be found
in advance but is extracted from the computations.
Keywords: Markov chain, stochastic matrix, moments of first passage times, generalized
matrix inverses
AMS subject classifications. 15A09; 15B51; 60J10
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Markov chains as tools for analysing graphs

Stephen Kirkland

University of Manitoba, Canada, Canada. Stephen.Kirkland@umanitoba.ca

Abstract

An n×n entrywise nonnegative matrix A is called stochastic if it has all row sums equal to
1. Given a nonnegative vector x0 ∈ Rn such that its entries sum to 1, we form the sequence
of iterates xT

k ,k ∈ N via the recurrence xT
k = xT

k−1 A,k ∈ N. The sequence xk is then a Markov
chain associated with the stochastic matrix A. The theory of Markov chains has been with us
for over a century, and they are used in a wide array of applications, including conformation
of biomolecules, vehicle traffic models, and web search.

In this talk we focus on the use of Markov chain techniques as methods for understanding
the structure of directed and undirected graphs. We begin with an overview of some of the
key ideas and quantities in the study of Markov chains. We then move on to explore the use
of Markov chains in analysing graphs. In particular, we will discuss measures of centrality,
detection of clustering, and an overall measure of connectedness.
Keywords: Markov chain, stochastic matrix
AMS subject classifications. 60J10

Generalized inverses of infinite matrices

Bhaskara Rao Kopparty

Indiana University Northwest, 3400 Broadway, Gary, IN 46408.
bkoppart@iun.edu

Abstract

A formulation for studying generalized inverses of infinite matrices is developed. After prov-
ing several results, we shall propose some problems. The results supplement the studies by
Sivakumar and Shivakumar[1].
Keywords: infinite matrices
AMS subject classifications. 15A09
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R-matrix based solution of Schrödinger equations with
complex potentials 2

Th. Srdinko1, J. Fries2, B. Raab3 and H. Leeb4

Atominstitut, TU Wien, Vienna, Austria.1tsrdinko@ati.ac.at
2e1425904@student.tuwien.ac.at, 3e1027403@student.tuwien.ac.at,

4helmut.leeb@tuwien.ac.at

Abstract

The description of reaction processes in nuclear and atomic physics requires the solution of
Schrödinger equations. Albeit microscopic considerations lead to Schrödinger equations with
non-local potentials, most applications make use of equivalent local potentials. In this con-
tribution we present a method for the solution of Schrödinger equations involving complex
non-local potentials. Our method is inspired by the R-matrix formalism which divides the
configuration space into an internal and an external space, where the solution in the inter-
nal part is represented by an appropriate set of basis functions. Thus the representation of
the corresponding coupled Bloch-Schrödinger equations leads to a complex symmetric matrix.
Using the Tagaki factorization of complex symmetric matrices we extended the R-matrix for-
malism to complex potentials. The proposed method also allows the solution of Schrödinger
equations with complex non-local potentials. In combination with the Lagrange mesh tech-
nique the proposed method becomes very appealing for application and has been successfully
used. Some examples are given in this presentation.
Keywords: quantum mechanics, Schrödinger equation, Lagrange mesh technique
AMS subject classifications. 81U05, 65L99
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On completely mixed games

T.E.S. Raghavan

University of Illinois at Chicago, USA. terctu@gmail.com

Abstract

Any non-zero sum two person game in normal form is represented by a pair of real m× n
matrices A and B. Player I selects secretly a row "i" and player II selects secretly a column
"j" and player I receives ai j while player II receives bi j. A mixed strategy for player I is any
probability vector x = (x1, x2, . . . , xm) where row i is selected with probability xi. Independently
a mixed strategy y = (y1, y2, . . . , yn) can be used to select column j with probability yj. Thus
players I and II receive respectively ai j,bi j with probability xi.yj. The expected payoff to

2The work was supported by the Euratom project CHANDA (605203) and a grant of the Eurofusion Consortium
(Materials)

24



Special Lectures & Plenary Talks Abstracts: ICLAA 2017

player I is
∑

i j ai j xi yj = (x A y). The expected payoff to player II is (xBy). A pair of mixed
strategies (x∗, y∗) constitute a Nash equilibrium pair if

v1 = (x∗ A y∗)≥ (x A y∗) for all mixed strategies x for player I

and
v2 = (x∗ By∗)≥ (x∗ By) for all mixed strategies y for player II.

The following theorems will be discussed:

Theorem 1. [2]. Every bimatrix game admits at least one equilibrium pair in mixed strate-
gies.

We call a bimatrix game completely mixed iff in every equilibrium pair the two players’
mixed strategies are completely mixed.

Theorem 2. If a bimatrix game is completely mixed then

• The equilibrium pair is unique.

• The matrix is square (i.e. m = n).

• In case A+B =O and v1 = 0, the rank of the matrix A is n−1.

• In case A+B = O and v1 = 0, all cofactors of A are different from 0 and are of the same
sign.

An N-person game is played as follows: Given finite sets S1,S2, . . . ,Sn, players 1,2, . . .n
choose secretly an element s1 ∈ S1, s2 ∈ S2, . . . sn ∈ Sn respectively. Let hi : S1×S2×Sn → R, i =
1,2, . . .n be payoffs to players i = 1,2, . . .n. Given a set of mixed strategies x1, x2, . . . , xn for the
respective players, let hi(x1, x2, xi, xn) be the expected payoff to player i when all players
stick to their mixed strategies. The set of mixed strategies x1, x2, . . . , xn constitute a Nash
equilibrium for the game if and only if f for each player i and pure choice si ∈ Si, the expected
payoff to player i when he simply chooses an element si ∈ Si while all the other players j 6= i
stick to their given mixed strategies satisfies

hi(x1, x2, si, xn)≤ hi(x1, x2, xi, xn),∀si ∈ Si, i = 1,2, . . .n.

Thus no player can gain by unilateral deviation to any pure strategies.

Theorem 3. [2] Every n-person game admits at least one Nash equilibrium tuple in mixed
strategies.

As soon as we introduce another player with at least 2 pure strategies for the player,
uniqueness of the equilibrium is no more true. All we can say is

Theorem 4. If an n-person game is completely mixed then its equilibrium set cannot contain
any non-degenerate line segment.

Theorem 5. For a 3 person completely mixed game for the special case where |Si| = 2, i = 1,2,3
the equilibrium tuple is unique.

Theorem 6. [5]. Any algebraic number can be chosen as the equilibrium payoff for some
player of a completely mixed 3 person game.

Theorem 7. [5] We can construct completely mixed n-person games with a continuum of equi-
librium strategies.
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The so called order field property is valid for bimatrix games and an explicit finite step
pivoting algorithm was given by Lemke and Howson.(1964). It finally reduces to algorithmi-
cally solving for the so called (Linear Complementarity problem): Given a real square matrix
M of order n and given an n-vector q check whether

w = Mz+ q,has a solution w ≥ 0, z ≥ 0, (w z)= 0

and if so how to locate one such pair (w, z).

Theorem 8. The linear complementarity problem has a unique solution for any given n-vector
q if and only if the matrix M has all of its principal minors positive. In this case Lemke’s
algorithm will solve for the unique solution.

Theorem 9. For the special case when the matrix M is a non- singular M−matrix the unique
solution can be found by a simplex pivoting algorithm.

Keywords: Completely mixed games, linear complementarity
AMS subject classifications. 90C33
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Some linear algebra related questions in the theory of
block designs

Sharad S. Sane

Department of Mathematics, Indian Institute of Technology, Bombay, Powai,
Mumbai-400076, India. sane@math.iitb.ac.in, sharadsane@gmail.com

Abstract

This talk will mainly focus on the existence and structural questions concerning the objects
mentioned in the title. The full talk is divided in two parts. Beginning with symmetric
designs, I will allude to projective planes and biplanes and in particular to biplanes with
characteristic 3. Later part of this talk will discuss quasi-symmetric designs that are in a
sense combinatorial generalizations of symmetric designs. On the other hand and on the
positive side of it, structural study of quasi-symmetric designs is facilitated due to the fact
one can associate a simple graph with such a structure which turns out to be a non-trivial
and interesting strongly regular graph in many cases of interest. The talk will discuss this
connection in some details. The relationship between quasi-symmetric and symmetric designs
is not well understood, though it is believed to exist and the existence questions in both
the cases are expected to be equally difficult. The second talk will discuss the notorious
long standing λ-design conjecture of Ryser and Woodall and with particular attention to the
related linear algebra. The conjecture is widely believed to be true and a number of attempts
have been made to prove it. Main interest in this conjecture is because of a bold assertion in
the statement that essentially tells us that λ-designs can only be constructed in a canonically
stipulated manner. The talk will discuss all the relevant results including some new ones in
this area.
Keywords: block design, regular graph
AMS subject classifications. 05C50

Invited Talks

Fiedler companion pencils for rational matrix functions
and the recovery of minimal bases and minimal indices

Rafikul Alam

Department of Mathematics, IIT Guwahati, Guwahati -781039, India.
rafik@iitg.ernet.in

Abstract

Linearization is a standard method for computing eigenvalues, eigenvectors, minimal bases
and minimal indices of matrix polynomials. Linearization is a process by which a matrix
polynomial is transformed to a matrix pencil and has been studied extensively over the years.
Frobenius companion pencils are examples of linearizations of matrix polynomials and are
well known for almost 140 years. Recently, Fiedler introduced a family of companion pencils
known as Fiedler companion pencils which provides an important class of linearizations of
matrix polynomials. The poles and zeros of rational matrix functions play an important role
in many applications. For computing eigenvalues, eigenvectors, poles, minimal bases and
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minimal indices of rational matrix functions, we construct Fiedler-like companion pencils for
rational matrix functions and show that these pencils are linearizations of the rational matrix
functions in an appropriate sense. We describe the recovery of minimal bases and minimal
indices of rational matrix function from those of the Fiedler pencils. In fact, we show that
the recovery of minimal bases are operation-free, that is, the minimal bases can be recovered
from those of the Fiedler pencils without performing any arithmetic operations.
Keywords: rational matrix function, Rosenbrock system matrix, matrix polynomial, eigen-
value, eigenvector, minimal realization, matrix pencil, linearization, Fiedler pencil.
AMS subject classifications. 65F15, 15A57, 15A18, 65F35
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Two states
B. V. Rajarama Bhat

Indian Statistical Institute, Bangalore, India. bvrajaramabhat@gmail.com

Abstract

D. Bures defined a metric on states of a C∗−algebra as the infimum of the distance between
associated vectors in common GNS representations. We take a different approach by looking
at the completely bounded distance between relevant joint representations. The notion has
natural extension to unital completely positive maps. The study yields new understanding
of GNS representations of states and in particular provides a new formula for Bures metric.
This is a joint work with Mithun Mukherjee (See: https://arxiv.org/abs/1710.00180).
Keywords: states, completely positive maps, Hilbert C∗-modules, Bures distance
AMS subject classifications. 46L30, 46L08
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Condition numbers of the multidimensional total least
squares problem

Bing Zheng, Lingsheng Meng and Yimin Wei
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Gansu, PR China, bzheng@lzu.edu.cn

Abstract

In this talk, we present the Kronecker-product-based formulae for the normwise, mixed and
componentwise condition numbers of the multidimensional total least squares (TLS) prob-
lem. For easy estimation, we also exhibit Kronecker-product-free upper bounds for these con-
dition numbers. The upper bound for the normwise condition number is proved to be optimal,
greatly improve the results by Gratton et al. for the truncated solution of the ill-conditioned
basic TLS problem. As a special case, we also provide a lower bound for the normwise con-
dition number of the classic TLS problem when having a unique solution. These bounds are
analyzed in detail. Furthermore, we prove that the tight estimates of mixed and component-
wise condition numbers recently given by other authors for the basic TLS problem are exact.
Some numerical experiments are performed to illustrate our results.
Keywords: multidimensional total least squares, truncated total least squares, condition
number, singular value decomposition
AMS subject classifications. 65F35, 65F20
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A combined PLS and negative binomial regression model
for inferring association networks from next-generation

sequencing count data

Somnath Datta
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Abstract

A major challenge of genomics data is to detect interactions displaying functional associa-
tions from large-scale observations. In this study, a new cPLS-algorithm combining partial
least squares approach with negative binomial regression is suggested to reconstruct a ge-
nomic association network for high-dimensional next-generation sequencing count data. The
suggested approach is applicable to the raw counts data, without requiring any further pre-
processing steps. In the settings inves-tigated, the cPLS-algorithm outperformed the two
widely used comparative methods, graphical lasso and weighted correlation network analy-
sis. In addition, cPLS is able to estimate the full network for thousands of genes without
major computational load. Finally, we demonstrate that cPLS is capable of finding biologi-
cally meaningful associations by analysing an example data set from a previously published
study to examine the molecular anatomy of the craniofacial development.
Keywords: association networks, network reconstruction, negative binomial regression, next-
generation sequencing, partial least-squares regression
AMS subject classifications. 62P10, 62J12
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An approach to General Linear Model using hypothetical
variables
N. Eagambaram
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Abstract

Consider the general linear model, Y = Xβ+ ε where Y is a vector of dimension n, X is an
n×k matrix and ε is a n-dimensional random variable with covariance matrix σ2G. X and
G are known whereas β and σ2 are unknown. Procedures for estimation of functions of β
and σ2 are well known in the case of non-singular G. Here, similar procedures are explored
by adding hypothetical variables to Y so as to have a non-singular covariance matrix in the
modified model.
Keywords: linear model, hypothetical random variables, generalized inverse, matrix partial
order
AMS subject classifications. 62J12
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Eigenvectors of chain graphs

Ebrahim Ghorbani

Department of Mathematics, K. N. Toosi University of Technology, P. O. Box
16315-1618, Tehran, Iran and

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.
O. Box 19395-5746, Tehran, Iran. e_ghorbani@ipm.ir

Abstract

A graph is called a chain graph if it is bipartite and the neighborhoods of the vertices in each
color class form a chain with respect to inclusion. Let G be a graph and λ be an (adjacency)
eigenvalues of G with multiplicity k. A vertex v of G is called a downer, or neutral, or Parter
vertex of G (and λ) depending whether the multiplicity of λ in G − v is k−1, or k, or k+1,
respectively. We consider vertex types of a vertex v of a chain graph in the above sense which
has a close connection with v-entries in the eigenvectors corresponding to λ.
Keywords: chain graph, graph eigenvalue, eigenvector
AMS subject classifications. 05C50
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On the solvability of matrix equations over the
semidefinite cone

M. Seetharama Gowda
Department of Mathematics and Statistics, University of Maryland, Baltimore

County, Baltimore, Maryland 21250, USA. gowda@umbc.edu

Abstract

In matrix theory, various algebraic, fixed point, and degree theory methods have been used to
study the solvability of equations of the form f (X )=Q, where f is a transformation (possibly
nonlinear), Q is a semidefinite/definite matrix and X varies over the cone of semidefinite
matrices. In this talk, we describe a new method based on complementarity ideas. This
method gives a unified treatment for transformations studied by Lyapunov, Stein, Lim, Hiller
and Johnson, and others. Our method actually works in a more general setting of proper
cones and, in particular, on symmetric cones in Euclidean Jordan algebras.
Keywords: solvability, semidefinite cone, complementarity, proper cone, symmetric cone
AMS subject classifications. 15A24, 90C33
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Linear models and sample surveys
Stephen Haslett
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Abstract

When sample surveys with complex design (which may include stratification, clustering, un-
equal selection probabilities and weighting) are used as data for linear models then additional
complications are introduced into estimation of model parameters and variances. The stan-
dard techniques for linear models for sample surveys either model conditional on survey de-
sign variables or use design weights based on selection probabilities assuming no covariance
between population elements.

When design weights are used, an extension to incorporate joint selection as well as selec-
tion probabilities is possible, and when there is correlated error structure this is essential for
efficient estimation in linear models and for design unbiased estimation of covariance from
the sample.

Sample designs can be either with or without replacement of units when sampling. Al-
though without replacement sampling is more accurate for a given sample size, when sam-
pling with probability proportional to size (pps), with replacement sampling is often used
because pps without replacement is difficult to implement due to selection probabilities for
the remaining units changing after each draw. However, with replacement sampling compli-
cates fitting linear models and requires generalized inverses for any sample for which any
unit is selected more than once.
Keywords: linear models, sample surveys, survey design, superpopulation, without replace-
ment, with replacement, ginverse
AMS subject classifications. 15A03; 15A09; 15A24, 15B48; 62D05; 62F12; 62J05; 62J10
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Continuity of the pseudospectrum

S. H. Kulkarni

Department of Mathematics, Indian Institute of Technology Madras, Chennai
600036. India. shk@iitm.ac.in

Abstract

Let A be a complex unital Banach algebra with unit 1. We shall identify a complex scalar
λ with the element λ1 ∈ A. For a ∈ A, the spectrum σ(a) of a is defined by

σ(a) := {λ ∈C :λ−a is not invertible in A}.

It is well known that the map a 7→ σ(a) is not continuous. In this talk we show that the
pseudospectrum behaves in a better way in many situations. Let ε> 0. The ε- pseudospectrum
Λε(a) is defined by

Λε(a) := {λ ∈C : ‖(λ−a)−1‖ ≥ 1
ε

}

with the convention that ‖(λ−a)−1‖ =∞ if λ−a is not invertible. This convention makes the
spectrum to be a subset of the ε- pseudospectrum for every ε> 0. The basic reference for the
pseudospectrum is the book [2].

We show that for every fixed ε> 0 the map a 7→Λε(a) is right continuous and it is continu-
ous if one of the following conditions is satisfied:

1. The resolvent set C\σ(a) is connected.

2. The algebra A is the algebra of all bounded operators on a Banach space X such that X
or its dual space X ′ is complex uniformly convex.

These conditions are satisfied when T is a compact operator on a Banach space X or when
T is a bounded operator on an Lp space, 1≤ p ≤∞.

Some of these results can be found in [1].
Keywords: Banach algebra, spectrum, pseudospectrum
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When singular nonnegative matrices are products of
nonnegative idempotent matrices?

