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Overview of ICLAA 2017 & Theme
Meeting on Covariance Matrix

Chief Guest Address by Arjan Koning. Delegates on the dais:
(from left) K. Manjunatha Prasad, Ravindra B. Bapat, Steve

Kirkland, B. H. Venkataram Pai, S. Ganesan and Asha Kamath

International conference on Linear Al-
gebra and its Applications–ICLAA 2017,
third in its sequence, following CMT-
GIM 2012 and ICLAA 2014, held in
Manipal Academy of Higher Educa-
tion, Manipal, India in December 11-15,
2017.

Like its preceding conferences, ICLAA
2017 is also focused on the theory of
Linear Algebra and Matrix Theory, and
their applications in Statistics, Network
Theory and in other branches of sci-
ences. Study of Covariance Matrices, be-
ing part of Matrix Method in Statistics,
has applications in various branches of
sciences. It plays crucial role in the
study of measurement of uncertainty and naturally in the study of Nuclear Data. Theme meeting, which
initially planned to be a preconference meeting, further progressed into an independent event parallel
to ICLAA 2017, involving discussion on different methodology of generating the covariance information,
training modules on different techniques and deliberations on presenting new research.

T. E. S. Raghavan delibrating on Nash–Equilibrium

About 167 delegates have registered
for ICLAA 2017 alone (37 Invited+75
Contributory + 04 Poster) and are from
17 different countries of the world.
Interestingly, more than 80% are re-
peaters from the earlier conference and
the remaining 20% are young students
or scholars. In spite of a few dropouts
due to unavoidable constraints, it is felt
evident that the group of scholars with
focus area of Linear Algebra, Matrix
Methods in Statistics and Matrices and
Graphs are not only consolidating, also
growing as a society with a strong bond.

ICLAA 2017 provided a platform for renowned Mathematicians and Statisticians to come together and dis-
cuss research problems, it provided ample of time for young scholars to present their contribution before
eminent scholars. Every contributory speaker got not less than thirty minutes to present their results.
Also, ICLAA 2017 was with several special lectures from senior scientists aimed at encouraging young
scholars.

The sponsors of ICLAA 2017 are NBHM, SERB, CSIR and ICTP. Dr. Ebrahim Ghorbani and Dr. Zheng
Bing are the two international participants benifited from ICTP grant for their international travel.

The conference was opened with an informal welcome and opening remark by K. Manjunatha Prasad
(Organizing Secretary) and R. B. Bapat (Chairman, Scientific Committee). Invited talks and the special
lectures were organized in 13 different sessions and contributory talks in 17 sessions. Poster presentation
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Invited Delegates: ICLAA 2017

was arranged on December 12, 2017.
A formal inaugural day joint function for ICLAA 2017 and DAE-BRNS theme meeting on covariance

was held in the evening of December 11, 2017 starting at 7:15 PM, followed by the conference dinner.
BHV Pai, Joint Director, MIT, MAHE, Manipal presided over the function. Professors Kirkland and Arjan
Koning were the guests of honor. Asha Kamath, HOD, DOS delivered welcome address, Bapat, Chairman,
Scientific Committee presented the overview of ICLAA 2017 and Ganesan, Chairman, Technical Commit-
tee, presented the overview of the Theme meeting. Following addresses by the chief guests, BHV Pai
delivered the presidential address. Vote of thanks was offered by the organizing secretary.

(a) Carnatic Music (Vocal) by Sahana Udupa (b) Yakshagana: Jatayu Moksha

Cultural Programmes at Kota Shivarama Karantha Memorial Theme Park

Beside busy scientific schedule, a joint excursion to Kota Shivarama Karantha Memorial Theme Park
was arranged on 13th evening, where a cultural program consisting of concert by Ms. Sahana Udupa and
Yakshagana program by young artists guided by Mr. Narasimha Thunga held. The arrangements at Kota
were with the cooperation of Kotathattu Grama Panchayat and its president Mr. Pramod Hande.

In an informal discussion, it has been consented by the present scientific committee and the organizing
committee members that

(i) MAHE would continue to organize ICLAA 2020 in December 2020, the fourth in its sequence

(ii) Manjunatha Prasad would put up a proposal to organize ILAS conference in the earliest possible
occasion (2022/23), in consultation with Kirkland

(iii) Manjunatha Prasad to initiate a dialog with the members in the present network to have Indian
Society for Linear Algebra and its Application

ICLAA 2017 was concluded on December 15, 2017 with the valedictory session in which the participants
have endorsed the idea of proceeding with the plan of ICLAA 2020. Dr. Asha Kamath (Head, Department
of Statistics) welcomed the gathering, Dr. R.B. Bapat (Chairman, Scientific Committee) presided over the
function, and chief guests of the function were Dr. K. P. S. Bhaskara Rao and Dr. Simo Puntanen. The
tendative dates for the ICLAA 2020 have been scheduled as December 14-18, 2020.

Invited Delegates: ICLAA 2017
1. RAFIKUL ALAM, Indian Institute of Technology Guwahati, INDIA

2. S. ARUMUGAM, Kalasalingam University, INDIA

3. OSKAR MARIA BAKSALARY, Adam Mickiewicz University, POLAND*

*Absent
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Invited Delegates: ICLAA 2017

(a) R.B.Bapat (b) S. Ganesan

(c) Steve Kirkland (d) Simo Puntanen

(e) Sharad S. Sane (f) Peter Schillebeeckx

Eminent Scientists are Honoured at Kota Shivarama Karantha Memorial Theme Park

4. R. BALAKRISHNAN, Bharathidasan University, INDIA*
5. RAVINDRA B. BAPAT, Indian Statistical Institute Delhi Centre, INDIA

6. B. V. RAJARAMA BHAT, Indian Statistical Institute Bangalore, INDIA

7. RAJENDRA BHATIA, Indian Statistical Institute, INDIA*
8. S. PARAMESHWARA BHATTA, Mangalore University, INDIA*
9. ZHENG BING, Lanzhou University, CHINA

10. PARITOSH BISWAS, von Karman Society, INDIA*
11. ARUP BOSE, Indian Statistical Institute, INDIA*
12. SOMNATH DATTA, University of Florida, UNITED STATES

13. N. EAGAMBARAM, Former DDG, INDIA
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Delegates Contributing Paper: ICLAA 2017

14. EBRAHIM GHORBANI, K.N. Toosi University of Technology, IRAN, ISLAMIC REPUBLIC OF

15. MUDDAPPA SEETHARAMA GOWDA, University of Maryland, Baltimore County, UNITED STATES

16. STEPHEN JOHN HASLETT, Australian National University, AUSTRALIA

17. JEFFREY HUNTER, Auckland University of Technology, NEW ZEALAND

18. STEPHEN JAMES KIRKLAND, University of Manitoba, Canada, CANADA

19. BHASKARA RAO KOPPARTY, Indiana University Northwest, UNITED STATES

20. S. H. KULKARNI, Indian Institute of Technology Madras, INDIA

21. ARBIND KUMAR LAL, Indian Institute of Technology Kanpur , INDIA*
22. HELMUT LEEB, TU Wien, Atominstitut, AUSTRIA

23. ANDRÉ LEROY, Université d′ Artois, FRANCE

24. AUGUSTYN MARKIEWICZ, Poznan University of Life Sciences, POLAND

25. S. K. NEOGY, Indian Statistical Institute Delhi Centre, INDIA

26. SUKANTA PATI, Indian Institute of Technology Guwahati, INDIA

27. SIMO PUNTANEN, University of Tampere, FINLAND

28. T. E. S. RAGHAVAN, University of Illinois at Chicago, UNITED STATES

29. SHARAD S. SANE, Indian Institute of Technology Bombay, INDIA

30. BHABA KUMAR SARMA, Indian Institute of Technology Guwahati, INDIA*
31. AJIT IQBAL SINGH, The Indian National Science Academy, New Delhi, INDIA

32. MARTIN SINGULL, Linköping University, SWEDEN

33. K. C. SIVAKUMAR, Indian Institute of Technology Madras, INDIA

34. SIVARAMAKRISHNAN SIVASUBRAMANIAN, Indian Institute of Technology Bombay, INDIA

35. MURALI K. SRINIVASAN, Indian Institute of Technology Bombay, INDIA

36. ASHISH K. SRIVASTAVA, Saint Louis University, USA, UNITED STATES*
37. MICHAEL TSATSOMEROS, Washington State University, UNITED STATES

Delegates Contributing Paper: ICLAA 2017
1. ADENIKE OLUSOLA ADENIJI, University of Abuja, Abuja, NIGERIA*
2. FOUZUL ATIK, Indian Statistical Institute, Delhi Centre, INDIA

3. MOJTABA BAKHERAD, University of Sistan and Baluchestan, Zahedan, IRAN, ISLAMIC REPUBLIC OF*
4. SASMITA BARIK, Indian Institute of Technology Bhubaneswar, INDIA*
5. DEBASHIS BHOWMIK, Indian Institute of Technology Patna, INDIA

6. ANJAN KUMAR BHUNIYA, Visva-Bharati, Santiniketan, INDIA*
7. NIRANJAN BORA, Dibrugarh University Institute of Engineering & Technology, INDIA

8. MANAMI CHATTERJEE, Indian Institute of Technology Madras, INDIA

9. SRIPARNA CHATTOPADHYAY, NISER Bhubaneswar, INDIA*
10. KSHITTIZ CHETTRI, SGC Tadong, Gangtok, INDIA

11. PROJESH NATH CHOUDHURY, Indian Institute of Technology Madras, INDIA

12. RANJAN KUMAR DAS, Indian Institute of Technology Guwahati, INDIA

13. PANKAJ KUMAR DAS, Tezpur University, INDIA*
14. SOUMITRA DAS, North Eastern Hill University, INDIA

15. RAJAIAH DASARI, Osmania University, INDIA*
16. BISWAJIT DEB, Sikkim Manipal Institute of Technology, INDIA

17. AMITAV DOLEY, Dibrugarh University, INDIA*
18. DIPTI DUBEY, Indian Statistical Institute Delhi Centre, INDIA

19. SUPRIYO DUTTA, Indian Institute of Technology Jodhpur, INDIA*
20. RAMESH G., Indian Institute of Technology Hyderabad, INDIA

*Absent
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Delegates Contributing Paper: ICLAA 2017

21. JADAV GANESH, Indian Institute of Technology Hyderabad, INDIA*
22. ARINDAM GHOSH, Indian Institute of Technology Patna, INDIA

23. MAHENDRA KUMAR GUPTA, Indian Institute of Technology Madras, INDIA*
24. M. M. HOLLIYAVAR, K.L.E Society’s Jagadguru Tontadarya College, INDIA*
25. AKHLAQ HUSAIN, BML Munjal University Gurgaon, INDIA*
26. AHMAD JAFARIAN, Islamic Azad university, Urmia, IRAN, ISLAMIC REPUBLIC OF*
27. TANWEER JALAL, National Institute of Technology, Srinagar, INDIA*
28. SACHINDRANATH JAYARAMAN, IISER Thiruvananthapuram, INDIA

29. P. SAM JOHNSON, National Institute of Technology Karnataka, INDIA

30. KAMARAJ K., Anna University, INDIA

31. MITRA K., P. A. College of Engineering, INDIA*
32. NAYAN BHAT K., MAHE, Manipal, INDIA

33. DEBAJIT KALITA, Tezpur University, INDIA*
34. M. RAJESH KANNAN, Indian Institute of Technology Kharagpur, INDIA

35. MOUNESHA H. KANTLI, K.L.E Society’s Jagadguru Tontadarya College, INDIA*
36. NIJARA KONCH, Dibrugarh University, INDIA

37. MATJAZ KOVSE, Indian Institute of Technology Bhubaneswar, INDIA

38. SUSHOBHAN MAITY, Visva-Bharati, Santiniketan, INDIA*
39. RANJIT MEHATARI, Indian Institute of Technology Kharagpur, INDIA*
40. VATSALKUMAR NANDKISHOR MER, IISER Thiruvananthapuram, INDIA

41. DAVID RAJ MICHEAL, MAHE, Manipal, INDIA

42. ASHMA DOROTHY MONTEIRO, MAHE, Manipal, INDIA

43. AKASH MURTHY, Euprime, INDIA*
44. MUKESH KUMAR NAGAR, Indian Institute of Technology Bombay, INDIA

45. RAKESH NANDI, National Institute of Technology Raipur, INDIA*
46. NUPUR NANDINI, MAHE, Manipal, INDIA

47. MOHAMMAD JAVAD NIKMEHR, K. N. Toosi University of Technology, IRAN, ISLAMIC REPUBLIC OF*
48. DIVYA SHENOY P., Manipal Institute of Technology, Manipal, INDIA