A. Alahmadi1, S. K. Jain2 and A. Leroy3
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2King Andulaziz University, Jeddah, SA and Ohio University, USA.
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Abstract

It is well-known that singular matrices over fields, division rings, Euclidean domains, self-
injective regular rings can be presented as a product of idempotent matrices (see the works
by Erdos, Laffey, O’Meara-Hanna, Alahmadi-Jain-Lam-Leroy, among others). During the
ICLAA 2014 it was asked whether a real nonnegative singular matrix can be represented as
a product of real nonnegative idempotent matrices. The answer is negative in general even for
nice symmetric stochastic matrices. But we exhibit families of matrices for which the answer
is yes. For instance here is list of type of singular nonnegative matrices for which it is known
that the decomposition holds.

1. Singular nonnegative matrices of rank 1 or 2.

2. Singular nonnegative matrices having a nonnegative von Neumann inverse.

3. Singular nonnegative quasi-permutation matrices.

4. Singular periodic nonnegative matrices.

It is still an open problem to find necessary and sufficient conditions for the nonnegative
decomposition to occur.
Keywords: nonnegative matrices, idempotent matrices
AMS subject classifications. 15B48
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Approximation of covariance matrix by banded Toeplitz
matrices

Augustyn Markiewicz

Poznań University of Life Sciences, Poland. amark@up.poznan.pl

Abstract

The need for estimation of covariance matrix with a given structure arises in various multi-
variate models. We are studying this problem for banded Toeplitz structure using Frobenius-
norm discrepancy. The estimation is made by approximating the unstructured sample co-
variance matrix by non-negative definite Toeplitz matrices. For this purpose some authors
are using the projection on a given space of Toeplitz matrices [1]. We characterize the linear
space of matrices for which this method is valid and we show that the space of Toeplitz ma-
trices is not the case. The solution of this problem is the projection on a cone of non-negative
definite Toeplitz matrices [2]. We give the methodology and the algorithm of the projection
based on the properties of a cone of non-negative definite Toeplitz matrices. The statistical
properties of this approximation are studied.
Keywords: covariance estimation, covariance structure, Frobenius norm
AMS subject classifications. 62H20; 65F99
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On testing matrices with nonnegative principal minors 3
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Abstract

In this paper, we revisit various methods proposed in the literature on testing matrices with
nonnegative principal Minors and discuss various characterizations useful for testing P(P0)-
matrices. We also identify few subclasses of P0-matrix for which there is a polynomial time
algorithm and review various characterizations of a P(P0)-matrix using linear complemen-
tarity.
Keywords: P(P0)-matrix, polynomial algorithm, linear complementarity problem
AMS subject classifications. 90C33; 15A09; 15A24
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Abstract

Consider a connected weighted graph G. Let A(G) be its adjacency matrix. Assume that
A(G) is nonsingular. Then the matrix A(G)−1 may have both positive and negative entries.
However, for some G, the inverse A(G)−1 is similar to a nonnegative matrix, say B, via a
signature matrix (a diagonal matrix with diagonal entries from {1,−1}). We call the graph of
this matrix B as the inverse graph of G and we also say G is invertible.

Recall that a structural characterization of nonsingular graphs is not yet known. Con-
sider a bipartite graph G with a unique perfect matching M and let Gw be the weighted
graph obtained from G by giving weights to its edges using the positive weight function
w : E(G) → (0,∞) such that w(e) = 1 for each e ∈M . The unweighted graph G may be viewed
as a weighted graph with the weight function w ≡ 1, where the weight of each edge is 1. The
matrix A(Gw) always has determinant ±1. Hence Gw is nonsingular for each of the above
described weight functions w.

Let G be a bipartite graph with a unique perfect matching M . By G/M, let us denote the
graph obtained from G by contracting each matching to a single vertex. It is known that if
G/M is also bipartite, then Gw is invertible for each weight function w.

We discuss the following questions.

1. Is the converse of the above result true? That is, if Gw is invertible for each w, is it
necessary that G/M is bipartite?

2. Are there cases, when Gw is invertible for one weight function w but it is not for each
w?

3. Are there cases, when ‘Gw is invertible for one w’ will force that ‘G/M is bipartite’ (or
‘Gw is invertible for each w’)?

Keywords: graph inverse, bipartite graphs with unique perfect matching
AMS subject classifications. 05C50
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Upper bounds for the Euclidean distances between the
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Abstract

In this paper we consider the linear model M = {y, Xβ,V }, where y is the observable random
vector with expectation Xβ and covariance matrix V . Our interest is on predicting the unob-
servable random vector y∗, which comes from y∗ = X∗β+ ε∗, where the expectation of y∗ is
X∗β and the covariance matrix of y∗ is known as well as the cross-covariance matrix between
y∗ and y. We introduce upper bounds for the Euclidean distances between the BLUPs, best
linear unbiased predictors, when the prediction is based on the original model and when it is
based on the transformed model T = {F y,F Xβ,FV F ′}. We also show how the upper bounds
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are related to the linear sufficiency of F y. The concept of linear sufficiency is strongly con-
nected to the transformed model T: If F y is linearly sufficient for Xβ under M, then the
BLUEs of Xβ are the same under M and T.

The concept of linear sufficiency was essentially introduced in early 1980s by [1, 2]. In
this paper we generalize their results in the spirit of [3], [4] and [5].
Keywords: best linear unbiased estimator, best linear unbiased predictor, linear sufficiency,
linear mixed model, transformed linear model
AMS subject classifications. 62J05; 62J10
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Fibonacci fervour in linear algebra and quantum
information theory

Ajit Iqbal Singh
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Abstract

Fibonacci numbers appear in the context of matrices, resonance valence bond states, Symmet-
ric informationally complete positive operator valued measures and other related matters in
Quantum Information theory. We will give a brief account together with adaptation of the
recursive process in other set-ups.
Keywords: Fibonacci numbers, permutation matrix, resonance valence bond state, quan-
tum entanglement, equiangular lines, symmetrically informationally complete positive oper-
ator valued measure (SIC-POVM), Zauner’s matrix, Fibonacci matrix, Fibonacci-Lucas SIC-
POVM, optimal quantum tomography.
AMS subject classifications. 11B39, 05A05, 15A69, 15B48, 81D40, 81P50
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The use of antieigenvalues in statistics
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Abstract

For fifty years ago Karl Gustafson published a series of papers and developed an antieigen-
value theory which has been applied, in a non-statistical manner, to several different areas
including, numerical analysis and wavelet analysis, quantum mechanics, finance and opti-
misation. The first antieigenvector u1 (actually there are two) is the vector which is the
one which is the most "turned" by an action of a positive definite matrix A with a connected
antieigenvalue µ1 which indeed is the cosine of the maximal "turning" angle given as

µ1 =
2
√
λ1λp

λ1 +λp
,
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where λ1 is the largest and λp is the smallest eigenvalue of A, respectively. Antieigenvalues
have been introduced in statistics when, for example, analysing sample correlation coeffi-
cients, as a measures of efficiency of least squares estimators, and when testing for sphericity,
see [1, 2, 3]. In this talk we will consider the distribution for a random antieigenvalue and
discuss the use of it.
Keywords: eigenvalue, aniteigenvalue, probability distribution
AMS subject classifications. 62H10, 15A42, 15A18, 15B52
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Nonnegative/nonpositive generalized inverses and
applications in LCP

K. C. Sivakumar
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Abstract

Let A be a real square matrix whose off-diagonal entries are nonpositive. A necessary and
sufficient condition for A−1 to exist and have nonnegative entries is that A is a P-matrix
(namely, the principal minors of A are positive). This in turn, is equivalent to the state-
ment that the linear complementarity problem LCP(A, q) has a unique solution. Note that
LCP(A, q) is to find x ≥ 0 such that Ax+ q ≥ 0 and xT (Ax+ q) = 0. In this talk, we shall
present a survey of the literature where results that are similar in spirit to the result stated
above, are recalled. Quite frequently, these conditions are stated in terms of nonnegativity or
nonpositivity of generalized inverses of matrices involving A as a submatrix.
Keywords: linear complementarity problem, M-matrix, P-matrix, Q-matrix, inverse positive
matrix
AMS subject classifications. 15A09, 15B48
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The arithmetic Tutte polynomial of two matrices
associated to trees 4

Sivaramakrishnan Sivasubramanian1 and R. B. Bapat2

1Dept of Maths, IIT Bombay. krishnan@math.iitb.ac.in
2Stat-Math Unit, ISI Delhi. rbb@isid.ac.in

Abstract

Arithmetic matroids arising from a list A of integral vectors in Zn are of recent interest
and the arithmetic Tutte polynomial MA (x, y) of A is a fundamental invariant with deep
connections to several areas. In this work, we consider two lists of vectors coming from the
rows of matrices associated to a tree T. Let T = (V ,E) be a tree with |V | = n and let LT be the
q-analogue of its Laplacian L in the variable q. Assign q = r for r ∈Z with r 6= 0,±1 and treat
the n rows of LT after this assignment as a list containing elements of Zn. We give a formula
for the arithmetic Tutte polynomial MLT (x, y) of this list and show that it depends only on n, r
and is independent of the structure of T. An analogous result holds for another polynomial
matrix associated to T: EDT , the n× n exponential distance matrix of T. More generally,
we give formulae for the multivariate arithmetic Tutte polynomials associated to the list of
row vectors of these two matrices which shows that even the multivariate arithmetic Tutte
polynomial is independent of the tree T.

As a corollary, we get the Ehrhart polynomials of the following zonotopes:
(i) ZEDT obtained from the rows of EDT and (ii) ZLT obtained from the rows of LT .

Keywords: arithmetic matroids, arithmetic Tutte polynomial, distance matrices, trees
AMS subject classifications. 05E99; 15B36; 52B05
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Eigenvalues and eigenvectors of the perfect matching
association scheme

Murali K. Srinivasan

Department of Mathematics, IIT Bombay, India.
murali.k.srinivasan@gmail.com

Abstract

We revisit the Bose-Mesner algebra of the perfect matching association scheme (= Hecke
algebra of the Gelfand pair (S2n,Hn), where Hn is the hyperoctahedral group). Our main
results are: an algorithm to calculate the eigenvalues from symmetric group characters by
solving linear equations; universal formulas, as content evaluations of symmetric functions
[1, 3], for the eigenvalues of fixed orbitals (generalizing a result of Diaconis and Holmes [2]);
and an inductive construction of the eigenvectors (generalizing a result of Godsil and Meagher
[4]).
Keywords: perfect matching scheme, content evaluation of symmetric functions
AMS subject classifications. 05E10, 05E05, 05E30
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Stability and convex hulls of matrix powers
Patrick K. Torres1 and Michael J. Tsatsomeros2

Department of Mathematics and Statistics, Washington State University,
Pullman, USA. 1patrick.torres@wsu.edu, 2tsat@math.wsu.edu

Abstract

Invertibility of all convex combinations of a matrix A and the identity matrix I is equivalent
to the real eigenvalues of A, if any, being positive. Invertibility of all matrices whose rows
are convex combinations of the respective rows of A and I is equivalent to all of the principal
minors of A being positive (i.e., A being a P-matrix). These results are extended to convex
combinations of higher powers of A and of their rows. The invertibility of matrices in these
convex hulls is associated with the eigenvalues of A lying in open sectors of the right-half
plane. The ensuing analysis provides a new context for open problems in the theory of matri-
ces with P-matrix powers.
Keywords: P-matrix, nonsingularity, positive stability, matrix powers, matrix hull
AMS subject classifications. 15A48; 15A15

45



Invited Talks Abstracts: ICLAA 2017

References

[1] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.
1994: SIAM, Philadelphia.

[2] M. Fiedler and V. Pták. On matrices with non-positive off-diagonal elements and positive
principal minors. Czechoslovak Mathematical Journal, 22:382-400, 1962.

[3] M. Fiedler and V. Pták. Some generalizations of positive definiteness and monotonicity.
Numerische Mathematik, 9:163-172, 1966.

[4] S. Friedland, D. Hershkowitz, and H. Schneider. Matrices whose powers are M-matrices
or Z-matrices, Transactions of the American Mathematical Society, 300:233-244, 1988.

[5] D. Hershkowitz and C.R. Johnson. Spectra of matrices with P-matrix powers, Linear
Algebra and its Applications, 80:159-171, 1986.

[6] D. Hershkowitz and N. Keller. Positivity of principal minors, sign symmetry and stabil-
ity, Linear Algebra and its Applications, 364:105-124, 2003.

[7] R.A. Horn and C.R. Johnson. Matrix Analysis 1990: Cambridge University Press.

[8] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis 1991: Cambridge University
Press.

[9] C.R. Johnson, D.D. Olesky, M. Tsatsomeros, and P. van den Driessche. Spectra with
positive elementary symmetric functions, Linear Algebra and Its Applications, 180:247-
262, 1993.

[10] C.R. Johnson and M.J. Tsatsomeros. Convex sets of nonsingular and P-matrices, Linear
and Multilinear Algebra, 38:233-239, 1995.

[11] R. Kellogg. On Complex eigenvalues of M and P matrices, Numerische Mathematik,
19:170-175, 1972.

[12] Volha Y. Kushel. On the positive stability of P2-matrices, Linear Algebra and Its Appli-
cations, 503:190-214, 2016.

[13] J.M. Pena. A class of P-matrices with applications to the localization of the eigenvalues
of a real matrix, SIAM Journal on Matrix Analysis and Applications, 22:1027-1037,
2001.

46



Conibtributory Talks Abstracts: ICLAA 2017

Contributory Talks

Spectrum of full transformation semigroup
Adeniji, A. O.

Department of Mathematics, Faculty of Science, University of Abuja, P.M.B. 117,
Abuja, Nigeria.

adeniji4love@yahoo.com

Abstract

Let X be a set following natural ordering of numbers and let IDTn be the identity difference
full transformation semigroup, a subsemigroup of full transformation semigroup, Tn. The
spectral radius of α is 1 for all α ∈ IDTn,n ≥ 2. Let S(α) be the shift of α. Then |S(α)| sets
the boundaries for eigenvalues of α. One dimensional linear convolution of the spectrum of
Tn denoted by C(Tn:r) is obtained using Cayley table and that Symmetric group has complex
spectrum and convolution.
Keywords: full transformation semigroup, identity difference transformation semigroup,
matrix, eigenvalues, spectrum, convolution and Green’s relations
AMS subject classifications. 20M20
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On the distance and distance signless Laplacian
eigenvalues of graphs and the smallest Geršgorin disc

Fouzul Atik1 and Pratima Panigrahi2

1Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, New
Delhi, India. fouzulatik@gmail.com

2Department of Mathematics, Indian Institute of Technology Kharagpur, India.
pratima@maths.iitkgp.ernet.in

Abstract

The distance matrix of a simple connected graph G is D(G) = (di j), where di j is the distance
between the ith and jth vertices of G. The distance signless Laplacian matrix of the graph
G is DQ(G) = D(G)+Tr(G), where Tr(G) is a diagonal matrix whose ith diagonal entry is
the transmission of the vertex i in G. In this work we first give upper and lower bounds for
the spectral radius of a nonnegative matrix. Applying this result we find upper and lower
bounds for the distance and distance signless Laplacian spectral radius of graphs and ob-
tain the extremal graphs for these bounds. Also we give upper bounds for the modulus of all
distance (respectively distance signless Laplacian) eigenvalues other than the distance (re-
spectively distance signless Laplacian) spectral radius of graphs. Finally for some classes of
graphs we show that all distance (respectively distance signless Laplacian) eigenvalues other
than the distance (respectively distance signless Laplacian) spectral radius lie in the smallest
Geršgorin disc of the distance (respectively distance signless Laplacian) matrix.
Keywords: distance matrix, distance eigenvalue, distance spectral radius, distance signless
Laplacian matrix, Geršgorin disc.
AMS subject classifications. 05C50
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On the spectra of bipartite multidigraphs

Sasmita Barik1 and Gopinath Sahoo

School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, India.
1sasmita@iitbbs.ac.in

Abstract

We define adjacency matrix as well as Laplacian matrix of a multidigraph in a new way
and study the spectral properties of some bipartite multidigraphs. It is well known that
a simple undirected graph is bipartite if and only if the spectrum of its adjacency matrix
is symmetric about the origin (with multiplicity). We show that the result is not true in
general for multidigraphs and supply a class of non-bipartite multidigraphs which have this
property. We describe the complete spectrum of a multi-directed tree in terms of the spectrum
of the corresponding modular tree. In case of the Laplacian matrix of a multidigraph, we
obtain a necessary and sufficient condition for which the Laplacian matrix is singular. Finally,
it is proved that the absolute values of the components of the eigenvectors corresponding
to the second smallest eigenvalue of the Laplacian matrix of a multi-directed tree exhibit
monotonicity property similar to the Fiedler vectors of an undirected tree ([3]).
Keywords: multidigrah; bipartite multidigraph; multi-directed tree; weighted digraph; ad-
jacency matrix; spectrum
AMS subject classifications. 05C50; 05C05; 15A18
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Semi-equivelar maps on the surface of Euler
characteristic–2

Debashis Bhowmik1 and A. K. Upadhyay2

Department of Mathematics, IIT Patna, Bihta, India. 1debashisiitg@gmail.com,
2upadhyay@iitp.ac.in

Abstract

Semi-equivelar maps are generalization of equivelar maps. We classify some Semi-equivelar
maps with 12 vertices on the surface of Euler characteristic (χ) =−2 and calculate their Au-
tomorphism Groups.
Keywords: semi-equivelar maps, automorphism group.
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A topological proof of Ryser’s formula for permanent and
a similar formula for determinant of a matrix
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Abstract

In this paper we give a topological proof of Ryser’s formula for permanents. Also we give
a purely combinatorial proof of a Ryser-type formula for determinants. The later argument
also includes a combinatorial proof of an interesting identity about Stirling number of second
kind.
Keywords: permanent, determinant, Stirling number, simplicial complex, Ryser’s formula.
AMS subject classifications. 05A05; 05A19; 05E45.
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Study of spectrum of certain multi-parameter spectral
problems
Niranjan Bora
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Abstract

In this paper, Multi-parameter matrix eigenvalue problems of the form

(A i −
k∑

j=1
λ jBi j)xi = 0, i = 1,2, . . . ,k

has been considered, where λi ∈ Ck are spectral parameters, A i,Bi j are self-adjoint, bounded
linear operators, that act on separable Hilbert Spaces Hi, and xi ∈ Hi. The problem is to find
k-tuple of values λ= (λ1,λ2, . . . ,λk) ∈ Ck for non-zero vector xi. The k-tuple λ ∈ Ck is called an
eigenvalue and the corresponding decomposable tensor product x = x1⊗x2⊗x3 · · ·⊗xk is called
eigenvector (right). Similarly, left eigenvector can also be defined. To study the spectrum, the
problem has been identified into three categories from the viewpoint of definiteness conditions
adopted by Atkinson. For numerical treatment, the case k > 3 is considered.
Keywords: multi-parameter matrix eigenvalue problems, Kronecker product, tensor product
space
AMS subject classifications. 35PXX, 65FXX, 65F15, 35A35
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A relation between Fibonacci numbers and a class of
matrices 5
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Abstract

Farber and Berman proved that if An is the collection of all upper triangular, {0,1}, invertible
matrices, then for any integer s lying between 2−Fn−1 and 2+Fn−1, there exists a matrix
A ∈ An such that S(A−1) = s, where S(A−1) stands for the sum of all entries of A−1 and Fn
is the Fibonacci number defined by Fn = Fn−1 +Fn−2, n > 3, F1 = F2 = 1. We will establish
the analogue of this result for the collection of all upper triangular, {0,1}, singular, group
invertible matrices.
Keywords: Fibonacci number, group inverse, upper triangular matrix, {0,1} matrix, sum of
entries
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Laplacian-energy-like invariant of power graphs on
certain finite groups 6
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The power graph G (G) of a finite group G is the graph whose vertices are the elements of G
and two distinct vertices are adjacent if and only if one is an integral power of the other. Here
we first find the Laplacian spectrum of the power graph of additive cyclic group Zn and the
dihedral group Dn partially. Then we concentrate on Laplacian-energy-like invariant of G (Zn)
and G (Dn). For a nonzero real number α, let sα(G) be the sum of αth power of the nonzero
Laplacian eigenvalues of a graph G and s 1

2
(G) is known as Laplacian-energy-like invariant

(LEL for short) of G. Here we improve lower bound of sα(G) for α < 0 or α > 1 and upper
bound of sα(G) for 0<α< 1 given by Zhou [15] for the particular classes of graphs G (Zn) and
G (Dn). Moreover we found lower bounds of sα(G (Zn)) and sα(G (Dn)) for 0 < α < 1 in terms
of number of vertices and Zagerb index. As a result we get bounds for Laplacian-energy-like
invariant of these graphs.
Keywords: finite groups, power graphs, Laplacian spectrum, Laplacian-energy-like invari-
ant
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On spectral relationship of a signed lollipop graph with
its underlying cycle
Kshittiz Chettri1 and Biswajit Deb2
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2Dept. of Mathematics, SMIT, Majhitar. biswajittalk@gmail.com

Abstract

Let Hg
n,k denote the lollipop graph on g vertices obtained by identifying a vertex of the

signed cycle Cn of order n and an end vertex of the signless path Pk+1 of order k + 1.The
sign of the edge connecting the vertex v (say) of the cycle Cn to an end vertex of the path
is the product of the signs of edges adjacent to v in Cn. This sign is assigned to remaining
edges in Pk+1. In this work we have deduced a general relationship between the characterstic
polynomial of Hg

n,k and Cn for k = 1, i.e., when the path is of length 1. Further, we comment on
the general case k. Also, the relationship between L− spectra and Q− spectra of Cn and Hg

n,k
are explored where L and Q stand for Laplacian and signless Laplacian matrix of a signed
graph respectively.
Keywords: cycle, lollipop graphs, paths,signed graph, Laplacian, signless Laplacian.
AMS subject classifications. 13C10; 15A09; 15A24; 15B57
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Matrix semipositivity revisited
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Abstract

Semipositive matrices (matrices that map at least one nonnegative vector to a positive vector)
and minimally semipositive matrices (semipositive matrices whose no column-deleted subma-
trix is semipositive) are well studied in matrix theory. In this talk, we present a pot-pourri
of results on these matrices. Considerations involving products, difference and the principla
pivot transform. We also study the following classes of matrices in relevance to semipositivity
and minimal semipositivity: N-matricces, almost N-matrices and almost P-matrices.
Keywords: semipositive matrix, minimally semipositive matrix, principal pivot transform,
Moore-Penrose inverse, interval of matrices, N-matrix, almost N-matrix.
AMS subject classifications. 15A09,15B48.
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Generalized Fiedler pencils with repetition for
polynomial eigenproblems and the recovery of

eigenvectors, minimal bases and minimal indices
Ranjan Kumar Das1 and Rafikul Alam2
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1d.ranjan@iitg.ernet.in, 2rafik@iitg.ernet.in

Abstract

A polynomial eigenvalue problem (PEP) is to solve

P(λ)x :=
( m∑

i=0
A iλ

i
)
x = 0, where A i ∈Cn×n, i = 0,1, . . . ,m,

for λ ∈ C and a nonzero x ∈ Cn. Linearization is a classical and most widely used method
for solving a PEP in which a PEP is transformed to a generalized eigenvalue problem of the
form (A+λB)u = 0 of larger size. Structured (symmetric, anti-symmetric, palindromic, etc.)
PEP arises in many applications. For a structured PEP, it is desirable to construct structure-
preserving linearizations so as to preserve the spectral symmetry of the PEP which may be
important from physical as well as computational view point. In this talk, we consider a
special class of structure-preserving linearizations known as generalized Fiedler pencil with
repetition (GFPR) and describe the recovery of eigenvectors, minimal bases and minimal in-
dices of PEP from those of the GFPRs.
Keywords: matrix polynomials, matrix pencils, eigenvector, minimal indices, minimal bases,
linearization.
AMS subject classifications. 65F15, 15A57, 15A18, 65F35
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On Osofsky’s 32-elements matrix ring

Soumitra Das

Department of Mathematics, North-Eastern Hill University, Permanent Campus,
Shillong-793022, Meghalaya, India. soumitrad330@gmail.com

Abstract

Let A = Z/(4) be the ring of integers module 4 and B = (2)/(4) be the ideal in A. The ring

R =
(
A B
0 A

)
is known as Osofsky’s 32-elements matrix ring, and it first appeared in [9] as an

example to illustrate the fact that injective hull of a ring may not have a ring structure in gen-
eral. This paper is an attempt to make an exhaustive study on this matrix ring. Among many
things, we found that this ring, along with Example 6.7 in [7], turns out to be another source of
example of a semiperfect, CD3-ring for which not every cyclic right R-module is quasi-discrete.
We observed that the ring has the following properties: Artinian (left/right), π-regular, I0, 2-
primal, ACC annihilator (left/right), ACC principal(left/right), Clean, Coherent (left/right),
Cohopfian (left/right), Connected, C3, DCC annihilator (left/right), Dedekind finite, essen-
tial socle (right/left), exchange, finite, finite uniform dimension (right/left), finitely cogener-
ated (right/left), finitely generated socle (right/left), Goldie (right/left), IBN, Kasch (right/left),
NI (Nilpotents from an ideal), Nil radical, Nilpotent radical, Noetherian (right/left), Non-
zero Socle (right/left), Orthogonally finite, Perfect (right/left), Polynomial Identity, Quasi-duo
(right/left), Semilocal, Semiperfect, Semiprimary, Semiregular, Stable range 1, Stably finite,
Strongly π-regular, T-nilpotent radical (right/left), top regular, Zorn

However, the ring lacks the following properties: Abelian, Armendariz, Baer, Bezout
(right/left), Bezout domain (right/left), Cogenerator ring (right/left), C1, C2, distributive (right/
left), division ring, domain, Dual (right/left), duo (right/left), FI-injective (right/left), Finitely
pseudo-Frobenius (right/left), Free ideal ring (right/left), Frobenius, Fully prime, Fully semi
prime, Hereditary (right/left), Local, Nonsingular (right/left), Ore domain (right/left), Pri-
mary, Prime, Primitive (right/left), Principal ideal domain (right/left), Principally injective
(right/left), (right/ left), Quasi-Frobenius, Reduced, Reversible, Rickart (right/left), Self in-
jective (right/ left), Semi free ideal ring, Semicommutative (SI condition, Zero-insertive),
(right/left), Semiprime, Semiprimitive, Semisimple, Simple, Simple Artinian, Simple Socle
(right/left), Simple-injective (right/left), Strongly Connected, Strongly regular, Symmetric,
Uniform (left/ right), Unit regular, V ring (right/ left), Valuation ring (right/left), Von Neu-
mann regular, IN (Ikeda-nakayama).

Keywords: matrix ring, injective hull, CD3-ring.
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Necessary and sufficient conditions for locating repeated
solid burst

Pankaj Kumar Das

Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur,
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Abstract

Wolf and Elspas [4] introduced a midway concept (known as error location coding) between
error detection and error correction. Error locating codes have been found to be efficient
in feedback communication systems. Solid burst error is one type of error commonly found
in many memory communication channels viz. semiconductor memory data, supercomputer
storage system.

In busy communication channels, it is found by Dass, Verma and Berardi [1] that errors
repeat themselves. They have initiated the idea of repeated errors and introduced 2–repeated
burst. Further, m-repeated burst was introduced by Dass and Verma in [2]. Extending this
idea, ‘2-repeated solid burst of length b’ and ‘m–repeated solid burst of length b’ are studied
by Rohtagi and Sharma [3]. They presented necessary and sufficient conditions for codes
correcting such errors. Cyclic codes for the detection of such errors were also studied.

In this paper, we study linear codes that detect and locate such repeated solid burst of
length b. We provide necessary and sufficient conditions for the existence of linear codes that
can locate such errors. An example is also given.
Keywords: parity check matrix, solid burst errors, error pattern-syndromes, EL-codes
AMS subject classifications. 94B05, 94B25, 94B65.
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Modified triangular and symmetric splitting method for
the steady state vector of Markov chains

Dasari Rajaiah1, M. V. Ramana Murthy2 and Perati Malla Reddy3
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Abstract

In this paper, we used a modified triangular and symmetric splitting (MTS) method in order
to solve the regularized linear system Ax = b associated with stochastic matrices. We proved
that there exist ε≥ 0 such that the regularized matrix A =QT + εI is positive definite, where
I is the real identity matrix of designated dimension of QT , and QT is stochastic rate matrix
with positive diagonal and non-positive off-diagonal elements. Theoretical analysis shows
that the iterative solution of MTS method converges unconditionally to the unique solution of
the regularized linear system.
Keywords: self-similarity, circulant stochastic matrices, steady state probability vector, MTS
Method, convergence analysis.
AMS subject classifications. 65F15; 65F35; 65F10; 45C05; 15B51
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Reachability problem on graphs by a robot with jump:
some recent studies

Biswajit Deb
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Abstract

Consider a graph G on n vertices with a robot at one vertex, one empty vertex and obstacles
in the remaining n−2 vertices. Let S be a set of non-negative integers. A robot can jump from
a vertex u to a vertex v provided v is empty and there is u−v path of length m for some m ∈ S.
An obstacle can be moved to an adjacent empty vertex only. The graph G is called complete
S-reachable if the robot can be taken to any vertex of G irrespective of its starting vertex.
In this talk we will discuss some recent developments in the characterization of complete
S-reachable graphs.
Keywords: diameter, reachability, starlike trees, mRJ-moves
AMS subject classifications. 91A43, 68R10, 05C05
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On principal pivot transforms of hidden Z matrices
Dipti Dubey1 and S. K. Neogy
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Abstract

In this talk, we demonstrate how the concept of principal pivot transform can be effectively
used to extend many existing results on hidden Z matrices. In fact, we revisit various results
obtained for hidden Z class by Mangasarian [2, 3, 4], Cottle and Pang [1] in context of solving
linear complementarity problems as linear programs. We identify hidden Z matrices of spe-
cial category and discuss the number of solutions of the associated linear complementarity
problems. We also present game theoretic interpretation of various results related to hidden
Z class .
Keywords: principal pivot transform, hidden Z-matrix, linear complementarity problem
AMS subject classifications. 90C33
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Graph Laplacian quantum states and their properties
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Abstract

A quantum state can be represented by a density matrix that is a positive semidefinite, Her-
mitian matrix with unit trace. Given a combinatorial graph G there is a density matrix given
by

ρ(G)= K(G)
trace(K(G))

, (7.1)

where K(G) = L(G), the Laplacian matrix or K(G) =Q(G), the signless Laplacian matrix. We
call the underlined quantum state as graph Laplacian quantum state [1, 2]. A number of
important properties of the underlined quantum state can be illustrated by the structure of
the graph G. In this talk I shall discuss about quantum entanglement, and discord from a
graph theoretic perspective [3, 4, 5, 6].
Keywords: combinatorial graphs, Laplacian matrices, quantum states, density matrix, local
unitary operators, quantum entanglement, discord.
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On absolutely norm attaining paranormal operators

G. Ramesh
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Abstract

Let H be a complex Hilbert space and T : H → H be a bounded linear operator. Then T is said
to be norm attaining if there exists a unit vector x0 such that ‖Tx0‖ = ‖T‖. If for any closed
subspace M of H, the restriction T|M : M → H of T to M is norm attaining, then T is called an
absolutely norm attaining operator or A N -operator. These operators are studied in [1, 2, 3].
In this talk, we present the structure of paranormal A N -operators and give a necessary and
sufficient condition under which a paranormal A N - operator is normal.
Keywords: compact operator, norm attaining operator, A N -operator, Weyl’s theorem, para-
normal operator, reducing subspace
AMS subject classifications. 47A15, 47B07, 47B20, 47B40
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Perturbation of minimum attaining operators7
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Abstract

We prove that the minimum attaining property of a bounded linear operator on a Hilbert
space H whose minimum modulus lies in the discrete spectrum, is stable under small com-
pact perturbations. We also observe that given a bounded operator with strictly positive es-
sential minimum modulus, the set of compact perturbations which fail to produce a minimum
attaining operator is smaller than a nowhere dense set. In fact it is a porous set in the ideal of
all compact operators on H. Further, we try to extend these stability results to perturbations
by all bounded linear operators with small norm and obtain subsequent results.
Keywords: minimum modulus, spectrum, essential spectrum, porous set
AMS subject classifications. Primary 47B07, 47A10, 47A75, 47A55, 47B65
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A note on Jordan derivations over matrix algebras 8
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Abstract

In 2006, Zhang and Yu [4] have shown that every Jordan derivation from triangular algebra
U over 2-torsionfree commutative ring into itself is a derivation. Let C be a commutative ring
with identity 1 6= 0. We prove that every Jordan derivation over an upper triangular matrix
algebra Tn(C) is a derivation. We also prove the result for Jordan derivation on Tn(F), where
F = {0,1} and further we characterize Jordan derivation on full matrix algebras Mn(C).
Keywords: Jordan derivations, derivations, upper triangular matrix algebra, full matrix
algebra
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Causal detectability for linear descriptor systems
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Abstract

Consider the linear descriptor systems of the form

Eẋ = Ax+Bu, (7.2a)

y = Cx, (7.2b)

where x ∈ Rn, u ∈ Rk, y ∈ Rp are the state vector, the input vector, and the output vector, re-
spectively. E, A ∈ Rm×n, B ∈ Rm×k, C ∈ Rp×n are known constant matrices. During past few
decades, a lot of work has been done on various types of observer design for the systems of
the form (7.2), see [1, 2] and the references therein. Among all the observers, Luenberger
observers were paid the most attention due to its explicit nature. Several techniques have
been developed to design Luenberger observer for the descriptor system (7.2) and sufficient
conditions on system operators have been provided for the existence of the Luenberger ob-
server. Hou and Müller [3] have proved that a rectangular descriptor system (7.2) can be
observed by a Luenberger observer if and only if it is causally detectable. But these authors
have given the condition of causal detectability of the system on a transformed system that
can only be obtained by applying a finite number of orthogonal transformations on the origi-
nal system. Thus without getting the transformed system, it is not possible to know that for
a given descriptor system a Luenberger observer can be designed or not. In this work, the
causal observability has been established in terms of system coefficient matrices. Therefore,
necessary and sufficient conditions for the existence of Luenberger observers are provided in
terms of system matrices.
Keywords: observer design, descriptor systems, Luenberger observer, causal detectability
AMS subject classifications. 47N70; 93B07; 93B30; 93B11; 93B10; 93C05
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An alternative approach for solving fully fuzzy linear
systems based on FNN

1Jafarian A. and Measoomy Nia S.

Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia,
IRAN. 1jafarian5594@yahoo.com

Abstract

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance,
parallelism and generalization. The focus of this paper is to introduce an efficient computa-
tional method which can be applied to approximate solution of a fuzzy linear equations system
with fuzzy square coefficients matrix and fuzzy right hand vector. Supposedly the given fuzzy
system has an unique fuzzy solution, an architecture of fuzzy feed-forward neural networks
(FFNN) is presented in order to find the approximate solution. The proposed FFNN can ad-
just the fuzzy connection weights by using a learning algorithm that is based on the gradient
descent method. The proposed method is illustrated by several examples. Also results are
compared with the exact solutions by using computer simulations.
Keywords: fully fuzzy linear system, fuzzy neural network(FNN), learning algorithm, cost
function

Nonsingular subspaces of Mn(F), F a field
Sachindranath Jayaraman

School of Mathematics, IISER Thiruvananthapuram, India.
sachindranathj@iisertvm.ac.in, sachindranathj@gmail.com

Abstract

For a field F, a subspace V of Mn(F) is said to be nonsingular if every nonzero element of V

is nonsingular. When F = C, any such subspace has dimension at most 1 and when F = R,
a nonsingular subspace of dimension n in Mn(R) will exist if and only if n = 2,4,8. Our
objective is to understand the structure of nonsingular subspaces of dimension in n in Mn(R).
Connections with a specific linear preserver problem will be pointed out.
Keywords: nonsingular subspace, invertibility (full-rank) preservers, linear preservers of
minimal semipositivity
AMS subject classifications. 15A86, 15B48, 15A09
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Hypo-EP Operators9

P. Sam Johnson
National Institute of Technology Karnataka, Mangalore, India

nitksam@gmail.com

Abstract

An analytic characterization of hypo-EP operator is given. Sum, product, restriction and
factorization of hypo-EP operators are discussed.
Keywords: hypo-EP operator, EP operator, Moore-Penrose inverse
AMS subject classifications. 47A05, 47B20
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On distance and Laplacian matrices of a tree with matrix
weights 10

Fouzul Atik1 and M. Rajesh Kannan2
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2Department of Mathematics, Indian Institute of Technology Kharagpur,
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Abstract

The distance matrix of a simple connected graph G is D(G) = (di j), where di j is the dis-
tance between the vertices of i and j in G. We consider a weighted tree T on n vertices with
each of the edge weight is a square matrix of order s. The distance di j between the vertices
i and j is the sum of the weight matrices of the edges in the unique path from i to j. Then
the distance matrix D of T is a block matrix of order ns× ns. In this paper we establish a
necessary and sufficient condition for the distance matrix D to be invertible and the formula
for the inverse of D, if it exists. This generalizes the existing result for the distance matrix
of a weighted tree, when the weights are positive numbers. Some more results which are
true for unweighted tree and tree with scaler weights are extended here in case of tree with
matrix weights. We also extend some result which involves relation between the eigenvalues
of distance and Laplacian matrices of trees.
Keywords: trees, distance matrix, Laplacian matrix, matrix weights, inverse.
AMS subject classifications. 05C50, 05C22.
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Further results on AZI of connected and unicyclic
graph11

Nijara Konch1 and Ankur Bharali2

Department of Mathematics, Dibrugarh University, Assam-786004, India.
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Abstract

The Augmented Zagreb index (AZI) of a graph G, initially refers as a molecular descriptor of
certain hydrocarbons is defined as

AZI(G)= ∑
uv∈E(G)

(
dudv

du +dv −2

)3
,

where E(G) is the edge set of G and du and dv are respectively degrees of end vertices u and
v of the edge uv. This topological index introduced by Furtula et al.[6], has characterized
as a useful measure in the study of the heat and formation in heptane and octanes. In this
paper, we obtain further results on AZI for connected complement of a graph, and n- vertex
unicyclic chemical graph with some improvement as well as extremal cases. We also obtain
some standard AZI results for known graphs.
Keywords: augmented Zagreb index, chemical graph, unicyclic graph
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Distance matrices of partial cubes12

R. B. Bapat1 and M. Kovše2

1Indian Statistical Institute, New Delhi, 110016, India. rbb@isid.ac.in
2School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, India.
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Abstract

Partial cubes are isometric subgraphs of hypercubes. Median graph is a graph in which every
three vertices u,v, and w have a unique median: a vertex m that belongs to shortest paths
between each pair of u,v, and w. Median graphs present one of the most studied subclasses
of partial cubes. We determine the Smith normal form of the distance matrices of partial
cubes and the factorisation of Varchenko determinant of product distance matrices of median
graphs.
Keywords: distance matrix, Smith normal form, hypercube, isometric embedding, partial
cube, median graph
AMS subject classifications. 05C12; 05C50
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On the spectrum of the linear dependence graph of finite
dimensional vector spaces13

Sushobhan Maity1 and A. K. Bhuniya2
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Abstract

In this paper, we introduce a graph structure called linear dependence graph of a finite dimen-
sional vector space over a finite field. Some basic properties of the graph like connectedness,
completeness, planarity, clique number, chromatic number etc. have been studied. Also, ad-
jacency spectrum, Laplacian spectrum and distance spectrum of the linear dependence graph
have been studied.
Keywords: graph, linear dependence, Laplacian, distance, spectrum
AMS subject classifications. 05C25; 05C50; 05C69
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On the adjacency matrix of complex unit gain graphs
Ranjit Mehatari1 and M. Rajesh Kannan2

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur-721302 1ranjitmehatari@gmail.com

Abstract

A complex unit gain graph is a graph in which each orientation of an edge is given a complex
number with modulus 1 and it’s inverse is assigned to the opposite orientation of the edge.
The adjacency matrix of a complex unit gain graph [5] is a Hermitian matrix. Interestingly
the spectral theory of complex unit gain graphs generalizes the spectral theory of undirected
graphs [1, 2] and some weighted graphs [4]. Here, we establish some useful properties of the
adjacency matrix of complex unit gain graph. We provide bounds for the eigenvalues of the
complex unit gain graphs. Then we establish some of the properties of the adjacency matrix
of complex unit gain graph in connection with the characteristic [3] and the permanental
polynomials. Then we derive spectral properties of the adjacency matrices of complex unit
gain bipartite graphs. Finally, for trees and unicyclic graphs, we establish relationships be-
tween the characteristic and permanental polynomials of adjacency matrix of complex unit
gain graph with the usual characteristic and permanental polynomials of the (0,1) adjacency
matrix of the underlying graph.
Keywords: gain graphs, characteristics polynomial of graphs, permanental polynomials of
graphs, eigenvalues, unicyclic graphs, bipartite graphs.
AMS subject classifications. 05C50, 05C22
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Semipositivity of matrices over the n-dimensional ice
cream cone and some related questions 14

Vatsalkumar N. Mer1, Sachindranath Jayaraman2 and Chandrashekaran
Arumugasamy3
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Abstract

An m×n matrix A with real entries is said to be semipositive if there exists x ≥ 0 such that
Ax > 0, where the inequalities are understood componentwise. Our objective is to characterize
semipositivity over the Lorentz or ice cream cone in Rn, defined by L n+ = {x = (x1, . . . , xn) ∈
Rn|xn ≥ 0,

n−1∑
i=1

x2
i ≤ x2

n}. We also investigate products of the form A1 A−1
2 , where A1is either

positive or semipositive and A2 is positive and invertible. Time permitting, preservers of
semipositivity with respect to L n+ will be pointed out.
Keywords: semipositive matrices, Lorentz cone, linear preservers
AMS subject classifications. 15B48,15A99
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Computational methods to find core-EP inverse15

K. Manjunatha Prasad1 and David Raj Micheal2
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Abstract

Core-EP inverse G of a square matrix A is an outer inverse such that Column space (A) =
Row space (A) = Column space (Ak) for some k ≥ index (A). Core-EP inverse has been firstly
defined and obtained an explicit expression by Prasad [1] in 2015. In this work, we describe
the bordering method and iterative method to find the core-EP inverse and core-EP genere-
lized inverse.
Keywords: core-EP inverse, core-EP generalized inverse, bordering, g-inverse, iterative
method
AMS subject classifications. 15A09, 15A29, 15A36

References

[1] Manjunatha Prasad K, Mohana K. S. Core–EP inverse. Linear and Multilinear Algebra.
2014 Jun 3;62(6):792-802.

[2] Manjunatha Prasad K, K.P.S.Bhaskara Rao. On bordering of regular matrices. Linear
Algebra and Its Applications. 1996; 234:245-59.

[3] Nomakuchi K. On the characterization of generalized inverses by bordered matrices.
Linear Algebra and Its Applications. 1980; 33:1-8.

[4] Eagambaram N. (i, j, . . . ,k)-Inverses via Bordered Matrices. Sankhyā: The Indian Jour-
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Prediction of survival with inverse probability weighted
Weibull models when exposure is quantitative

Ashma Dorothy Monteiro, Shreemathi S. Mayya, K. Manjunatha Prasad, K. K.
Achary

Department of Statistics, PSPH, MAHE, Manipal, India.
ashmamonteiro@gmail.com

Abstract

Survival analysis, based on propensity scores (PS), is a promising methodology to conduct
causal inference. Propensity score method for analyzing time-to-event outcomes in the cate-
gorical exposure case is perceived to be very efficient in the estimation of effect measures such
as marginal survival curves and marginal hazard ratio in the cohort studies. These methods
include techniques such as matching, covariate adjustment, stratification and inverse proba-
bility of weighting (IPW) to adjust for confounding factors between exposure groups.

15Acknowledgement: The authors acknowledge support by Science and Engineering Research Board (DST, Govt.
of India) under Extra Mural Research Funding Scheme (SR/S4/MS:870/14).
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But in several practical situations, the exposure/s could be continuous variable/s. For
example in the study of risk factors for diabetic foot, plantar foot pressures may be considered
as exposures, which are continuous variables in nature. Also, we come across distribution of
the survival time that is different from exponential distribution. The generalization of the
exponential distribution to include the shape parameter is the Weibull distribution.

The objective of this presentation is to describe and compare propensity score weighted
model Weibull survival model with basic Weibull survival model for different shape param-
eters of survival distribution. Also, we present a methodology to compare PS based Weibull
models for predicting survival (hazard rate) when the exposure is quantitative and continu-
ous.
Keywords: propensity score, Weibull survival, inverse probability weights, causal inference
AMS subject classifications. 62N99
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Incentive structure reorgnization to maximize
healthcare players’ payoff while keeping the healthcare

service provider’s company solvent
Akash Murthy1 and Mahathi Gunturu2
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2Microsoft me.mahathi@gmail.com

Abstract

This study focuses on modeling an incentive structure of stakeholders (Doctors, Patients,
Service Providers) in healthcare sector and optimize the stakeholders’ Payoff with the use
of solution concepts of Game Theory and Decision eMaking to arrive at an optimal solution
which puts a downward pressure on the cost of healthcare for all the players. This is done
by considering the Ruin probability problem to determine the risk or surplus process to keep
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the average cost burden on the consumers floating at the community health level. These
models are of the type non-cooperative extensive games which determines the tractability in
healthcare from the point of view of the utility function of stakeholders.
Keywords: Game theory, ruin probability, healthcare, extensive games
AMS subject classifications. 13C10; 15A09; 15A24; 15B57
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Immanants of q-Laplacians of trees 16
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Abstract

Let T be a tree on n vertices with Laplacian matrix LT and q-Laplacian LT . Let χλ be
the character of the irreducible representation of the symmetric group Sn indexed by the
partition λ of n. Let denote dλ(LT ) and dλ(LT ) as the immanant of LT and LT respectively,
indexed by λ. The immanantal polynomial of LT indexed by partition λ ` n is defined as

f LT
λ

(x) = dλ(xI −LT ). Let f LT
λ

(x) = ∑n
r=0(−1)r cLT

λ,rxn−r. Let dλ(LT ) = cLT
λ,n

χλ(id) be the normalized
immanant of LT indexed by λ, where id is the identity permutation in Sn.

When λ= k,1n−k, inequalities are known for dk,1n−k (LT ) as k increases (see [1, 4, 5]). By
using matchings and assigning statistics to vertex orientations, we generalize these inequali-
ties to the matrix LT , for all q ∈R and to the bivariate q, t-Laplacian L

q,t
T for a specific set of

values q, t, where both q, t ∈ R or both q, t ∈C. Our statistic based approach also gives gener-
alization of inequalities given in [2] for a Hadamard inequality changing index k(LT ) of LT ,
to the matrices LT and L

q,t
T for trees.

Csikvári [3] defined a poset on the set of unlabelled trees on n vertices. We proved that
when we go up in this poset, |cLT

λ,r | (the coefficient of (−1)rxn−r in f LT
λ

(x) in absolute value)
decreases for all q ∈R and for 0≤ r ≤ n.
Keywords: normalized hook immanants, q-Laplacian, trees, Hadamard inequality
AMS subject classifications. 15A15; 05C05
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Jacobi type identities
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Abstract

Jacobi identity relates any minor of A−1, the inverse of a matrix A, with determinant |A| and
the complementary minor in the transpose of A. Several extensions have been attempted by
Stanimirović et al. [1] and Bapat [2], where the given matrix over a real or complex field is
singular and rectangular. In this paper, we consider the matrices over a commutative ring and
characterize the class of outer inverses for which Jacobi type identities could be extended.
Keywords: matrices over commutative ring, determinantal rank, generalized inverse, outer
inverse, Jacobi identity, Rao-regular matrix
AMS subject classifications. 15A09
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Determinants in the study of Generalized Inverses of
Matrices over Commutative Ring
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Abstract

Determinantal rank serves as an alternative notion for the column rank of a matrix, when
the matrices are with entries from a commutative ring. The notion of minors defined with the
help of determinant, also helps in characterizing the matrices having generalized inverses,
and in providing determinantal formula for generalized inverses, whenever they exist. The
Jacobi identity provides an expression for the minors of a nonsingular matrix in terms of
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the determinant of a given matrix. We were successful in extending the Jacobi identity for
the outer inverses of a matrix over a commutative ring. In the process, we attempted to
characterize the existence of an outer inverse in terms of minors of a given matrix and provide
a determinantal formula for the same. As a special case, a determinantal formula for a Rao–
regular outer inverse has been provided. Also, the minus partial order on the class of regular
matrices over a commutative ring has been characterized and an extension of rank–additivity,
whenever a matrix is dominated by the other matrix with respect to the minus partial order
has been explored.
Keywords: matrices over commutative ring, determinantal rank, generalized inverse, Drazin
inverse, Jacobi identity, Rao-regular matrix
AMS subject classifications. 15A09
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The Laplacian spectra of power graphs of cyclic and
dicyclic finite groups 17
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Abstract

The power graph of a group G is the graph whose vertex set is G and two distinct vertices
are adjacent if one is a power of the other. In this article, the Laplacian spectra of power
graphs of certain finite groups is studied. Firstly, certain upper and lower bounds of algebraic
connectivity of power graphs of finite cyclic groups are obtained. Then the Laplacian spectra
of power graphs of dicyclic groups is investigated and the complete Laplacian spectra of power
graphs of some class of dicyclic groups are determined.
Keywords: power graph, Laplacian spectrum, algebraic connectivity, cyclic group, dicyclic
group
AMS subject classifications. 05C50; 05C25
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Distance Laplacian spectra of graphs obtained by
generalization of join and lexicographic product
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Abstract

The distance Laplacian matrix of a simple connected graph G is defined as DL(G) = Tr(G)−
D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix whose main
diagonal entries are the vertex transmissions in G. In this article, we determine the distance
Laplacian spectra of the graphs obtained by generalization of the join and lexicographic prod-
uct of graphs (namely joined union). It is shown that the distance Laplacian spectra of these
graphs not only depend on the distance Laplacian spectra of the participating graphs but also
depend on the spectrum of another matrix of vertex-weighted Laplacian kind (analogous to
the definition given by Chung and Langlands [6]).
Keywords: distance Laplacian matrix, join, lexicographic product, joined union
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Study of maps on surfaces using face face incident matrix
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Abstract

We introduce face face (FF) incidence matrix associated to maps on surfaces. Eigenvalues of
this matrix correponds to many topological properties. We present some observations in this
direction.
Keywords: maps on surfaces
AMS subject classifications. 05E45; 05C50

References

[1] M. N. Ellingham and Xiaoya Zha. The spectral radius of graphs on surfaces. Journal of
Combinatorial Theory, Series B 78(1):45-56, 2000.

[2] Richard P. Stanley. A bound on the spectral radius of graphs with e edges. Linear Alge-
bra and its Applications, 87:267-269, 1987.

78



Conibtributory Talks Abstracts: ICLAA 2017

On Laplacian spectrum of reduced power graph of finite
cyclic and dihedral groups 18

R. Rajkumar1 and T. Anitha2
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Abstract

The reduced power graph P (G) of a group G is the graph having all the elements of G as its
vertex set and two vertices u and v are adjacent in P (G) if and only if u 6= v and 〈u〉 ⊂ 〈v〉
or 〈v〉 ⊂ 〈u〉. In this paper, we study the Laplacian spectrum of the reduced power graph of
additive cyclic group Zn and dihedral group Dn. We determine the algebraic connectivity of
P (Zn) and P (Dn). Moreover, we give a lower bound for the Laplacian energy of P (Zn).
Keywords: finite group, reduced power graph, Laplacian eigenvalues, algebraic connectivity,
Laplacian energy
AMS subject classifications. 05C50; 05C25
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Some graphs determined by their spectra
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Abstract

The graph Kn\K l,m is obtained from the complete graph Kn by removing all the edges of
a complete bipartite subgraph K l,m. In [2], Cámara and Haemers proved that the graph
Kn\K l,m is determined by its spectrum. In this paper, we show that the graph Kn\K1,m
with m ≥ 4 is determined by its signless Laplacian spectrum and also we prove that the
graph Kn\K l,m is determined by its distance spectrum. In addition, we show that the join
graph mK2∨Kn is determined by its signless Laplacian spectrum. This result extends earlier
studies on signless Laplacian spectral determination of mK2 ∨Kn, when n = 1,2 see [1, 5].
Keywords: cospectral graphs, signless Laplacian spectrum, distance spectrum.
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of graphs with pockets 19
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Let F,Hv be simple connected graphs. Let v be a specified vertex of Hv and u1, . . . ,uk ∈ F.
Then the graph G = G[F,u1, . . . ,uk,Hv] obtained by taking one copy of F and k copies of Hv,
and then attaching the i-th copy of Hv to the vertex ui, i = 1, . . . ,k, at the vertex v of Hv
(identify ui with the vertex v of the i-th copy) is called a graph with k pockets. We give
some results describing the distance spectrum of G using the distance spectrum of F and
the adjacency spectrum of Hv. Consequently, a class of distance singular graphs is obtained.
Further, the distance Laplacian spectrum of G is also described using the distance Laplacian
spectrum of F and the Laplacian spectrum Hv. In a particular case, distance and distance
Laplacian spectra of generalized stars are discussed.
Keywords: graphs, eigenvalues, spectrum, distance matrix, distance Laplacian matrix
AMS subject classifications. 05C50, 05C12, 15A18
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Strong Z -tensors and tensor complementarity
problems20
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Abstract

For an m-order n-dimensional real tensor A (hypermatrix) and q ∈Rn, the tensor complemen-
tarity problem denoted by TCP(A , q) is to find an x ∈Rn such that

x ≥ 0, y=A xm−1 + q ≥ 0 and 〈x, y〉 = 0.

Motivated by the study on strong Z-matrices[1] in standard linear complementarity problems,
we define strong Z -tensors as a subclass of Z -tensors. In this talk, we present some of the
properties of strong Z -tensors in tensor complementarity problems.
Keywords: tensor complementarity problem, strong Z -tensor.
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References

[1] A. Chandrashekaran, T. Parthasarathy, and G. Ravindran. On strong Z-matrix. Linear
Algebra Appl, 432(4):964-969, 2010.

[2] Yisheng Song and Liqun Qi. Properties of some classes of structured tensors J. Optim.
Theory App, 165(3):854-873, 2015.