49. RAMESH PRASAD PANDA, Indian Institute of Technology Guwahati, INDIA

50. RASHMIREKHA PATRA, Sambalpur University Institute of Information Technology, INDIA*
51. SOMNATH PAUL, Tezpur University, Assam, INDIA*
52. ABHYENDRA PRASAD, Indian Institute of Technology Patna, INDIA*
53. RAJKUMAR R., The Gandhigram Rural Institute - Deemed University, INDIA*
54. B. R. RAKSHITH, University of Mysore, INDIA

55. SONU RANI, Indian Institute of Technology Bhubaneswar, INDIA

56. GOKULRAJ S., Central University of Tamil Nadu, Thiruvarur, INDIA

57. VEERAMANI S., Indian Institute of Technology Hyderabad, INDIA*
58. DEEPAK SARMA, Tezpur University, INDIA*
59. DEBASHISH SHARMA, Gurucharan College, Silchar, INDIA

60. KHALID SHEBRAWI, Al Balqa’ Applied University, JORDAN

61. JYOTI SHETTY, Manipal Institute of Technology, Manipal, INDIA

62. ADILSON DE JESUS MARTINS DA SILVA, University of Cape Verde, CAPE VERDE*
63. RANVEER SINGH, Indian Institute of Technology Jodhpur, INDIA

64. MANOJ SOLANKI, S. V. College, (Autonomous), INDIA*
65. M. A. SRIRAJ, Vidyavardhaka College of Engineering, Mysuru, INDIA

66. LAVANYA SURIYAMOORTHY, Indian Institute of Technology Madras, INDIA

67. ANITHA T., The Gandhigram Rural Institute - Deemed University, INDIA

68. KURMAYYA TAMMINANA, National Institute of Technology Warangal, INDIA
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Delegates Presenting Poster: ICLAA 2017

69. SHENDRA SHAINY V., Thiruvalluvar University, INDIA

70. BALAJI V., Thiruvalluvar University, INDIA

71. ANU VARGHESE, BCM College, Kottayam, INDIA

72. MALATHY VISWANATHAN, VIT University, INDIA

Delegates Presenting Poster: ICLAA 2017
1. RAJESH KUMAR T. J., TKM College of Engineering, Kollam, Kerala, INDIA

2. MATHEW VARKEY T. K., TKM College of Engineering, Kollam, Kerala, INDIA

3. SANJEEV KUMAR MAURYA, Indian Institute of Technology (BHU) Varanasi, INDIA*
4. DHANANJAYA REDDY, Government Degree College, Puttur, INDIA

5. P. G. ROMEO, Cochin University of Science and Technology, INDIA*

Fourth DAE-BRNS Theme Meeting on Covariance Matrix
Fourth DAE-BRNS Theme Meeting on the generation and use of covariance matrices in the application of
nuclear data, cosponsored by BRNS, started on December 09, 2017 with the welcome address by K. Manju-
natha Prasad, Convener, Technical Committee and an opening remark by S. V. Suryanarayana, Technical
Convener.

Technical sessions consisted of about 30 lectures, 3 tutorial sessions and plenary discussions. Lectures
consisted of discussion on different methodologies such as applications of Least Square Methods, Gener-
alized Least Square Methods, Bayesian Methods, Kalman Filter Methods and Total Monte Carlo Methods
in generating covariance information of nuclear data measurements. Lectures and tutorials on TALYS
nuclear model code were delivered.

In the panel discussion arranged on December 13, 2017, it has been observed that the culture of pre-
senting covariance analysis of nuclear data measurements are to be encouraged further in the direction
of India proceeding with developing its own evaluated nuclear data library. Though, the panel was satis-
fied with the initial progress in the development of subject, it is felt that more projects on the theme are
to be encouraged to inculcate the tradition of presenting covariance evaluation in the measurements of
nuclear data which would provide indigenous information for Indian nuclear reactor setup. It is also felt
that a monograph on ‘Matrix and Statistical Methods in the Measurements of Nuclear Data’ which could
serve as reference material for Master’s and Doctoral programme. Members also felt that the time is more
appropriate for working on a monograph instead of proceedings of conference.

Theme meeting was concluded with a valedictory session on December 13, 2017, welcomed by Asha
Kamath, HOD, Department of Statistics, MAHE, presided by S. Ganesan, Chairman, Technical Committee,
overview report by S. V. Suryanarayana, Technical Convener. Vote of thanks was delivered by Sripathi
Punchithaya, Co convener, Technical Committee.

Speakers in DAE-BRNS Theme Meeting
1. RUDRASWAMY B., Bangalore University, INDIA

2. SYLVIA BADWAR, North Eastern Hill University, INDIA

3. ABHISHEK PRAKASH CHERATH, , INDIA

4. VIDYA DEVI, IET Bhaddal Ropar Punjab, INDIA*
5. S. GANESAN, Bhabha Atomic Research Centre, INDIA

6. REETUPARNA GHOSH, North Eastern Hill University, INDIA

7. BETYLDA JYRWA, North-Eastern Hill University, INDIA*

*Absent

10



Speakers in DAE-BRNS Theme Meeting

8. UMASANKARI KANNAN, Bhabha Atomic Research Centre, INDIA*
9. MEGHNA RAVIRAJ KARKERA, MAHE, Manipal, INDIA

10. ARJAN KONING, IAEA, AUSTRIA

11. ANEK KUMAR, Bhabha Atomic Research Centre, INDIA

12. RAJEEV KUMAR, Bhabha Atomic Research Center, INDIA

13. B. LALREMRUATA, Mizoram University, INDIA

14. HELMUT LEEB, TU Wien, Atominstitut, AUSTRIA

15. JAYALEKSHMI M. NAIR, VES Institute of Technology, INDIA

16. PRIYADA PANIKKATH, Manipal Centre for Natural Sciences, INDIA*
17. SRIPATHI PUNCHITAYA K., Manipal Institute of Technology, Manipal, INDIA

18. E. RADHA, Indira Gandhi Centre for Atomic Research, INDIA*
19. SANGEETHA PRASANNA RAM, Vivekananand Education Society’s Institute of Technology, INDIA

20. KALLOL ROY, Bharatiya Nabhikiya Vidyut Nigam Ltd, Kalpakkam, INDIA*
21. UTTIYOARNAB SAHA, HBNI, IGCAR, INDIA

22. ALOK SAXENA, Bhabha Atomic Research Centre, INDIA

23. PETER SCHILLEBEECKX, European Commission - Joint Research Centre, BELGIUM

24. Y. SANTHI SHEELA, MAHE, Manipal, INDIA

25. HENRIK SJÖSTRAND, Uppsala University, SWEDEN

26. S. V. SURYANARAYANA, Bhabha Atomic Research Centre, INDIA

Theme Meeting Delegates

*Absent
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Special Issues
Special Matrices:
Articles in the focus area of (i) Linear Algebra, (ii) Matrices & Graphs, and (iii) Matrix and Graph Methods
in Statistics, not necessarily presented in the conference, may be submitted to a special issue of journal
‘SPECIAL MATRICES’ (https://www.degruyter.com/view/j/spma). Acceptance of the articles for the possible
publication is subject to review norms set by the journal. For more details on the submission please visit
the journal page given in the above link.
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Special Issues

• All submissions to the Special Issue must be made electronically at
http://www.editorialmanager.com/spma and will undergo the standard single-blind peer review sys-
tem.