[3] M. Seetharama Gowda, Ziyan Luo, L. Qi, and Naihua Xiu. Z-tensors and complemen-
tarity problems. arXiv:1412.0113v3, 2017.

Inverse eigenvalue problems for acyclic matrices whose
graph is a dense centipede
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Abstract

The reconstruction of a matrix having a pre-defined structure from given spectral data is
known as an inverse eigenvalue problem (IEP) [1]. The objective of an IEP is to construct
matrices of a certain pre-defined structure which also satisfy the given restrictions on eigen-
values and eigenvectors of the matrix or its submatrices. The level of difficulty of an IEP
depends on the structure of the matrices which are to be reconstructed and on the type of
eigen information available. Whereas eigenvalue problems for matrices described by graphs

20Acknowledgement: The authors thanks the Central university of Tamil Nadu, Thiruvarur and University Grands
Commission, New Delhi for financial support.
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have been studied by several authors[2, 3, 4, 5, 6], IEPs for matrices described by graphs have
received little attention [7, 8]. In this paper, we consider two IEPs involving the reconstruc-
tion of matrices whose graph is a special type of tree called a centipede. We introduce a special
type of centipede called dense centipede. We study two IEPs concerning the reconstruction of
matrices whose graph is a dense centipede from given partial eigen data. In order to solve
these IEPs, a new system of nomenclature of dense centipedes is developed and a new scheme
is adopted for labelling the vertices of a dense centipede as per this nomenclature . Using
this scheme of labelling, any matrix of a dense centipede can be represented in a special form
which we define as a connected arrow matrix. For such a matrix, we derive the recurrence
relations among the characteristic polynomials of the leading principal submatrices and use
them to solve the above problems. Some numerical results are also provided to illustrate the
applicability of the solutions obtained in the paper.
Keywords: dense centipede, inverse eigenvalue problem, acyclic matrix, leading principal
submatrices
AMS subject classifications. 05C50, 65F18
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Some properties of Steinhaus graphs
Jyoti Shetty1 and Sudhakara G.2

Department of Mathematics, Manipal Institute os Technology, Manipal, India.
1jyotishetty.shetty@gmail.com, 2sudhakaraadiga@yahoo.co.in

Abstract

A Steinhaus graph is a simple graph whose adjacency matrix is a Steinhaus matrix. Stein-
haus matrix is a matrix obtained by Steinhaus triangle, Steinhaus triangle were first studied
by Harboth[1] and later by Chang[2]. Mullunzzo in 1978 made graphs from Steinhaus trianle
by extending the Steinhaus triangle in to an adjacency matrix of a Graph. In this paper we
introduced Steinhaus complement of a graph and Steinhaus self complementary graph .We
characterize Steinhaus complementary graph G using two complement of graph G.
Keywords: adjacency matrix, Steinhaus complement, K-complement.
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B-partitions and its application to matrix determinant
and permanent
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Abstract

There is a digraph corresponding to every square matrix over C. We generate a recurrence
relation using the Laplace expansion to calculate the determinant and the permanent of a
square matrix. Solving this recurrence relation, we found that the determinant and the per-
manent can be calculated in terms of the determinant and the permanent of some specific
induced subdigraphs of blocks in the digraph, respectively. Interestingly, these induced subdi-
graphs are vertex-disjoint and they partition the digraph. We call such a combination of sub-
digraphs as B-partition. Let G be a graph (directed or undirected) having k number of blocks
B1,B2, . . . ,Bk. A B-partition of G is a partition into k vertex-disjoint subgraph (B̂1, B̂1, . . . , B̂k)
such that B̂i is induced subgraph of Bi for i = 1,2, . . . ,k. The terms

∏k
i=1 det(B̂i),

∏k
i=1 per(B̂i)

are the det-summands and the per-summands, respectively, corresponding to the B-partition
(B̂1, B̂1, . . . , B̂k). The procedure to calculate the determinant and the permanent of a square
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matrix using the B-partitions is given in [1]. In particular, the determinant (permanent) of
a graph having no loops on its cut-vertices is equal to the summation of the det-summands
(per-summands), corresponding to all the possible B-partitions. Thus, we calculate the de-
terminant and the permanent of some graphs, which include block graph, block graph with
negatives cliques, bi-block graph, signed unicyclic graph, mixed complete graph, negative
mixed complete graph, and star mixed block graphs.
Keywords: B-partitions, blocks (2-connected components), determinant, permanent.
AMS subject classifications. 15A15; 05C20; 68R10.
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Abstract

Let G be a graph and Pk = V1,V2, . . . ,Vk be a partition of its vertex set V . Recently E. Sam-
pathkumar and M. A. Sriraj in [3] have introduced L-matrix of G = (V ,E) of order n with
respect to a partition Pk = {V1,V2, . . . ,Vk} of the vertex set V . It is a unique square symmetric
matrix Pk(G)= [ai j] whose entries ai j are defined as follows:

ai j =


2 if vi and v j are adjacent where vi, v j ∈Vr,
−1 if vi and v j are non-adjacent where vi, v j ∈Vr,
1 if vi and v j are adjacent between the sets

Vr and Vs for r 6= s where vi ∈Vr and v j ∈Vs,
0 otherwise.

This L-matrix determines the partition of vertex set of graph G uniquely. We determine the
partition energy using its L-matrix. The eigenvalues of the partition matrix PV1∪V2∪...∪Vk (G)=
Pk(G) are called k-partition eigenvalues. We define the energy of a graph with respect to a
given partition as the sum of the absolute values of the k-partition eigenvalues of G called
k-partition energy or partition energy of a graph and is denoted by EPk (G).

In this paper we obtain partition energy of Corona of Kn and Kn−1 and also its generalized
complements with respect to uniform partition.

Uniform graph partition is a type of graph partitioning problem that consists of dividing
a graph into components, such that the components are of about the same size and there
are few connections between the components. Important applications of graph partitioning
include scientific computing, partitioning various stages of a VLSI design circuit and task
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scheduling in multi-processor systems. Recently, the graph partition problem has gained
importance due to its application for clustering and detection of cliques in social, pathological
and biological networks. Hence we have considered Uniform graph partition in this paper to
find the partition energy of some large graphs.
Keywords: corona, n-complement, n(i)-complement, n-partition energy
AMS subject classifications. 15A18, 05C50
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Abstract

For a matrix A ∈ Rn×n whose off-diagonal entries are nonpositive, there are several well-
known properties that are equivalent to A being an invertible M-matrix. One of them is the
positive stability of A. A generalization of this characterization to partially ordered Banach
spaces is considered in this article. Relationships with certain other equivalent conditions
are derived. An important result on singular irreducible M-matrices is generalized using
the concept of M-operators and irreducibility. Certain other invertibility conditions of M-
operators are also investigated.
Keywords: M-operators, positive stability, irreducibility, invertibility
AMS subject classifications. [msc2010]15B48, 46B40, 47B65, 47B99
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Comparison results for proper double splittings of
rectangular matrices

K. Appi Reddy1 and T. Kurmayya2

Department of Mathematics, National Institute of Technology, Warangal
2kurmi1979@gmail.com

Abstract

In this article, we consider two proper double splittings satisfying certain conditions, of a
semi-monotone rectangular matrix A and derive new comparison results for the spectral radii
of the corresponding iteration matrices. These comparison results are useful to analyse the
rate of convergence of the iterative methods (formulated from the double splittings) for solving
rectangular linear system Ax = b.
Keywords: double splittings, semi-monotone matrix, spectral radius, Moore-Penrose inverse,
group inverse.
AMS subject classifications. 15A09; 65F15
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Cordial labeling for three star graph 21

Shendra Shainy V1 and Balaji V2

Department of Mathematics, Sacred Heart College, Tirupattur, India.
1shendrashainy3103@gmail.com, 2pulibala70@gmail.com

Abstract

Cordial labelingis used to label the vertices and edges of a graph with {0,1} under constraint,
such that the number of vertices with label 0 and 1 differ by atmost 1 and the number of
edges with label 1 and 0 differ by atmost 1. In this paper we prove that the three star graph
K1,p ∧K1,q ∧K1,r is a cordial graph for all p ≥ 1 , q ≥ 1 and r ≥ 1.
Keywords: cordial graph and star
AMS subject classifications. 05C78.
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Further result on skolem mean labeling22

Maheshwari V1, Sudhakar S2 and Balaji V3

1Department of Mathematics, Vells University, Chennai, India.
2,3Department of Mathematics, Sacred Heart College, Tirupattur, India.

1mahaprabu76@gmail.com 2sudha31.sr@gmail.com 3pulibala70@gmail.com

Abstract

In this paper, we prove if a ≤ b < c, the seven star K1,a∪K1,a∪K1,a∪K1,a∪K1,a∪K1,b∪K1,c is a
skolem mean graph if |b− c| < 4+5a for a = 2,3,4, ...;b = 2,3,4, ... and 5a+b−3≤ c ≤ 5a+b+3.
Keywords: Skolem mean graph and star
AMS subject classifications. 05C768.
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Bounds for the distance spectral radius of split graphs 23

Anu Varghese1 and A. Vijayakumar2

Department of Mathematics, Cochin University of Science and Technology,
Cochin, Kerala, India. 1anukarintholil@gmail.com, 2vambat@gmail.com

Abstract

A graph G is a split graph, if its vertex set can be partitioned into an independent set and a
clique. It is known that the diameter of a split graph is atmost 3. We obtain sharp bounds
for the distance spectral radius of split graphs. We also find the distance spectral radius of
biregular split graphs of diameter 2 and that of biregular split graphs in which the distance
between any two vertices in the independent set is 3.
Keywords: split graphs, distance matrix, distance spectral radius.
AMS subject classifications. 05C50
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Nordhaus-Gaddum type sharp bounds for graphs of
diameter two

Malathy V.1 and Kalyani Desikan2

Department of Mathematics, SAS, VIT University, India.
1malathy.viswanathan2015@vit.ac.in, 2kalyanidesikan@vit.ac.in

Abstract

The spectral radius of a graph is the largest eigenvalue of its adjacency matrix and its Lapla-
cian spectral radius is the largest eigenvalue of its Laplacian matrix. Here we try to find
Nordhaus-Gaddum type bounds for spectral radius of adjacency matrix, Laplacian spectral
radius of the graph G. We here by establish sharp bounds for λ(G)+λ(Gc),µ(G)+µ(Gc),λ(G) ·
λ(Gc),µ(G) ·µ(Gc) for star graph and Friendship graphs which possess the following unique
properties like (a) It is of diameter - 2, every vertex is connected to the common vertex O.
(b) µ(G)+µ(Gc) = 2n−1 and (c) Its complement is a disjoint union of edge-disconnected com-
ponents of a connected regular graph and an isolated vertex. In this paper we restrict our
discussion to odd values of n, in particular for n = 7,9,11,13, . . . ,2k+1 for k = 3,4,5.........
Keywords: Adjacency matrix, Laplacian matrix, Nordhaus-Gaddum type bounds, star graph,
friendship graph, complement of a graph
AMS subject classifications. 05C50; 15A42
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Gaussian prime labeling of some cycle related graphs
Rajesh Kumar T. J.1 and Mathew Varkey T. K.2

Department of Mathematics, TKM College of Engineering, Kollam, Kerala, India
1vptjrk@gmail.com, 2mathewvarkeytk@gmail.com

Abstract

A graph G on n vertices is said to have prime labelling if there exists a labelling from the
vertices of G to the first n natural numbers such that any two adjacent vertices have relatively
prime labels. Gaussian integers are the complex numbers whose real and imaginary parts
are both integers. A Gaussian prime labelling on G is a bijection l : V (G) → [γn],the set of
the first n Gaussian integers in the spiral ordering such that if uv ∈ E(G) ,then l(u) and l(v)
are relatively prime. Using the order on the Gaussian integers, we investigate the Gaussian
prime labelling of some cycle related graphs and unicyclic graphs.
Keywords: Gaussian Prime labelling, Gaussian integers, unicyclic graphs
AMS subject classifications. 05C78
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Skolem mean labeling of parallel transformation of a
class of trees

Mathew Varkey T. K.

Department of Mathematics, TKM College of Engineering, Kollam, Kerala, India.
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Abstract

A graph G = (V ,E) with p vertices and q edges is said to be Skolem mean labeling of a
graph for q ≥ p+1, if there exists a function f : V (G) → {1,2,3, . . . , p} such that the induced
map f ∗ : E(G)→ {2,3,4, . . . , p} defined by

f ∗(uv)=
{

f (u)+ f (v)
2 if f (u)+ f (v) is even

f (u)+ f (v)+1
2 if f (u)+ f (v) is odd

.

Then the resulting edges get distinct labels from the set {2,3, . . . , p}. In this paper we investi-
gate the Skolem Mean Labeling of parallel transformation of a class of trees.
Keywords: Skolem mean labeling, trees
AMS subject classifications. 05C78

References

[1] V. Balaji, D.S.T. Ramesh and A. Subramaniyan. Skolem mean labeling. Bulleting of Pure
Applied Sciences, 26E(2):245-248, 2007.

[2] F. Harary. Graph Theory 1972: 2nd ed. Addson-Werley, Massachuset.

[3] J. A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of Combinra-
torics. DS6:1-408, 2016.

[4] T.K. Mathew Varkey. Some Graph Theoretic Operations Associated with Graph Labeling
2000: Ph.D thesis, University of Kerala.

94



Posters Abstracts: ICLAA 2017

Finite-direct-injective modules and column finite matrix
rings

Sanjeev Kumar Maurya1 and A. J. Gupta2

Department of Mathematical Sciences, IIT(BHU) Varanasi, Varanasi 221005,
India. 1sanjeevm50@gmail.com, 2agupta.apm@itbhu.ac.in

Abstract

In this paper we generalize the concept of direct injective (or C2) modules to finite direct
injective modules. Some properties of finite direct injective modules with respect to column
finite matrix rings are investigated. We show that direct summand of finite direct injective
modules inherits the property, while direct sum need not. Some well known classes of rings
are characterize in terms of finite direct injective modules.
Keywords: C2-module, C3-module, finite-direct-injective module, regular ring
AMS subject classifications. 16D50, 16E50
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Minimum matching dominaitng sets of circular-arc
graphs

Dhananjaya Reddy

Department of Mathematics, Govt. Degree & PG College, Puttur, A.P., India.
djreddy65@gmail.com

Abstract

A graph G is called a circular-arc graph if there is a one-to-one correspondence between V
and A such that two vertices in V are adjacent in G if and only if their corresponding arcs
in A intersect. A dominating set for a graph G = (V ,E) is a subset D of V such that every
vertex not in D is adjacent to at least one member of D. The theory of domination in graphs
introduced by [1] and [3] is an emerging area of research in graph theory today. A matching
in G is a subset M of edges of E such that no two edges in M are adjacent. A matching M in G
is called a perfect matching if every vertex of G is incident to some edge in M. A dominating
set D of G is said to be a matching dominating set if the induced subgraph 〈D〉 admits a
perfect matching. The cardinality of the smallest matching dominating set is called matching
domination number. In this paper presents an algorithm for finding minimum matching
dominating sets in circular arc graphs.
Keywords: circular arc graphs, dominating set, domatic number, matching dominating sets
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References

[1] C. Berg. Theory of graphs and its applications 1962: Methuen, London.

[2] E. J. Cockayne, S. T. Hedetniemi. Towards a theory of domination in graphs. Networks,
7:247-261, 1977.

[3] O. Ore. Theory of graphs 1962: Amer, Math. Soc. Colloq. Publ. 38, Providence.

96



Posters Abstracts: ICLAA 2017

On category of R-modules and duals

P. G. Romeo

Department of Mathematics, Cochin University of Science and Technology, Kochi,
Kerala, India. romeo_parackal@yahoo.com

Abstract

In [5] K.S.S.Nambooripad describe categories with subobjects in which every inclusion splits
and every morphism has factorization as a category C with factorization property. A cones
in such categories C is certain map from vC to C and a cone γ in C is a proper cone if
there is at least one component of γ an epimorphism. Here it is shown that the category
of R-modules where R is any commutative ring -a well known abelian category- is a proper
category. Further we discuss the semigroup of cones in this category and the dual category.
Keywords:
AMS subject classifications.
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The fourth DAE-BRNS Theme Meeting on âĂIJGeneration and use
of Covariance Matrices in the Applications of Nuclear Data,“ Dec.
9–13, 2017, being hosted by the Department of Statistics, Manipal
University, Manipal, Karnataka is a very unique scientific event
dealing with the DAE-BRNS sponsored foundational efforts in nu-
clear data science. Error analysis and propagation of errors are
generic topics in all subject areas studied by human civilization.
Basic science, applied science, engineering studies, health sciences,
weather predictions, economic studies all should all employ a non-
adhoc assignment of errors in various attributes and in integral re-
sults that are encountered, as part of big data science. In the In-
dian context of BhabhaâĂŹs 3-stage nuclear programme, nurturing
efforts towards indigenous evaluation of basic nuclear data, process-
ing and integral testing are essential. These research and development efforts for safe and
efficient operation of nuclear systems include specialized topics on error specifications. The
specification of errors, by basic definition, is incomplete without specification of correlations.
Progress achieved thus far, interesting scope and challenges to extend this important activity,
in the Indian context, are expected to be intensely discussed in this Theme Meeting. As a
result of the DAE-BRNS projects at Manipal, Mizoram, Vadodara, Calicut, Bangalore etc., in
the Indian context, interestingly, more attention is now being given to covariance error anal-
ysis in some of the basic nuclear physics experiments performed in collaboration with BARC.
These Indian covariance data are encouraged to be coded in the IAEA-EXFOR database. The
foundational efforts needed to start making Indian evaluation of nuclear data include the
ability to digest the covariance methodologies. India is new to the concept of nuclear data
evaluation and is in the lower part of the learning curve but rapid progress is being made as
can be seen from the papers in this Theme Meeting.

Confidence margins in integral design parameters of nuclear reactor plants need to be as-
sessed and specified for regulatory purposes based on a non-ad hoc scientific approach based
upon a firm scientific foundation. This strictly involves characterization of errors with cor-
relations and their propagation. Covariance error matrices, their generation, processing and
propagation in nuclear data thus play an important basic role. Methods, such as, Total Monte
Carlo Approach, Unified Monte Carlo Approach in addition to covariance approach are being
evolved around the world. The phrase âĂIJcovariance methodologyâĂİ has become a tech-
nical phrase to include all such studies in error characterization and propagation. In my
assessment, the academic institutions and training in national laboratories in India across
all scientific and engineering disciplines should include basic courses on error and their cor-
relations in curricula, such as, in 1) regular Under Graduate and Post Graduate courses, 2)
as foundation course in research methodologies for doctoral programs, and, 3) advanced elec-
tives (optional) for researchers in data science on error propagation with covariance, as part
of big data science analytics.

I wish the theme meeting all success.
S. Ganesan

Formerly Raja Ramanna Fellow,
Reactor Physics Design Division,

Bhabha Atomic Research Centre, Mumbai, India
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December 09, 2017 (Saturday)
09:00 - 09:10 K. Manjunatha Prasad: Welcome Address

09:10 - 09:20 SV Suryanarayana: Opening Remarks
SESSION 1; Chair Person: Peter Schillebeeckx

09:20 - 10:10 Srinivasan Ganesan: Advances in nuclear data covariance in the Indian Context

10:10 - 11:00 Helmut Leeb: Bayesian evaluation methods and uncertainty determination I

11:00 - 11:20 Tea Break
SESSION 2; Chair Person: Srinivasan Ganesan

11:20 - 12:10 SV Suryanarayana: Surrogate nuclear reactions for determining compound nu-
clear reaction cross sections of unstable nuclei for fusion technology applications

12:10 - 13:00 B. Lalremruta: Measurement of neutron capture cross-sections for 70Zn at spec-
trum averaged energies of 0.41, 0.70, 0.96 and 1.69 MeV

13:00 - 14:30 Lunch Break
SESSION 3; Chair Person: Helmut Leeb

14:30 - 15:30 Peter Schillebeeckx: Neutron time-of-flight cross section measurement and its
applications- I

15:30 - 16:00 Sripathi Punchithaya: Sensitivity analysis of estimation of efficiency of HPGe
detector in the energy range of 0.050-1.500 MeV using different linear paramet-
ric functions

16:00 - 16:20 Tea Break

16:20 - 18:00 MU Team: Tutorials on covariance generation in nuclear data

December 10, 2017 (Sunday)
SESSION 4; Chair Person: Srinivasan Ganesan

09:00 - 10:00 Kallol Roy: Bayesian estimation and its application in data interpolation-I

10:00 - 10:50 Arjan Koning: Exact uncertainty propagation from nuclear data to technology
with Total Monte Carlo Method–I

10:50 - 11:10 Tea Break
SESSION 5; Chair Person: SV Suryanarayana

11:10 - 12:00 Helmut Leeb: Bayesian evaluation methods and uncertainty determination - II

12:00 - 13:00 Kallol Roy: Bayesian estimation and its application in data interpolation-II
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13:00 - 14:30 Lunch Break
SESSION 6; Chair Person: Helmut Leeb

14:30 - 15:30 Arjan Koning: Exact uncertainty propagation from nuclear data to technology
with Total Monte Carlo- II

15:30 - 16:00 Rajeev Kumar: Covariance analysis in reactor physics experiments

16:00 - 16:20 Tea Break
SESSION 7; Chair Person: Alok Saxena

16:20 - 16:50 Reetuparna Ghosh: Measurement of and uncertainty propagation of the (γ,n)
reaction cross section of 58Ni and 59Co at 15MeV bremsstrahlung

16:55 - 17:25 Anek Kumar: Introduction to covariance files in ENDF/B library

17:30 - 18:00 B. Rudraswamy: Efficiency calibration of HPGe detector and covariance analysis

December 11, 2017 (Monday)
SESSION 8; Chair Person: Alok Saxena

09:00 - 10:00 Arjan Koning: TALYS nuclear model code TENDL evaluated nuclear data library–
Part I

10:00 - 10:50 Henrik Sjostrand: Adjustment of nuclear data libraries using integral bench-
marks

10:50 - 11:10 Tea Break
SESSION 9; Chair Person: Mohamed Musthafa

11:10 - 12:00 Peter Schillebeeckx: Neutron time-of-flight cross section measurement and its
applications–II

12:00 - 13:00 Arjan Koning: TALYS nuclear model code TENDL evaluated nuclear data library–
II

13:00 - 14:30 Lunch Break
SESSION 10; Chair Person: Asha Kamath

14:30 - 15:30 Simo Puntanen: On the role of the covariance matrix in the linear statistical
model

15:30 - 16:00 Alok Saxena: An overview of nuclear data activities in India

16:00 - 16:20 Tea Break

16:20 - 18:30 Arjan Koning: Tutorial

19:15 - 20:00 Inaugural Day Function of ICLAA 2017

20:00 - 21:00 DINNER
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December 12, 2017 (Tuesday)
SESSION 11; Chair Person: B. Lalremruta

09:00 - 09:40 Henrik Sjostrand: Choosing nuclear data evaluation techniques to obtain com-
plete and motivated covariances

09:40 - 10:30 Y Santhi Sheela: Covariance analysis in neutron Activation Measurements of
59Co(n,2n)58Co and 59Co(n,γ)60Co reactions in the MeV region

10:30 - 11:00 Jayalekshmi Nair: Error propagation techniques

11:00 - 11:30 Tea Break
SESSION 12; Chair Person: SV Suryanarayana

11:20 - 12:20 Peter Schillebeeckx: Adjustment of model parameters by a fit to experimental
data

12:20 - 13:00 Uttiyornab Saha: Covariance matrices of DPA Cross Sections from TENDL-2015
for Structural Elements with NJOY-2016 and CRaD Codes

13:00 - 14:30 Lunch Break
SESSION 13; Chair Person: Helmut Leeb

14:30 - 15:00 Sangeetha Prasanna Ram: A stochastic convergence analysis of random num-
ber generator as applied to error propogation using Monte Carlo method and
unscented transformation technique

15:00 - 15:30 Abhishek Cherath: A case study on the cross section data of 232Th(n,2n)231Th:
A look, with a covariance analysis at the 1961 data of Butler and Santry (EXFOR
ID 12255)

15:30 - 16:00 Meghna R Karkera: To be announced

16:00 - 16:20 Tea Break
SESSION 14; Chair Person: Srinivasan Ganesan

16:20 - 16:50 Betylda Jyrwa: Measurement of Neutron Induced Reaction Cross Sections for
64Ni(n,γ)65Ni and 96Zr(n,γ)97Zr at En = 0.025eV

16:50-18:20 MU Team: Tutorials on covariance generation in nuclear data

December 13, 2017 (Wednesday)
SESSION 15; Chair Person: Srinivasan Ganesan

09:00 - 10:00 Helmut Leeb: Generalized least squares method: reformulation suitable for
large scale nuclear data evaluation

10:00 - 10:30 Photo Session

10:30 - 11:00 Vidya Devi: Calculating efficiencies and their uncertainties propagation in effi-
ciency

11:00 - 11:30 Tea Break
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11:30 - 13:00 Panel Discussion
Title: In the Indian context, the current status and road map for the genera-
tions and use of covariance matrices in nuclear data
Panel Members: Dr. Helmut Leeb, Dr. Peter Schillebeeckx, Dr. S. Ganesan,
Dr. Alok Saxena, Dr. K. Manjunatha Prasad, Dr. Sreekumaran Nair, Dr. Surya-
narayana, Dr. Arjan Koning, Dr. B K Nayak, Dr. Sripathi Punchithaya

13:00 - 14:30 Lunch Break

14:30 - 16:00 VALEDICTORY

16:00 - 19:00 Cultural Program at Karantha Bhavan, KOTA

19:00 - 20:00 Dinner at Karantha Bhavan, KOTA

Usual food timings:
Breakfast 07:45 at MIT- Food Court

Lunch 13:00 at MIT- Food Court(refer schedule)
Dinner 20:00 at MIT-Food Court

Remark: 13th December, 2017 dinner is arranged at Karantha Bhavana, Kota. There is
no arrangement for the dinner at MIT food Court.

Usual shuttle timings:
07:30 Pick up from New International Hostel(NIH) for Breakfast

08:30 Pick up from FIVV to conference venue

08:40 Pick up from MIT-Food Court to conference venue

13:00 Pick up from Conference Venue (NLH) to MIT-Food Court for Lunch(refer Schedule)

14:00 Pick up from MIT-Food Court to conference venue

18:00 Pick up from Conference Venue (NLH) to New International Hostel(NIH) and FIVV

19:45 Pick up from New International Hostel (NIH) and FIVV to MIT-Food court for dinner

20:45 Pick up from MIT-Food Court to New International Hostel(NIH) and FIVV
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Efficiency calibration of HPGe detector and covariance
analysis

B.Rudraswamy,1 Imran Pasha2, S. Ganesan3, E.Radha4 and B.S Shivashankar5

1,2Dept.of Physics, Bangalore University, Bengaluru-560056, Inida.
1brudraswamy@gmail.com, 2imranp905@gmail.com

3Raja Ramanna Fellow, Reactor Physics Division, Reactor Design and
Development Group Bhabha Atomic Research Centre, Mumbai - 400085, India.
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4RPD,ROMG, IGCAR, Tamilnadu, 603102, India. radha@igcar.gov.in
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Abstract

Energy-efficiency calibration of the HPGe detector and corresponding covariance analysis
may be considered as an integral parts in the determination of nuclear cross–section. In
the present work, gamma spectroscopy measurement using HPGe detector (DSG-German)
coupled to a PC-based 16-K channel Multiport-II MCA(Canberra), efficiency calibration and
corresponding covariance analysis have been investigated. The standard calibration sources
considered for the analysis are 133Ba, 22Na, 137Cs and 60Co. The covariance information ob-
tained for the efficiencies of the HPGe detector with respect to γ−lines of standard calibration
sources is further employed in the covariance analysis of efficiencies of the HPGe detector
with respect to characteristic γ−lines of the reaction product 116mIn.

The efficiency (ε) of detector has been estimated for various energies of γ− lines of the
calibration source (Eγ) with the inclusion of correction factor for coincidence summing Kc [1]
by the standard expression

ε= ε(Eγ)= CKc

IγA0e−λt (12.1)

The uncertainty in efficiency (4εi, where i = 1 to 6 corresponds to ε1(Eγ1) to (Eγ6) respec-
tively) is obtained using partial uncertainties (e i(r)), where attribute number r = 1,2,3, and
4 corresponds to the attributes C, Iγ, A0 and λ respectively [2], [3]

(4εi)2 = (
4Ci

Ci
εi)2 + (

4Iγi

I i
εi)2 + (

4Aoi

Aoi
εi)2 + (

4λi

λi
εi)2

The presence of common errors in attributes 3 and 4 affect the uncertainties in εi and ε j
simultaneously. Therefore it is mandatory to consider covariance matrix

Vεi j =
4∑

r=1
e i(r)Si j(r)e j(r); i, j = 1,2, . . . ,6
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where Si j is micro-correlation within the attribute. The macro-correlation matrix correspond-
ing to correlation between errors in εi and ε j is given by

Cεi j =
Vεi j

4εi4ε j
(12.2)

The efficiency εi and correlation matrix Cεi j for various γ− line energies of the calibration
sources have been obtained by substituting the data sequentially in Eq. (12.1) and Eq. (12.2).

These results are further utilized to obtain efficiency of the detector with respect to char-
acteristic γ−photons of energy Eγc and correlation matrix Cγc of the reaction product 116mIn.
The formalism is as follows; Consider the log transformation of Eq. (12.1) zi = ln(εi). Then
elements of the covariance matrix Vz are of form Vzi j = Vεi j

εiε j
. The log transformed efficiencies

can be reproduced using the fitting function zi ≈ ∑m
k pk(ln(Eγi))k−1 where pk is the kth fit-

ting parameter. In matrix notation, the fitting function can be conveniently represented as
z ≈ AP, where A is an n×m matrix, whose elements are A ik = (ln(Eγi))k−1. The least square
approach to obtain best fit parameters P is to minimize χ2 = [Z− AP]TV−1

z [Z− AP]. The cor-
rected efficiency w.r.t reaction product 116mIn has been obtained by incorporating the gamma
ray self attenuation factor in the present study [4].
Keywords: covariance, correlation
AMS subject classifications. 62H20;62J10
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Advances in nuclear data covariance in the Indian
context

S. Ganesan

Formerly Raja Ramanna Fellow, Reactor Physics Design Division, Bhabha Atomic
Research Centre, Mumbai, India. ganesan555@gmail.com

Abstract

Error analysis is generic to all subject areas studied by human civilization. Basic science,
applied science and engineering studies should all employ a non-adhoc assignment of errors
in various attributes and in integral results that are encountered, as part of big data science.
In the Indian context of Bhabha’s 3-stage nuclear programme [1], nurturing efforts towards
indigenous evaluation of basic nuclear data, processing and integral testing are essential [2].
These research and development efforts for safe and efficient operation of nuclear systems in-
clude specialized topics on error specifications. The specification of errors, by basic definition,
is incomplete without specification of correlations. Progress achieved thus far, interesting
scope and challenges to extend this important activity, in the Indian context, are presented.
In the Indian context, interestingly, more attention is now being given to covariance error
analysis in some of the basic nuclear physics experiments. See, for instance, Refs. [2]-[7].
These Indian covariance data are encouraged to be coded in the IAEA-EXFOR [8] database.
The foundational efforts needed to start making Indian evaluation of nuclear data are de-
scribed.
Keywords: nuclear data covariance, errors and correlations, big data science, Indian nuclear
power programme, EXFOR compilations, generalized least squares, evaluated nuclear data
files, error propagation studies, confidence margins, advanced nuclear power plant designs
AMS subject classifications. 62P35, 62J12, 62J10
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Measurement of neutron induced reaction cross-sections
for 64Ni(n, γ)65Ni and 96Zr(n, γ)97Zr at En = 0.025 eV

Betylda M. Jyrwa

Physics Department, North Eastern Hill University, Shillong, Meghalaya 793022,
India. bjyrwa@gmail.com

Abstract

Neutron induced reaction cross-sections for structural materials Zr and Ni are basic data for
evaluation of the processes in materials under irradiation in nuclear reactors. The reaction
cross-sections for 64Ni(n, γ)65Ni and 96Zr(n, γ)97Zr at En = 0.025 eV have been experimentally
determined using activation and off-line γ−ray spectrometric technique. Nuclear reactors are
the major neutron sources. The thermal neutron energy of 0.025 eV was used from the reac-
tor Critical Facility at BARC, Mumbai. The reactor is designed for a nominal fission power
of 100 W with an average flux of 108 n/cm2/s. The experimentally determined reactions
cross-sections from present work are compared with the existing literature data available in
IAEA-EXFOR along with the evaluated nuclear data libraries of ENDF/B-VII.1, CENDL-3.1
and JEFF-3.2 and are found to be in close agreement. This work also includes the covari-
ance analysis of efficiency calibration of HPGe detector using the 152Eu standard sources.
The sources of errors such as source activity, gamma ray abundance, gamma ray counts and
half-life of radioactive nuclide are carefully accounted for in the propagation of errors and
the correlations between these measurements are considered to derive the covariance infor-
mation for efficiency of HPGe detector at different γ−ray energies. Covariance analysis and
generation of covariance matrix of the measurement of reaction cross section 64Ni(n, γ)65Ni
and 96Zr(n, γ)97Zr at En = 0.025 eV is still in continuation.
Keywords: reaction cross section, nuclear data libraries
AMS subject classifications. 81V35

Exact uncertainty propagation from nuclear data to
technology with Total Monte Carlo

A. J. Koning

Nuclear Data Section, IAEA. A.Koning@iaea.org

Abstract

A revolutionary nuclear data system is presented which connects basic experimental and
theoretical nuclear data to a large variety of nuclear applications. This software system, built
around the TALYS nuclear model code, has several important outlets:
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• The TENDL nuclear data library: complete isotopic data files for 2808 nuclides for
incident gamma’s, neutrons and charged particles up to 200 MeV, including covariance
data, in ENDF and various processed data formats. In 2017, TENDL has reached a
quality nearing, equaling and even passing that of the major data libraries in the world.
It is based on reproducibility and is built from the best possible data from any source.

• Total Monte Carlo: an exact way to propagate uncertainties from nuclear data to inte-
gral systems, by employing random nuclear data libraries and transport, reactor and
other integral calculations in one large loop. This can be applied to criticality, damage,
medical isotope production, etc.

• Automatic optimization of nuclear data to differential and integral data simultaneously
by combining the two features mentioned above, and a combination of Monte Carlo and
sensitivity analysis.

Both the differential quality, through theoretical-experimental comparison of cross sec-
tions, and the integral performance of the entire system will be demonstrated. The impact
of the latest theoretical modeling additions to TALYS on differential nuclear data prediction
will be outlined, and the effect on applications. Comparisons with the major world libraries
will be shown. The effect of various uncertainty methods on the results will be discussed.
Keywords: nuclear data, nuclear reactions, TALYS, TENDL, Total Monte Carlo
AMS subject classifications. 62P35, 81V35

TALYS nuclear model code and TENDL evaluated
nuclear data library

A. J. Koning

Nuclear Data Section, IAEA. A.Koning@iaea.org

Abstract

A revolutionary nuclear data system is presented which connects basic experimental and
theoretical nuclear data to a large variety of nuclear applications. This software system, built
around the TALYS nuclear model code, has several important outlets:

• The TENDL nuclear data library: complete isotopic data files for 2808 nuclides for
incident gamma’s, neutrons and charged particles up to 200 MeV, including covariance
data, in ENDF and various processed data formats. In 2017, TENDL has reached a
quality nearing, equalling and even passing that of the major data libraries in the world.
It is based on reproducibility and is built from the best possible data from any source.

• Total Monte Carlo: an exact way to propagate uncertainties from nuclear data to inte-
gral systems, by employing random nuclear data libraries and transport, reactor and
other integral calculations in one large loop. This can be applied to criticality, damage,
medical isotope production, etc.