• The deadline for submission is April 15, 2018.

• Individual papers will be reviewed and published online as they arrive.

• Contributors to the Special Issue will benefit from:

• fair and constructive peer review provided by recognized experts in the field,

• Open Access to your article for all interested readers,

• no publication fees,

• convenient, web-based paper submission and tracking system – Editorial Manager,

• free language assistance for authors from non-English speaking regions;

Bulletin of Kerala Mathematical Association:
All the articles submitted to ICLAA 2017 are eligible for the possible publication in a special issue of
‘Bulletin of Kerala Mathematical Association’ (indexed in MathSciNet), subject to review of its original
scientific contribution. Full article may be submitted to any member of scientific advisory committee with
the intention of submission of article for the special issue of BKMA.

• Article for the Special Issue may be submitted electronically at http://iclaa2017.com/submit-full-
article-bkma/.

• Articles will undergo the standard single-blind peer review system.

• The template may be downloaded at www.iclaa2017.com

• The deadline for submission is February 15, 2018.

• Contributors to the Special Issue will benefit from:

• fair and constructive peer review provided by recognized experts in the field, no publication fees,

• no publication fees,

• convenient, web-based paper submission

We welcome every one for

ICLAA 2020.

(Dr. K. Manjunatha Prasad)
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Inaugural Day Func-
tion: December 11, 2017

Sharad S Sane on
‘Some Linear Algebra

related questions in the
theory of Block Design’

Prof Stephen Haslett and
Prof Simo Puntanen during

the Valedictory session

18



Message

Dr. Asha Kamath

It is great honor for the Department
of Statistics to organize the Interna-
tional Conference on Linear Algebra and
its Applications, 2017 and The Fourth
DAE-BRNS Theme Meeting on Genera-
tion and Use of Covariance Matrices in
the Applications of Nuclear Data from
December 09 to 15, 2017.

The conference and theme meeting
aim at providing scientific platforms to
all the particpants to congregate and in-
teract with subject experts. The ICLAA
2017 covers a number of plenary talks
and oral presentations on recent ad-
vances in Linear Algebra and its applications to different specialities. Theme meeting covers several
lectures, tutorials and presentations of new research on the methodology involving statistics and matrix
theory in the applications of nuclear data.

I am sure that all the participants will have an enlightening and enriching experiences through the
deliberations of this conference. It is noteworthy to mention that there is an overwhelming response to
conference. About 200 delegates across the country and also from abroad are participating.

I am very thankful to our management and to all my colleagues for their unstinted help in organizing
this conference.

Dr. Asha Kamath
Associate Professor & Head
Department of Statistics, PSPH
Manipal Academy of Higher Education, Manipal

(a) Zheng Bing, Raghavan, Sukanta Pati and Kirkland
among audience

(b) B V Rajarama Bhat on Two States

Scientific Sessions in ICLAA 2017
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From the Desk of Chairman
(DAE-BRNS Theme Meeting)

Dr. S. Ganesan

The fourth DAE-BRNS Theme Meeting on “Generation and use of Covariance
Matrices in the Applications of Nuclear Data”, Dec. 9–13, 2017, being hosted
by the Department of Statistics, Manipal University, Manipal, Karnataka is
a very unique scientific event dealing with the DAE-BRNS sponsored founda-
tional efforts in nuclear data science. Error analysis and propagation of errors
are generic topics in all subject areas studied by human civilization. Basic sci-
ences, applied sciences, engineering studies, health sciences, weather predic-
tions, economic studies all should employ a non-adhoc assignment of errors in
various attributes and in integral results that are encountered, as part of big
data science. In the Indian context of Bhabha’s 3-stage nuclear programme,
nurturing efforts towards indigenous evaluation of basic nuclear data, pro-
cessing and integral testing are essential. These research and development
efforts for safe and efficient operation of nuclear systems include specialized
topics on error specifications. The specification of errors, by basic definition,
is incomplete without specification of correlations. Progress achieved thus far, interesting scope and chal-
lenges to extend this important activity, in the Indian context, are expected to be intensely discussed in this
Theme Meeting. As a result of the DAE-BRNS projects at Manipal, Mizoram, Vadodara, Calicut, Bangalore
etc., in the Indian context, interestingly, more attention is now being given to covariance error analysis in
some of the basic nuclear physics experiments performed in collaboration with BARC. These Indian covari-
ance data are encouraged to be coded in the IAEA-EXFOR database. The foundational efforts needed to
start making Indian evaluation of nuclear data include the ability to digest the covariance methodologies.
India is new to the concept of nuclear data evaluation and is in the lower part of the learning curve but
rapid progress is being made as can be seen from the papers in this Theme Meeting.

Confidence margins in integral design parameters of nuclear reactor plants need to be assessed and
specified for regulatory purposes based on a non-ad hoc scientific approach based upon a firm scientific
foundation. This strictly involves characterization of errors with correlations and their propagation. Co-
variance error matrices, their generation, processing and propagation in nuclear data thus play an impor-
tant basic role. Methods, such as, Total Monte Carlo Approach, Unified Monte Carlo Approach in addition
to covariance approach are being evolved around the world. The phrase “covariance methodology” has
become a technical phrase to include all such studies in error characterization and propagation. In my
assessment, the academic institutions and training in national laboratories in India across all scientific
and engineering disciplines should include basic courses on error and their correlations in curricula, such
as, in 1) regular Under Graduate and Post Graduate courses, 2) as foundation course in research method-
ologies for doctoral programs, and, 3) advanced electives (optional) for researchers in data science on error
propagation with covariance, as part of big data science analytics.