• Automatic optimization of nuclear data to differential and integral data simultaneously
by combining the two features mentioned above, and a combination of Monte Carlo and
sensitivity analysis.
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Both the differential quality, through theoretical-experimental comparison of cross sec-
tions, and the integral performance of the entire system will be demonstrated. The impact
of the latest theoretical modeling additions to TALYS on differential nuclear data prediction
will be outlined, and the effect on applications. Comparisons with the major world libraries
will be shown. The effect of various uncertainty methods on the results will be discussed.
Keywords: nuclear data, nuclear reactions, TALYS, TENDL, Total Monte Carlo
AMS subject classifications. 62P35, 81V35

Introduction to covariance files in ENDF/B library
Anek Kumar

Reactor Physics Design Division, Bhabha Atomic Research Centre (BARC),
Mumbai, India. kanek@barc.gov.in

Abstract

One of the important aspects of nuclear data and of cross sections in particular is that the
various data tend to be correlated to an important degree through the measurement processes
and the different corrections made to the observable quantities to obtain the microscopic cross
sections. In many applications when one is interested in estimating the uncertainties in
calculated results due to the cross sections, the correlations among the data play a crucial
role.

In principle, the uncertainties in the results of a calculation due to the data uncertainties
can be calculated, provided one is given all of the variances in and covariances among the
data elements. The formalism and formats for representing data covariances in ENDF/B-V
were extended to cover all neutron cross section data in the files. The format of covariances
data in ENDF/B formatted nuclear data library will be discussed in the paper.
Keywords: nuclear data, covariance files, ENDF/B library
AMS subject classifications. 81V35, 62P35

Covariance analysis in reactor physics experiments
Rajeev Kumar

Reactor Physics Design Division, Bhabha Atomic Research Centre (BARC),
Mumbai India. rajeevk@barc.gov.in

Abstract

Experimental reactor physics is an essential element of physics design of a nuclear reactor
and plays an important role in the safe design and operation of nuclear reactors. Approxima-
tions in modelling the reactor using computer codes and the ‘uncertainty in the nuclear data’
that goes as input into these codes contribute to the uncertainty of the theoretically computed
design parameters. Reactor physics experiments provide estimates of the uncertainty in the
design by comparing the measured and computed values of these parameters.

Error propagation in the nuclear data evaluation is carried out properly by doing the co-
variance analysis. Availability of new neutron cross section covariance data have allowed the
quantification of the impact of current nuclear data uncertainty on the design parameters
of advanced reactors for example Gen-IV reactors. Also, uncertainty propagation using co-
variance matrices in nuclear data results covariance matrices of the desired set of computed
integral parameters of reactor design. Since the computed design parameters are compared
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with the measurement, hence it is desirable that uncertainty in the measured data obtained
by carrying out the reactor physics experiments should be expressed in covariance matrices.

A thorium fuel cycle based advanced heavy water reactor (AHWR) is being designed in
Reactor Physics Design Division, BARC. A zero power critical facility (CF) was commissioned
to generate the experimental data for physics design validation of AHWR. A number of ex-
periments were carried out in CF which includes the measurement of differential/integral
parameters and various reaction rates. The covariance analysis of these measurement will be
carried out to generate the relevant covariance matrices.
Keywords: nuclear data covariance, error propagation studies
AMS subject classifications. 62P35, 62J12, 62J10

Measurement of neutron capture cross-sections for 70Zn
at spectrum averaged energies of 0.41, 0.70, 0.96 and 1.69

MeV

B. Lalremruata

Department of Physics, Mizoram University, Tanhril - 796004, Aizawl, Mizoram,
India. marema08@gmail.com

Abstract

The cross sections of the 70Zn(n,γ)71Znm (T1/2 = 3.96±0.05 hrs) reaction have been measured
relative to the 197 Au(n,γ)198 Au cross sections at four incident energies 〈En〉 = 0.41,0.70,0.96
and 1.69 MeV using a 7Li(p,n)7Be neutron source and activation technique. The experi-
ment was performed at the Folded Tandem Ion Accelerator (FOTIA) Facility, Nuclear Physics
Division, Bhabha Atomic Research Centre (BARC), Mumbai. The protons at 2.25, 2.6, 2.80
and 3.50 MeV after passing through a beam collimator (0.5 cm in diameter) bombarded ∼
2.0−mg/cm2 (37.4 µm) thick natural lithium target to produce neutrons through the 7Li(p,n)7Be
reaction (E th = 1.881 MeV). The proton beam energy spread is ±0.02 MeV. The cross section
of this reaction has been measured for the first time in the MeV region. Detail data anal-
ysis procedure, uncertainty analysis and comparison of the newly measured cross sections
with theoretical cross sections predicted by TALYS-1.8 and evaluated data libraries will be
presented.
Keywords: neutron capture cross section, 7Li(p,n)7Be reaction, activation technique
AMS subject classifications. 81V35
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Bayesian evaluation methods and uncertainty
determination: an overview of recent methods

H. Leeb

Atominstitut, TU Wien, Vienna, Austria. helmut.leeb@tuwien.ac.at

Abstract

The aim of nuclear data evaluation is the generation of consistent and reliable sets of nu-
clear data and associated uncertainties which comprise reaction cross section, decay rates,
fission yields and related properties of atomic nuclei. The evaluation process should combine
the available experimental data with up-to-date nuclear theory in order to assess our best
knowledge of these quantities and their uncertainties. This request is best satisfied by evalu-
ation methods based on Bayesian statistics. In this presentation an overview of the available
Bayesian methods in nuclear data evaluation is given. In recent years there is increasing
awareness about the importance of the inclusion of so-called model defects for reliable eval-
uations and uncertainty estimates. Therefore current attempts to account for model defects
will be discussed. In this context a recently developed Bayesian evaluation method with sta-
tistically consistent treatment of model defects will be presented in more detail.
Keywords: Bayesian evaluation technique, data analysis
AMS subject classifications. 62P35, 62P30
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Generalized least square method: reformulation suitable
for large scale data evaluations

H. Leeb1 and G. Schnabel2

1Atominstitut, TU Wien, Vienna, Austria. helmut.leeb@tuwien.ac.at
2CEA/Saclay, DRF/Irfu/SPhN, Gif-sur-Yvette, France. georg.schnabel@cea.fr

Abstract

The increase of computational power and the availability of large storage enable the simulta-
neous evaluation of great sets of data in science and economics. In general these sets of ob-
served data are not sufficiently dense and must be complimented by a-priori knowledge, usu-
ally described by models. Frequently practitioners use the generalized least square method
(GLS) which allows a consistent combination of observations and a-priori knowledge. The
GLS is a special form of Bayesian evaluation technique and requires for its application the
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construction of a prior covariance matrix for all observables included in the evaluation. For
large scale evaluations this may result in a prior covariance matrix of intractable size. There-
fore a mathematically equivalent formulation of the GLS-method was developed which does
not require the explicit determination of the prior [1]. The modified GLS-method can deal
with an arbitrary number of data. The proposed scheme allows updates with new data and
is well suited as a building block of a database application providing evaluated data. The ca-
pability of the modified GLS-method is demonstrated in a nuclear data evaluation involving
three million observables using the TALYS code.

The work was supported by the Euratom project CHANDA (605203). It is partly based on
results achieved within the Impulsprojekt IPN2013-7 supported by the Austrian Academy of
Sciences and the Partnership Agreement F4E-FPA-168.01 with Fusion of Energy (F4E).
Keywords: general least square method, large scale evaluation
AMS subject classifications. 62P35, 65K10
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Error propagation techniques
Jayalekshmi Nair

VES Institute Of Technology, Mumbai, India. principal.vesit@ves.ac.in

Abstract

The propagation of errors through nonlinear systems using different error propagation tech-
niques are discussed in this lecture. The Sandwich methodology of error [9] propagation is
widely used in many useful computation in the analysis of data uncertainties. However it
involves the linearity assumptions. Unscented transformation, an efficient, consistent and
unbiased transformation procedure suggested by Julier & Uhlmann [2] can be used for error
propagation studies. UT method is superficially similar to Monte Carlo method but uses a
small deterministically chosen set of sample points which are selected according a specific de-
terministic algorithm. It was shown [3] that this deterministic method of UT produces better
results compared to that of sandwich formula, for nonlinear error propagation.
Keywords: error propagation, unscented transform
AMS subject classifications. 60G06
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Bayesian estimation & its application in data
interpolation

Kallol Roy

Bharatiya Nabhikiya Vidyut Nigam Ltd, Kalpakkam, India. kallolr@bhavini.in,
kallolr@igcar.gov.in

Abstract

Estimation of unmeasured states and monitoring of changes in the statistical parameters of
the residues/innovations, form an important approach towards model-based fault detection &
diagnosis (FDD). This requires the formulation of system dynamics in the state-space frame-
work

xk = AK |k−1xk−1 +Bk−1uk−1 +wk−1

zk = Hkxk +Dkuk +vk

wherein the conditional probability density function (pdf) of the state-vector (X), conditioned
on the measurement, z p(xk|zk), is propagated through a predictor-corrector process to obtain
the optimum estimate of the state while minimizing its error covariance

E[(x̂k − xk)T (x̂k − xk)]= E[x̃T
k x̃k]

The Bayesian formulation yields the conditional pdf of the kth state, which is equated to the
likelihood function & the prior

posterior= p(xk|z1:k)= p(zk|xk).p(xk|z1:k−1)
p(zk|z1:k−1)

= likelihood.prior
evidence

and it is this formulation which governs the Bayesian estimation methodology.
Here an overview of the Bayesian estimation problem is presented, which discusses the

formulation of the Kalman filter as a Bayesian estimator resulting in a closed form solution,
provided the dynamics are linear and the uncertainties are Gaussian. The sequential Monte-
Carlo filters (SMC), or particle filters, which addresses both non-linear & non-Gaussian prob-
lems, but do not offer a closed form solution, are also introduced.

The model-based data interpolation problem, by study of the behavior of the estimated
states, Xk & the residues (zk−Hx̂−k ) along with the convergence of the error covariance matrix
Pk = (1−KkH)P−

k and by use of multiple-model filtering, GLR (generalized likelihood ratio)
methods, sequential probability ratio tests (SPRT) on the residues, etc. are explained, along
with typical applications in engineering data processing/interpolation.
Keywords: Bayesian estimation, Kalman filter
AMS subject classifications. 62P35
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Overview of nuclear data activities in India
Alok Saxena

Nuclear Physics Division, BARC, Mumbai 400085, India. aloks@barc.gov.in

Abstract

The nuclear data activities in India has been coordinated by Nuclear Data Physics Centre of
India (NDPCI), which operated under Board of Research of Nuclear Sciences, Department of
Atomic Energy. It consisted of scientists and faculties from various divisions of DAE units and
universities. Detailed and accurate nuclear data are required from design and safety point
of view for India’s three stage nuclear power programme, accelerator shield design, personal
dosimetry, radiation safety, production of radioisotopes for medical applications, radiation
damage studies, waste transmutation etc. The NDPCI has coordinated projects / collabora-
tions with universities and various units of department of atomic energy (DAE) across India
involving physicist, radio-chemists, reactor physicists and computer engineers. It has pro-
vided a platform for coordinated efforts in all aspects of nuclear data, viz., measurements,
analysis, compilation and evaluation involving national laboratories and universities in In-
dia. NDPCI has organized many theme meetings cum workshops on various topics of interest.
NDPCI has contributed more than 350 entries to EXFOR database of IAEA on nuclear reac-
tions. We are maintaining the mirror website of nuclear data section of IAEA. NDPCI scien-
tists have carried out many experiments related to nuclear data using BARC-TIFR pelletron
facility, FOTIA, electron accelerator at Khargar, Dhruva, CERN n-TOF facility, Legnaro na-
tional laboratory, electron accelerator, Pohang Korea. There are number of computer simu-
lation studies which were carried out using the various nuclear data libraries for sensitivity
studies and benchmarking for nuclear reactor applications. There are number of students,
part of DAE-BRNS projects of NDPCI, who participated in collaborative experiments using
DAE facilities. The NDPCI scientists are participating in IAEA activities through CRPs and
NRDC and INDC meetings. NDPCI has contributed to the increased awareness about the
nuclear data activities among the teaching institutes and organization of schools/workshops
under the NDPCI banner has also led to more students/faculty taking part in nuclear data
programmes. The present talk will give a glimpse of these activities.
Keywords: nuclear data, nuclear data libraries
AMS subject classifications. 81V35

Neutron time-of-flight cross section measurements and
its applications

Peter Schillebeeckx

European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel,
Belgium. peter.schillebeeckx@ec.europa.eu

Abstract

Neutron induced reaction cross sections are essential nuclear data for a wide variety of
nuclear technology applications and other disciplines ranging from fundamental physics,
medicine, security, archaeology to astrophysics. The majority of the cross sections of neu-
tron induced reactions that are recommended in evaluated data libraries are parameterized
in terms of nuclear reaction theory. Unfortunately no nuclear reaction theory exist that can
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predict the model parameters from first principles. Therefore, they can only be determined
from an adjustment to experimental data. In the resolved resonance region (RRR) the R-
matrix theory is employed, while in the unresolved resonance region (URR) cross sections are
described by the Hauser-Feshbach theory including width fluctuations. At higher energies
the optical model in addition to statistical and pre-equilibrium reaction theory is used. The
production of cross section data in the resonance region will be discussed. In addition, the use
of resonances to characterise materials and objects will be explained.

Experimentally, the neutron cross sections in the resonance region are best studied at a
pulsed white neutron source that is optimised for time-of-flight (TOF) measurements [1]. The
resonance parameters in the RRR are derived from a RSA at a TOF-spectrometer with an
extremely good energy resolution. Such an analysis requires a good understanding of the
response functions of the TOF spectrometer. In addition a set of complementary indepen-
dent experimental observables is required [1]. These experimental observables result from
transmission and reaction cross section measurements [1].

The different components affecting the TOF response will be studied. The impact of the
TOF response function and Doppler broadening on the determination of resonance parame-
ters will be explained. Detection techniques for the measurement of total and reaction cross
section together with their specific data reduction and analysis procedures will be presented.
In addition examples of a RSA to derive parameters in the RRR will be given [2]-[5] and
problems related the treatment of cross section data in the URR will be explained [5]-[8]. In
addition, the use of experimental data to produce evaluated cross section data will be dis-
cussed [9]-[11].

Most of the material will be best on results of experiments carried out at the TOF fa-
cility GELINA installed at the JRC Geel (B) [12]. This facility has been designed to study
neutron-induced reactions in the resonance region. It is a multi-user facility, providing a
pulsed white neutron source, with a neutron energy range between 10 meV and 20 MeV and
a time resolution of 1 ns. Results obtained at GELINA will be compared with results of similar
measurements at other TOF facilities.

Finally the use of resonance structures to study properties of materials and objects will be
presented [13]. These resonance structures are the basis of two analytical methods, Neutron-
Resonance-Capture-Analysis (NRCA) and Neutron-Resonance-Transmission-Analysis(NRTA),
which have been developed at the JRC Geel. NRTA and NRCA are non-destructive analysis
(NDA) methods which are applicable to almost all stable elements and isotopes; determine
the bulk elemental composition; do not require any sample taking or surface cleaning and re-
sult in a negligible residual radioactivity. They have been already been applied to determine
the elemental composition of an archaeological objects and to characterize nuclear reference
materials and nuclear waste. Due to the expertise with NRTA and NRCA, the JRC Geel has
been invited by the JAEA (Japan Atomic Energy Agency) to assist them in the development of
a NDA method to quantify nuclear material in particle-like debris of melted fuel [13], [14]. It
is also being investigated as an analytical technique to determine the nuclide vector of spent
nuclear fuel pellets and solutions.
Keywords: neutron resonances, resonance parameters, cross section, NDA, neutron reso-
nance analysis, time-of-flight
AMS subject classifications. 81V35; 82D75; 93E24
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Adjustment of model parameters by a fit to experimental
data

Peter Schillebeeckx

European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel,
Belgium. peter.schillebeeckx@ec.europa.eu

Abstract

Cross sections of neutron induced reactions in evaluated data libraries are parameterized in
terms of nuclear reaction theory. Unfortunately no nuclear reaction theory exist that can
predict the model parameters from first principles. Therefore, they can only be determined
from an adjustment to experimental data. In the resolved resonance region the R-matrix
theory is employed, while in the unresolved resonance region cross sections are described
by the Hauser-Feshbach theory including width fluctuations. At higher energies the optical
model in addition to statistical and pre-equilibrium reaction theory is used.

In this presentation principles to derive model parameters and their covariance in a fit
to experimental data are discussed with an emphasis on the analysis of cross section data in
the resolved and unresolved resonance region. The basic principles of least squares fitting
are reviewed. Bias effects related to weighted least square adjustments are discussed and the
reason for extreme low uncertainties of cross sections in the resolved resonance region that
are recommended in evaluated data file is verified. The presentation is strongly based on the
work of Refs. [1] and [2].

A full Bayesian statistical analysis reveals that the level to which the initial uncertainty
of the experimental parameters propagates, strongly depends on the experimental conditions.
In the resolved resonance region the uncertainties of the model parameters due to the back-
ground can become very small for high precision data, that is, for high counting statistics.
Also for thick sample measurements and high precision data the covariance of the normalisa-
tion does not fully propagate to the resonance parameters. These conclusions are independent
of the method that is applied to propagate the experimental covariance of the experimental
parameters. By adjusting the model parameters to experimental data based on a maximum
likelihood principle one supposes that the model used to describe the experimental observ-
ables is perfect. In case the quality of the model cannot be verified a more conservative
method based on a renormalization of the covariance matrix should be applied to propagate
the experiment recommended.

In the unresolved resonance region an additional complication appears whden average
resonance parameters are derived from an adjustment to the data applying the Hauser-
Feshbach theory including width fluctuations. Due to the remaining resonance structure in
the data the model cross section will be underestimated when a normalization uncertainty is
introduced based on the experimental values. This bias effect is similar to the one observed
in Peelle’s Pertinent Puzzle. It appears when the data are weighted by factors which are not
consistent with the model that is applied. A recipe to avoid such problems will be given.
Keywords: nuclear reaction models, resonance parameters, least squares adjustment, Bayesian
theory, Peelle’s Pertinent Puzzle
AMS subject classifications. 62F15;81V35; 82D75; 93E24
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On the role of the covariance matrix in the linear
statistical model

Simo Puntanen

University of Tampere, Finland. simo.puntanen@uta.fi

Abstract

In this talk we consider the linear statistical model y = Xβ+ε, which can be shortly denoted
as the triplet M = {y,Xβ,V}. Here X is a known n× p fixed model matrix, the vector y is an
observable n-dimensional random vector, β is a p×1 vector of fixed but unknown parameters,
and ε is an unobservable vector of random errors with expectation E(ε) = 0, and covariance
matrix cov(ε) = V, where the nonnegative definite matrix V is known. In our considerations
it is essential that the covariance matrix V is known; if this is not the case the statistical
considerations become much more complicated.

An extended version of M can be obtained by denoting y∗ a q×1 unobservable random
vector containing “new future” unknown observations. These new additional observations
are assumed to come from y∗ = X∗β+ε∗, where X∗ is a known q× p matrix, β is the same
vector of unknown parameters as in M, and ε∗ is a q-dimensional random error vector. The
covariance matrix of ε∗ as well as the cross-covariance matrix between ε∗ and ε are assumed
to be known.

Our main focus is to define and introduce in the general form, without rank conditions,
the concepts of best linear unbiased estimator, BLUE, and the best linear unbiased predictor,
BLUP. With the BLUE of Xβ we mean the estimator Gy which is unbiased and it has the
smallest covariance matrix (in the Löwner sense) among all linear unbiased estimators of Xβ.
Correspondingly, a linear unbiased predictor By is the BLUP for y∗ whenever the covariance
matrix of the prediction error, i.e., cov(y−Gy) is minimal in the Löwner sense.

This talk is concentrating on statistical properties of the covariance matrix in the general
linear model, skipping thereby the main topic of the Theme Meeting. For the references we
may mention [1], [2], and [3].
Keywords: BLUE, BLUP, linear statistical model, Löwner partial ordering, generalized in-
verse
AMS subject classifications. 62J05; 62J10
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Adjustment of nuclear data libraries using integral
benchmarks

1Henrik Sjöstrand, 2Petter Helgesson

Uppsala University, Department of Physics and Astronomy.
1henrik.sjostrand@physics.uu.se, 2petter.helgesson@physics.uu.se

Abstract

Integral experiments can be used to adjust nuclear data libraries and consequently the un-
certainty response in important applications. In this work we show how we can use integral
experiments in a consistent way to adjust the TENDL library. A Bayesian method based on
assigning weights to the different random files using a maximum likelihood function [1] is
used. Emphasis is put on the problems that arise from multiple isotopes being present in
an integral experiment [2]. The challenges in using multiple integral experiments are also
addressed, including the correlation between the different integral experiments.

Methods on how to use the Total Monte Carlo method to select benchmarks for reactor
application will further be discussed. In particular, in respect to the so-called fast correlation
coefficient and the fast-TMC method [14].
Keywords: Total Monte Carlo, nuclear data evaluation, integral experiments
AMS subject classifications. 62P35; 81V35; 62-07
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Choosing nuclear data evaluation techniques to obtain
complete and motivated covariances

1Henrik Sjöstrand, 2Petter Helgesson

Uppsala University, Department of Physics and Astronomy.
1henrik.sjostrand@physics.uu.se, 2petter.helgesson@physics.uu.se

Abstract

The quality of evaluated nuclear data and its covariances is affected by the choice of the
evaluation algorithm. The evaluator can choose to evaluate in the observable domain or the
parameter domain and choose to use a Monte Carlo- or deterministic techniques [1]. The
evaluator can also choose to model potential model-defects using, e.g., Gaussian Processes
[2]. In this contribution, the performance of different evaluation techniques is investigated by
using synthetic data. Different options for how to model the model-defects are also discussed.

In addition, the example of a new Ni-59 is presented where different co-variance driven
evaluation techniques are combined to create a final file for JEFF-3.3 [3].
Keywords: Total Monte Carlo, Nuclear data evaluation
AMS subject classifications. 62P35, 81V35, 62-07
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Surrogate nuclear reactions for determining compound
nuclear reaction cross sections of unstable nuclei for

fusion technology applications1

S. V. Suryanarayana

Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085,
India. suryanarayan7@yahoo.com

Abstract
1Our Experimental Team: Bhawna Pandey, Jyoti Pandey, B. K. Nayak, A. Saxena, S. Santra, D. Sarkar, E. T.

Mirgulae, K. Mahata, P .C. Rout, G. Mohanto, A. Parihari, A. Kundu, D. Chattopadyayay, B. Srinivasan, H. M.
Agarwal, Asim Pal et al. and Manipal University Team K. M. Prasad, S. Punchithaya, Y. Santhi and K. Meghna for
Covariances studies of this data.

124



Contributory Talks

In D-T fusion reactor, large amount radio nuclides will be produced during reactor opera-
tion as well as after shutdown. These radio, nuclides will interact with slow and fast neu-
trons and produce large amount of hydrogen and helium which leads to the swelling and
embrittlement of the structural and wall materials. These radio nuclides may also affect
neutronics of the reactor, whereas fusion neutronics studies so far considered only the sta-
ble isotopes ofCr, Fe, Ni, because these elements and Mn, Co, Nb are main constituents of
structural materials. The radiological hazard comes from the following radio nuclides in the
mass region ∼ 50−60, 53Mn(T 1

2
= 3.74×106 y), 54Mn(T 1

2
= 312.03 d), 56Mn(T 1

2
= 2.5789 h),

55Fe(T 1
2
= 2.73 y), 60Fe(T 1

2
= 1.5×106 year), 59Fe(T 1

2
= 44.6 d)57Co(T 1

2
= 271.74 d), 58Co(T 1

2
=

70.86 d), 60Co(T 1
2
= 5.27 y), 57Ni(T 1

2
= 35.60 h), 59Ni(T 1

2
= 7.6×104 y), 63Ni(T 1

2
= 100.1 y),

51Cr(T 1
2
= 27.7025 d), 65Zn(T 1

2
= 244 d) and 94Nb(T 1

2
= 2.03× 104 y); they originate from

transmutation reactions of neutrons with the elements in the initial SS composition. There-
fore, we need data of (n, p), (n,α), (n,d), (n, t), (n,3 He) reaction cross section on these radio
targets and isotopic systematics as a function of mass number covering stable to radio nu-
clides from 1 MeV to 20 MeV. For many of these isotopes, EXFOR data does not exist or
in some cases very sparsely measured. The nuclear reaction codes Talys and Empire pre-
dict the cross sections only approximately, due to insufficient systematics over radio nuclides.
The measured reaction cross sections can benchmark the potentials, level density options in
various mass regions, also provide critical input to test the evaluated nuclear data libraries.
For measuring the cross sections, we adopt Surrogate reaction approach (SRA), specifically
Surrogate Ratio Method (SRM). This SRA/SRM may be useful when mono energetic neutron
beam of desired energy is not available, do not have a target of stable/unstable nuclei, target
nucleus does not have sufficient abundance, enriched targets are very costly, off-line gamma
method is not possible owing to very short half lives or products are stable, target nuclei are
produced only transiently in reactor operation, when the targets are very difficult to handle
due to high activity.

Following SRA/SRM, we measured cross sections for reactions 55Fe(n, p) by using it surro-
gate reaction 52Cr(6Li,d)56Fe∗ → 55Fe+p; 55Fe(n,α) reaction by 52Cr(6Li,d)56Fe∗ → 55Fe+α;
59Ni(n, p) reaction by 56Fe(6Li,d) 60Ni∗ → 59Co+ p, by measuring (d, p) and (d,α) coincidence
events. We are preparing to measure cross sections for 53Mn(n, p), 55Mn(n, p) by SRA/SRM
approach. These measurements details will be presented in the talk. Further, we will discuss
some case studies of TALYS model calculations for 14 MeV neutron induced reactions on 65Zn,
59Ni, 63Ni, 57Co, 58Co, 60Co, 55Fe, 59Fe etc.. The SRA experiments for some 14 MeV neutron
induced reactions are given below, one sample case will be presented.

65Zn(n, p) using enriched 63Cu :α−p coincidence measurements for in 63Cu(7Li,α)66Zn→
65Cu+ p

65Zn(n, p) using enriched 62Ni,d+ p coincidence with enriched target 62Ni(6Li,d)66Zn →
65Cu+ p

65Zn(n,α) using enriched 62Ni : d+α coincidence 62Ni(6Li,d)66Zn→ 62Ni+α
63Ni(n, x) and 59Fe(n, p) reactions are not feasible by SRA, as surrogate pairs are difficult

to get.
57Co(n, p) reactions using enriched 56Fe : α+p coincidence for 56Fe(6Li,α)58Co → 57Fe+p
58Co(n, p) reactions using enriched 57Fe : 57Fe(6Li,α)59Co→ 58Fe+ p
60Co(n, p) reactions using enriched 58Fe : 58Fe(7Li,α)61Co → 60Co+ p

Keywords: nuclear reaction cross section, EXFOR
AMS subject classifications. 62P35

125



Contributory Talks

Contributory Talks

A case study on the cross section data of 232Th(n,2n)231Th:
A look, with a covariance analysis at the 1961 data of

Butler and Santry (EXFOR ID 12255)

Abhishek Cherath1 and S. Ganesan2

1405, Jasmine, Neelkanth Gardens, Govandi EAST, Mumbai - 400088, India.
abhicherath@gmail.com

2Formerly Raja Ramanna Fellow, Reactor Physics Design Division, Bhabha
Atomic Research Centre, Mumbai, India. ganesan555@gmail.com

Abstract

We examined, as a case study, the experimental values of 232Th(n,2n)231Th nuclear reaction
published by J.P.Butler & D.C. Santry [1]. The numerical data are available in the EXFOR
compilation [2, 3], EXFOR ID 12255. This is one of the best data of this nuclear reaction
measured very carefully at that time and considered even today as a very valuable data in
the process of creating modern evaluated nuclear data files. In this student exercise, we
have attempted to estimate Butler and Santry’s experimental data with a covariance anal-
ysis. Butler and Santry used the monitor cross sections of 32S(n, p)32P reaction by L. Allen
et al. [4], which is considered even today as very high-quality dosimetry data available for
nuclear data evaluators. We noticed that Butler and Santry have used [1] the monitor reac-
tion cross section values of 32S(n, p)32P but do mention, in their Table II for their results, the
monitor (Allen’s) data without the errors available in Allen’s data. We are inclined to believe
that the errors in the monitor cross sections provided in [4] which were available that time
were not taken into account by Butler and Santry. [2] In the EXFOR entry (ID 12255), the
text in EXFOR entry under keywords “ERR-ANALYS” and “METHOD” also mentions [3] for
#ENTRY 12255 L=2, “ERR-ANALYS (DATA-ERR) Quoted errors do not include any errors
in the monitor cross section.”, which agrees with our subjective understanding. Therefore, in
this work, a cubic B-spline fit is first performed to fit the monitor 32S(n, p)32P reaction cross
section data based on numerical data reported by Allen et al., [4] and to obtain through the
fit the covariance matrix associate with those fitted data. The so obtained monitor reaction
data with covariance matrix are then used to estimate the cross sections of 232Th(n,2n)231Th
nuclear reaction with the covariance error matrix. We also present discussions on the subjec-
tive understanding that influences this “re-estimation” process of old EXFOR data. The work
presented in the paper is for illustrative and learning purposes. A complete and comprehen-
sive renormalization for purpose of a professional nuclear data evaluation would require more
work with considerable subjective and objective analysis involving all attributes in each of the
experiments in the EXFOR database.
Keywords: Nuclear reactions, 232Th(n,2n)231Th, EXFOR database, covariance, error prop-
agation, regression analysis, cubic B-spline fit, monitor reaction, evaluated nuclear data files
AMS subject classifications. 62P35
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Calculating efficiencies and their uncertainties
propagation in efficiency

Vidya Devi
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Abstract

It is difficult to transform a probability density function (PDF) through a general nonlinear
function that is why uncertainty propagation is also difficult. In this abstract we will briefly
present some methods such as Sandwich formula, Unscented transform technique and Monte
Carlo method for the determination of the Uncertainty propagation. We generate and present
the covariance information by taking into account various attributes influencing the uncer-
tainties and also the correlations between them.
Keywords: uncertainty propagation, Monte Carlo method
AMS subject classifications. 62P35

Measurement and uncertainty propagation of the (γ,n)
reaction cross-section of 58Ni and 59Co at 15 MeV

bremsstrahlung

Reetuparna Ghosh

Department of Physics, North Eastern Hill University, Shillong 793022,
Meghalaya, India. reetuparna.ghosh@gmail.com

Abstract

Activation cross-section of photon-induced reaction on structural materials 58Ni and 59Co was
measured at the bremsstrahlung endpoint energy 15 MeV from an S band electron linac. The
uncertainties in the (γ,n) reaction cross-section of both 58Ni and 59Co were estimated by using
the concept of covariance analysis. The cross-section of 58Ni(γ,n)57Ni reaction in the present
work is slightly lower than the previous experimental data and the TENDL-2015 data. The
cross-section of 59Co(γ,n)58Co reaction has been measured for the first time. However, the
present experimental data of 59Co(γ,n)58Co reaction is very low in comparison to the TENDL-
2015 and JENDL/PD-2004 data.
Keywords: covariance, cross-section
AMS subject classifications. 62P35, 81V35
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Estimation of efficiency of the HPGe detector and its
covariance analysis

R. K. Meghna, Sripathi P., K. M. Prasad, Y. Santhi, H. Naik, S. V. Suryanarayan
and S. Ganesan

Abstract

In the present paper efficiency of the HPGe detector is determined at characteristic gamma
energies 0.08421 MeV and 0.7433 MeV obtained in the reactions 232

90 Th(n,2n)231
90 Th and

232
90 Th(n, f )97

40Zr using the least square method. 133
56 Ba and 152

63 Eu are used as standard sources
whose gamma energy ranges from 0.05316 MeV to 1.4080 MeV. Energy-efficiency model is
well represented by an empirical formula. The energy range spanned in this model does not
extend much below 0.2 MeV. The principle of least squares is used in sequence to find the
covariance and correlation matrices and the variation of efficiency is plotted.
Keywords: least square method, 133

56 Ba, 152
63 Eu
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A stochastic convergence analysis of random number
generators as applied to error propagation using Monte
Carlo method and unscented transformation technique

Sangeetha Prasanna Ram1, Jayalekshmi Nair2 and S. Ganesan3
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Abstract

This paper compares the stochastic convergence of the Uniform Random number generators
of two simulation software namely Matlab and Python and establishes the significance in
choosing the right random number generator for error propagation studies. It further dis-
cusses about the application of Gaussian type of these random number generators to nonlin-
ear cases of Error propagation using the Monte Carlo method and unscented transformation
technique by means of a nonlinear transformation of one dimensional random variable of
nuclear data.
Keywords: Monte Carlo method, unscented transformation, stochastic convergence, random
number generators, nuclear data
AMS subject classifications. 60G; 60H; 60J; 62M; 68U
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Covariance matrices of DPA cross sections from
TENDL-2015 for structural elements with NJOY-2016 and

CRaD codes
Uttiyoarnab Saha1, K. Devan2 and S. Ganesan3

1,2Homi Bhabha National Institute, Reactor Neutronics Division, Indira Gandhi
Centre for Atomic Research, Kalpakkam 603102, India.
1uttiyoarnabsaha@gmail.com, 2devan@igcar.gov.in
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Abstract

In the recently concluded IAEA-CRP on Primary Radiation Damage Cross Sections [1] and
the studies made at IGCAR, it has been observed that there is a spread in the neutron
damage and heating cross sections computed using various basic evaluated nuclear data li-
braries, such as ENDF/B-VII.1, TENDL-2015, JENDL-4.0 etc., available from the IAEA (Ref:
wwwnds. indcentre.org.in). This spread in the derived quantities reflect the non–uniqueness
or nonconvergence of evaluated nuclear data from various sources, the non-uniqueness aris-
ing due to differences in the procedures in basic data evaluations, wherein the measured
data with their associated experimental errors and correlations of results from nuclear model
based calculations are employed. Since such differences in the basic evaluated nuclear reac-
tion cross sections result from various causes including mainly the uncertainties in nuclear
model parameters input to nuclear model codes (such as TALYS or EMPIRE) within their
distributions, a new approach based on Total Monte Carlo (TMC) [2] [3] has been recently de-
veloped and used for uncertainty propagation in the derived quantities. In the present work,
neutron damage energy cross sections of few isotopes of structural elements are computed
from a large set of TMC based random ENDF-6 files in TENDL 2015 [3] with NJOY 2016 [4]
and indigenously developed CRaD [5] codes. The statistical uncertainties involved are quan-
tified and compared through the calculation of covariance and correlation matrices in a fine
energy group structure (175 group VITAMIN-J).
Keywords: derived quantities, neutron heating, neutron damage, random, Total Monte
Carlo
AMS subject classifications. 62
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Covariance analysis in neutron activation measurements
of 59Co(n,2n)58Co and 59Co(n,γ)60Co reactions in the MeV

region

Y. Santhi Sheela

Department of Statistics, PSPH, MAHE, Manipal

Abstract

Uncertainties in any measurement is inevitable so is in the case of nuclear data measure-
ments. Estimating the measurements with uncertainty as accurate as possible is very im-
portant for the reasons of safety and economy. In the process of estimation of nuclear data,
it is necessary to identify different sources of uncertainty associated with all the attributes
involved, which propagates the error in the estimation. Using law of error propagation, in
the present work, we generalize the methodology of Smith [1] used for obtaining covariance
matrix of n measurements derived from observations of m attributes in n experiments, where
the observations of different attributes are uncorrelated.

In the work, we consider all possible attributes which influence the measurements, cor-
relations between them, and identify different steps of error propagations in the process of
measurements and demonstrate the same in finding the cross sections of 59Co(n,2n)58Co,
59Co(n,γ)60Co reactions at effective neutron energies of 11.98 and 15.75 MeV. The partial er-
rors due to different attributes are presented and the present measurements are compared
with evaluated data taken from different libraries such as ENDF/B-VII.1, JENDL-4.0, JEFF-
3.2, ROSFOND-2010, TENDL-2015, CENDL-3.1.
Keywords: nuclear data covariance, uncertainties, evaluated data libraries and correlations
AMS subject classifications. 62P35, 62J12, 62J10
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