I wish the theme meeting all success.
S. Ganesan

Formerly Raja Ramanna Fellow
Reactor Physics Design Division

Bhabha Atomic Research Centre, Mumbai, India
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Memories from Theme Meeting

Peter Schillebeeckx charing a ses-
sion and introducing S. Ganesan

Arjan Koning on Exact un-
certainty propagation from

nuclear data to technology with
Total Monte Carlo Method

Arjan Koning, Henrik Sjös-
trand and Helmut Leeb
at Malpe Beach on De-

cember 12, 2017 evening



Technical Committee: DAE-BRNS
Theme Meeting

1. Dr. S. Ganesan, Raja Ramanna fellow of the DAE, BARC, India (Chairman)

2. Dr. Umasankari Kannan, Head, RPDD, BARC, India

3. Dr. Manjunatha Prasad Karantha, Convener, MAHE, Manipal, India

4. Dr. Helmut Leeb, Atominstitut, Technische Universitat Wien, Austria

5. Dr. Alok Saxena, Head, NPD, BARC, India

6. Dr. S. V. Suryanarayana, NPD, BARC, India (Technical Convener)

7. Dr. Peter Schillebeeckx, European Commission, JRC, Belgium

8. Dr. K. Sripathi Punchithaya, MIT, MAHE, Manipal, India (Co-convener)

Alok Saxena delivering talk
on ‘An overview of nuclear

data activities in India’

Rajeev Kumar deliv-
ering talk on ‘Covari-

ance analysis in reactor
physics experiments’
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B. Lalremruta receiving
momento from S. Ganesan.

On the dias: (from left)
Sripathi Punchithaya,

SV Suryanarayana
and Peter Schillebeeckx

Helmut Leeb delivering
talk on ‘Generalized

least squares method:
reformulation suit-
able for large scale

nuclear data evaluation’

Manjuatha Prasad, Hel-
mut Leeb, Arjan Koning,

Mohamed Musthafa
and Henrik Sjöstrand

discussing on the sched-
ule during tea break



Program: DAE-BRNS Theme Meeting

December 09, 2017 (Saturday)
09:00 - 09:10 K. Manjunatha Prasad: Welcome Address

09:10 - 09:20 SV Suryanarayana: Opening Remarks
SESSION 1; Chair Person: Peter Schillebeeckx

09:20 - 10:10 Srinivasan Ganesan: Advances in nuclear data covariance in the Indian Context

10:10 - 11:00 Helmut Leeb: Bayesian evaluation methods and uncertainty determination I

11:00 - 11:20 Tea Break
SESSION 2; Chair Person: Srinivasan Ganesan

11:20 - 12:10 SV Suryanarayana: Surrogate nuclear reactions for determining compound nuclear reaction
cross sections of unstable nuclei for fusion technology applications

12:10 - 13:00 B. Lalremruta: Measurement of neutron capture cross-sections for 70Zn at spectrum averaged
energies of 0.41, 0.70, 0.96 and 1.69 MeV

13:00 - 14:30 Lunch Break
SESSION 3; Chair Person: Helmut Leeb

14:30 - 15:30 Peter Schillebeeckx: Neutron time-of-flight cross section measurement and its applications- I

15:30 - 16:00 Sripathi Punchithaya: Sensitivity analysis of estimation of efficiency of HPGe detector in the
energy range of 0.050-1.500 MeV using different linear parametric functions

16:00 - 16:20 Tea Break

16:20 - 18:00 MU Team: Tutorials on covariance generation in nuclear data

December 10, 2017 (Sunday)
SESSION 4; Chair Person: Srinivasan Ganesan

09:00 - 10:00 Kallol Roy: Bayesian estimation and its application in data interpolation-I

10:00 - 10:50 Arjan Koning: Exact uncertainty propagation from nuclear data to technology with Total
Monte Carlo Method–I

10:50 - 11:10 Tea Break
SESSION 5; Chair Person: SV Suryanarayana

11:10 - 12:00 Helmut Leeb: Bayesian evaluation methods and uncertainty determination - II

12:00 - 13:00 Kallol Roy: Bayesian estimation and its application in data interpolation-II

13:00 - 14:30 Lunch Break
SESSION 6; Chair Person: Helmut Leeb
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14:30 - 15:30 Arjan Koning: Exact uncertainty propagation from nuclear data to technology with Total
Monte Carlo- II

15:30 - 16:00 Rajeev Kumar: Covariance analysis in reactor physics experiments

16:00 - 16:20 Tea Break
SESSION 7; Chair Person: Alok Saxena

16:20 - 16:50 Reetuparna Ghosh: Measurement of and uncertainty propagation of the (γ,n) reaction cross
section of 58Ni and 59Co at 15MeV bremsstrahlung

16:55 - 17:25 Anek Kumar: Introduction to covariance files in ENDF/B library

17:30 - 18:00 B. Rudraswamy: Efficiency calibration of HPGe detector and covariance analysis

December 11, 2017 (Monday)
SESSION 8; Chair Person: Alok Saxena

09:00 - 10:00 Arjan Koning: TALYS nuclear model code TENDL evaluated nuclear data library– Part I

10:00 - 10:50 Henrik Sjostrand: Adjustment of nuclear data libraries using integral benchmarks

10:50 - 11:10 Tea Break
SESSION 9; Chair Person: Mohamed Musthafa

11:10 - 12:00 Peter Schillebeeckx: Neutron time-of-flight cross section measurement and its applications–II

12:00 - 13:00 Arjan Koning: TALYS nuclear model code TENDL evaluated nuclear data library–II

13:00 - 14:30 Lunch Break
SESSION 10; Chair Person: Asha Kamath

14:30 - 15:30 Simo Puntanen: On the role of the covariance matrix in the linear statistical model

15:30 - 16:00 Alok Saxena: An overview of nuclear data activities in India

16:00 - 16:20 Tea Break

16:20 - 18:30 Arjan Koning: Tutorial

19:15 - 20:00 Inaugural Day Function of ICLAA 2017

20:00 - 21:00 DINNER

26



Program: DAE-BRNS Theme Meeting

December 12, 2017 (Tuesday)
SESSION 11; Chair Person: B. Lalremruta

09:00 - 09:40 Henrik Sjostrand: Choosing nuclear data evaluation techniques to obtain complete and moti-
vated covariances

09:40 - 10:30 Y Santhi Sheela: Covariance analysis in neutron Activation Measurements of 59Co(n,2n)58Co
and 59Co(n,γ)60Co reactions in the MeV region

10:30 - 11:00 Jayalekshmi Nair: Error propagation techniques

11:00 - 11:30 Tea Break
SESSION 12; Chair Person: SV Suryanarayana

11:20 - 12:20 Peter Schillebeeckx: Adjustment of model parameters by a fit to experimental data

12:20 - 13:00 Uttiyornab Saha: Covariance matrices of DPA Cross Sections from TENDL-2015 for Struc-
tural Elements with NJOY-2016 and CRaD Codes

13:00 - 14:30 Lunch Break
SESSION 13; Chair Person: Helmut Leeb

14:30 - 15:00 Sangeetha Prasanna Ram: A stochastic convergence analysis of random number generator
as applied to error propogation using Monte Carlo method and unscented transformation
technique

15:00 - 15:30 Abhishek Cherath: A case study on the cross section data of 232Th(n,2n)231Th: A look, with
a covariance analysis at the 1961 data of Butler and Santry (EXFOR ID 12255)

15:30 - 16:00 Meghna R Karkera: To be announced

16:00 - 16:20 Tea Break
SESSION 14; Chair Person: Srinivasan Ganesan

16:20 - 16:50 Betylda Jyrwa: Measurement of Neutron Induced Reaction Cross Sections for 64Ni(n,γ)65Ni
and 96Zr(n,γ)97Zr at En = 0.025eV

16:50-18:20 MU Team: Tutorials on covariance generation in nuclear data

December 13, 2017 (Wednesday)
SESSION 15; Chair Person: Srinivasan Ganesan

09:00 - 10:00 Helmut Leeb: Generalized least squares method: reformulation suitable for large scale nu-
clear data evaluation

10:00 - 10:30 Photo Session

10:30 - 11:00 Vidya Devi: Calculating efficiencies and their uncertainties propagation in efficiency

11:00 - 11:30 Tea Break
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11:30 - 13:00 Panel Discussion
Title: In the Indian context, the current status and road map for the generations and use of
covariance matrices in nuclear data
Panel Members: Dr. Helmut Leeb, Dr. Peter Schillebeeckx, Dr. S. Ganesan, Dr. Alok Sax-
ena, Dr. K. Manjunatha Prasad, Dr. Sreekumaran Nair, Dr. Suryanarayana, Dr. Arjan Kon-
ing, Dr. B K Nayak, Dr. Sripathi Punchithaya

13:00 - 14:30 Lunch Break

14:30 - 16:00 VALEDICTORY

16:00 - 19:00 Cultural Program at Karantha Bhavan, KOTA

19:00 - 20:00 Dinner at Karantha Bhavan, KOTA

Asha Kamath welcoming the delegates on the dais: (from left) Sripathi
Punchithaya, S. Ganesan, S.V. Suryanarayana and Peter Schillebeeckx
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Efficiency calibration of HPGe detector and covariance analysis

B.Rudraswamy,1 Imran Pasha2, S. Ganesan3, E.Radha4 and B.S Shivashankar5

1,2Dept.of Physics, Bangalore University, Bengaluru-560056, Inida.
1brudraswamy@gmail.com, 2imranp905@gmail.com

3Raja Ramanna Fellow, Reactor Physics Division, Reactor Design and Development Group
Bhabha Atomic Research Centre, Mumbai - 400085, India. ganesan555@gmail.com

4RPD,ROMG, IGCAR, Tamilnadu, 603102, India. radha@igcar.gov.in
5Department of Statistics, Manipal University, Manipal, India. shivu1982@hotmail.com

Abstract

Energy-efficiency calibration of the HPGe detector and corresponding covariance analysis may be consid-
ered as an integral parts in the determination of nuclear cross–section. In the present work, gamma spec-
troscopy measurement using HPGe detector (DSG-German) coupled to a PC-based 16-K channel Multiport-
II MCA(Canberra), efficiency calibration and corresponding covariance analysis have been investigated.
The standard calibration sources considered for the analysis are 133Ba, 22Na, 137Cs and 60Co. The co-
variance information obtained for the efficiencies of the HPGe detector with respect to γ−lines of standard
calibration sources is further employed in the covariance analysis of efficiencies of the HPGe detector with
respect to characteristic γ−lines of the reaction product 116mIn.

The efficiency (ε) of detector has been estimated for various energies of γ− lines of the calibration source
(Eγ) with the inclusion of correction factor for coincidence summing Kc [1] by the standard expression

ε= ε(Eγ)= CKc

IγA0e−λt (7.1)

The uncertainty in efficiency (4εi, where i = 1 to 6 corresponds to ε1(Eγ1) to (Eγ6) respectively) is
obtained using partial uncertainties (e i(r)), where attribute number r = 1,2,3, and 4 corresponds to the
attributes C, Iγ, A0 and λ respectively [2], [3]

(4εi)2 = (
4Ci

Ci
εi)2 + (

4Iγi

I i
εi)2 + (

4Aoi

Aoi
εi)2 + (

4λi

λi
εi)2

The presence of common errors in attributes 3 and 4 affect the uncertainties in εi and ε j simultaneously.
Therefore it is mandatory to consider covariance matrix

Vεi j =
4∑

r=1
e i(r)Si j(r)e j(r); i, j = 1,2, . . . ,6

where Si j is micro-correlation within the attribute. The macro-correlation matrix corresponding to corre-
lation between errors in εi and ε j is given by

Cεi j =
Vεi j

4εi4ε j
(7.2)

The efficiency εi and correlation matrix Cεi j for various γ− line energies of the calibration sources have
been obtained by substituting the data sequentially in Eq. (7.1) and Eq. (7.2).

These results are further utilized to obtain efficiency of the detector with respect to characteristic
γ−photons of energy Eγc and correlation matrix Cγc of the reaction product 116mIn. The formalism is
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as follows; Consider the log transformation of Eq. (7.1) zi = ln(εi). Then elements of the covariance matrix
Vz are of form Vzi j = Vεi j

εiε j
. The log transformed efficiencies can be reproduced using the fitting function

zi ≈ ∑m
k pk(ln(Eγi))k−1 where pk is the kth fitting parameter. In matrix notation, the fitting function can

be conveniently represented as z ≈ AP, where A is an n×m matrix, whose elements are A ik = (ln(Eγi))k−1.
The least square approach to obtain best fit parameters P is to minimize χ2 = [Z− AP]TV−1

z [Z− AP]. The
corrected efficiency w.r.t reaction product 116mIn has been obtained by incorporating the gamma ray self
attenuation factor in the present study [4].
Keywords: covariance, correlation
AMS subject classifications. 62H20;62J10
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Advances in nuclear data covariance in the Indian context
S. Ganesan

Formerly Raja Ramanna Fellow, Reactor Physics Design Division, Bhabha Atomic Research
Centre, Mumbai, India. ganesan555@gmail.com

Abstract

Error analysis is generic to all subject areas studied by human civilization. Basic science, applied science
and engineering studies should all employ a non-adhoc assignment of errors in various attributes and
in integral results that are encountered, as part of big data science. In the Indian context of Bhabha’s
3-stage nuclear programme [1], nurturing efforts towards indigenous evaluation of basic nuclear data,
processing and integral testing are essential [2]. These research and development efforts for safe and
efficient operation of nuclear systems include specialized topics on error specifications. The specification of
errors, by basic definition, is incomplete without specification of correlations. Progress achieved thus far,
interesting scope and challenges to extend this important activity, in the Indian context, are presented. In
the Indian context, interestingly, more attention is now being given to covariance error analysis in some of
the basic nuclear physics experiments. See, for instance, Refs. [2]-[7]. These Indian covariance data are
encouraged to be coded in the IAEA-EXFOR [8] database. The foundational efforts needed to start making
Indian evaluation of nuclear data are described.
Keywords: nuclear data covariance, errors and correlations, big data science, Indian nuclear power pro-
gramme, EXFOR compilations, generalized least squares, evaluated nuclear data files, error propagation
studies, confidence margins, advanced nuclear power plant designs
AMS subject classifications. 62P35, 62J12, 62J10
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Measurement of neutron induced reaction cross-sections for
64Ni(n, γ)65Ni and 96Zr(n, γ)97Zr at En = 0.025 eV

Betylda M. Jyrwa

Physics Department, North Eastern Hill University, Shillong, Meghalaya 793022, India.
bjyrwa@gmail.com

Abstract

Neutron induced reaction cross-sections for structural materials Zr and Ni are basic data for evaluation
of the processes in materials under irradiation in nuclear reactors. The reaction cross-sections for 64Ni(n,
γ)65Ni and 96Zr(n, γ)97Zr at En = 0.025 eV have been experimentally determined using activation and off-
line γ−ray spectrometric technique. Nuclear reactors are the major neutron sources. The thermal neutron
energy of 0.025 eV was used from the reactor Critical Facility at BARC, Mumbai. The reactor is designed
for a nominal fission power of 100 W with an average flux of 108 n/cm2/s. The experimentally determined
reactions cross-sections from present work are compared with the existing literature data available in
IAEA-EXFOR along with the evaluated nuclear data libraries of ENDF/B-VII.1, CENDL-3.1 and JEFF-3.2
and are found to be in close agreement. This work also includes the covariance analysis of efficiency cali-
bration of HPGe detector using the 152Eu standard sources. The sources of errors such as source activity,
gamma ray abundance, gamma ray counts and half-life of radioactive nuclide are carefully accounted for
in the propagation of errors and the correlations between these measurements are considered to derive
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the covariance information for efficiency of HPGe detector at different γ−ray energies. Covariance analysis
and generation of covariance matrix of the measurement of reaction cross section 64Ni(n, γ)65Ni and 96Zr(n,
γ)97Zr at En = 0.025 eV is still in continuation.
Keywords: reaction cross section, nuclear data libraries
AMS subject classifications. 81V35

Exact uncertainty propagation from nuclear data to technology
with Total Monte Carlo

A. J. Koning

Nuclear Data Section, IAEA. A.Koning@iaea.org

Abstract

A revolutionary nuclear data system is presented which connects basic experimental and theoretical nu-
clear data to a large variety of nuclear applications. This software system, built around the TALYS nuclear
model code, has several important outlets:

• The TENDL nuclear data library: complete isotopic data files for 2808 nuclides for incident gamma’s,
neutrons and charged particles up to 200 MeV, including covariance data, in ENDF and various
processed data formats. In 2017, TENDL has reached a quality nearing, equaling and even passing
that of the major data libraries in the world. It is based on reproducibility and is built from the best
possible data from any source.

• Total Monte Carlo: an exact way to propagate uncertainties from nuclear data to integral systems,
by employing random nuclear data libraries and transport, reactor and other integral calculations in
one large loop. This can be applied to criticality, damage, medical isotope production, etc.

• Automatic optimization of nuclear data to differential and integral data simultaneously by combining
the two features mentioned above, and a combination of Monte Carlo and sensitivity analysis.

Both the differential quality, through theoretical-experimental comparison of cross sections, and the in-
tegral performance of the entire system will be demonstrated. The impact of the latest theoretical modeling
additions to TALYS on differential nuclear data prediction will be outlined, and the effect on applications.
Comparisons with the major world libraries will be shown. The effect of various uncertainty methods on
the results will be discussed.
Keywords: nuclear data, nuclear reactions, TALYS, TENDL, Total Monte Carlo
AMS subject classifications. 62P35, 81V35
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TALYS nuclear model code and TENDL evaluated nuclear data
library
A. J. Koning

Nuclear Data Section, IAEA. A.Koning@iaea.org

Abstract

A revolutionary nuclear data system is presented which connects basic experimental and theoretical nu-
clear data to a large variety of nuclear applications. This software system, built around the TALYS nuclear
model code, has several important outlets:

• The TENDL nuclear data library: complete isotopic data files for 2808 nuclides for incident gamma’s,
neutrons and charged particles up to 200 MeV, including covariance data, in ENDF and various
processed data formats. In 2017, TENDL has reached a quality nearing, equalling and even passing
that of the major data libraries in the world. It is based on reproducibility and is built from the best
possible data from any source.

• Total Monte Carlo: an exact way to propagate uncertainties from nuclear data to integral systems,
by employing random nuclear data libraries and transport, reactor and other integral calculations in
one large loop. This can be applied to criticality, damage, medical isotope production, etc.

• Automatic optimization of nuclear data to differential and integral data simultaneously by combining
the two features mentioned above, and a combination of Monte Carlo and sensitivity analysis.

Both the differential quality, through theoretical-experimental comparison of cross sections, and the in-
tegral performance of the entire system will be demonstrated. The impact of the latest theoretical modeling
additions to TALYS on differential nuclear data prediction will be outlined, and the effect on applications.
Comparisons with the major world libraries will be shown. The effect of various uncertainty methods on
the results will be discussed.
Keywords: nuclear data, nuclear reactions, TALYS, TENDL, Total Monte Carlo
AMS subject classifications. 62P35, 81V35

Introduction to covariance files in ENDF/B library
Anek Kumar

Reactor Physics Design Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.
kanek@barc.gov.in

Abstract

One of the important aspects of nuclear data and of cross sections in particular is that the various data tend
to be correlated to an important degree through the measurement processes and the different corrections
made to the observable quantities to obtain the microscopic cross sections. In many applications when one
is interested in estimating the uncertainties in calculated results due to the cross sections, the correlations
among the data play a crucial role.

In principle, the uncertainties in the results of a calculation due to the data uncertainties can be calcu-
lated, provided one is given all of the variances in and covariances among the data elements. The formalism
and formats for representing data covariances in ENDF/B-V were extended to cover all neutron cross sec-
tion data in the files. The format of covariances data in ENDF/B formatted nuclear data library will be
discussed in the paper.
Keywords: nuclear data, covariance files, ENDF/B library
AMS subject classifications. 81V35, 62P35
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Covariance analysis in reactor physics experiments
Rajeev Kumar

Reactor Physics Design Division, Bhabha Atomic Research Centre (BARC), Mumbai India.
rajeevk@barc.gov.in

Abstract

Experimental reactor physics is an essential element of physics design of a nuclear reactor and plays an
important role in the safe design and operation of nuclear reactors. Approximations in modelling the re-
actor using computer codes and the ‘uncertainty in the nuclear data’ that goes as input into these codes
contribute to the uncertainty of the theoretically computed design parameters. Reactor physics experi-
ments provide estimates of the uncertainty in the design by comparing the measured and computed values
of these parameters.

Error propagation in the nuclear data evaluation is carried out properly by doing the covariance analy-
sis. Availability of new neutron cross section covariance data have allowed the quantification of the impact
of current nuclear data uncertainty on the design parameters of advanced reactors for example Gen-IV
reactors. Also, uncertainty propagation using covariance matrices in nuclear data results covariance ma-
trices of the desired set of computed integral parameters of reactor design. Since the computed design
parameters are compared with the measurement, hence it is desirable that uncertainty in the measured
data obtained by carrying out the reactor physics experiments should be expressed in covariance matrices.

A thorium fuel cycle based advanced heavy water reactor (AHWR) is being designed in Reactor Physics
Design Division, BARC. A zero power critical facility (CF) was commissioned to generate the experimen-
tal data for physics design validation of AHWR. A number of experiments were carried out in CF which
includes the measurement of differential/integral parameters and various reaction rates. The covariance
analysis of these measurement will be carried out to generate the relevant covariance matrices.
Keywords: nuclear data covariance, error propagation studies
AMS subject classifications. 62P35, 62J12, 62J10

Measurement of neutron capture cross-sections for 70Zn at
spectrum averaged energies of 0.41, 0.70, 0.96 and 1.69 MeV

B. Lalremruata

Department of Physics, Mizoram University, Tanhril - 796004, Aizawl, Mizoram, India.
marema08@gmail.com

Abstract

The cross sections of the 70Zn(n,γ)71Znm (T1/2 = 3.96±0.05 hrs) reaction have been measured relative to
the 197 Au(n,γ)198 Au cross sections at four incident energies 〈En〉 = 0.41,0.70,0.96 and 1.69 MeV using a
7Li(p,n)7Be neutron source and activation technique. The experiment was performed at the Folded Tan-
dem Ion Accelerator (FOTIA) Facility, Nuclear Physics Division, Bhabha Atomic Research Centre (BARC),
Mumbai. The protons at 2.25, 2.6, 2.80 and 3.50 MeV after passing through a beam collimator (0.5 cm in
diameter) bombarded ∼ 2.0−mg/cm2 (37.4 µm) thick natural lithium target to produce neutrons through
the 7Li(p,n)7Be reaction (E th = 1.881 MeV). The proton beam energy spread is ±0.02 MeV. The cross sec-
tion of this reaction has been measured for the first time in the MeV region. Detail data analysis procedure,
uncertainty analysis and comparison of the newly measured cross sections with theoretical cross sections
predicted by TALYS-1.8 and evaluated data libraries will be presented.
Keywords: neutron capture cross section, 7Li(p,n)7Be reaction, activation technique
AMS subject classifications. 81V35
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Bayesian evaluation methods and uncertainty determination: an
overview of recent methods

H. Leeb

Atominstitut, TU Wien, Vienna, Austria. helmut.leeb@tuwien.ac.at

Abstract

The aim of nuclear data evaluation is the generation of consistent and reliable sets of nuclear data and
associated uncertainties which comprise reaction cross section, decay rates, fission yields and related prop-
erties of atomic nuclei. The evaluation process should combine the available experimental data with up-
to-date nuclear theory in order to assess our best knowledge of these quantities and their uncertainties.
This request is best satisfied by evaluation methods based on Bayesian statistics. In this presentation an
overview of the available Bayesian methods in nuclear data evaluation is given. In recent years there is
increasing awareness about the importance of the inclusion of so-called model defects for reliable evalua-
tions and uncertainty estimates. Therefore current attempts to account for model defects will be discussed.
In this context a recently developed Bayesian evaluation method with statistically consistent treatment of
model defects will be presented in more detail.
Keywords: Bayesian evaluation technique, data analysis
AMS subject classifications. 62P35, 62P30
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Generalized least square method: reformulation suitable for
large scale data evaluations

H. Leeb1 and G. Schnabel2

1Atominstitut, TU Wien, Vienna, Austria. helmut.leeb@tuwien.ac.at 2CEA/Saclay,
DRF/Irfu/SPhN, Gif-sur-Yvette, France. georg.schnabel@cea.fr

Abstract

The increase of computational power and the availability of large storage enable the simultaneous evalua-
tion of great sets of data in science and economics. In general these sets of observed data are not sufficiently
dense and must be complimented by a-priori knowledge, usually described by models. Frequently practi-
tioners use the generalized least square method (GLS) which allows a consistent combination of observa-
tions and a-priori knowledge. The GLS is a special form of Bayesian evaluation technique and requires for
its application the construction of a prior covariance matrix for all observables included in the evaluation.
For large scale evaluations this may result in a prior covariance matrix of intractable size. Therefore a
mathematically equivalent formulation of the GLS-method was developed which does not require the ex-
plicit determination of the prior [1]. The modified GLS-method can deal with an arbitrary number of data.
The proposed scheme allows updates with new data and is well suited as a building block of a database
application providing evaluated data. The capability of the modified GLS-method is demonstrated in a
nuclear data evaluation involving three million observables using the TALYS code.

The work was supported by the Euratom project CHANDA (605203). It is partly based on results
achieved within the Impulsprojekt IPN2013-7 supported by the Austrian Academy of Sciences and the
Partnership Agreement F4E-FPA-168.01 with Fusion of Energy (F4E).
Keywords: general least square method, large scale evaluation
AMS subject classifications. 62P35, 65K10
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Error propagation techniques
Jayalekshmi Nair
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Abstract

The propagation of errors through nonlinear systems using different error propagation techniques are
discussed in this lecture. The Sandwich methodology of error [9] propagation is widely used in many
useful computation in the analysis of data uncertainties. However it involves the linearity assumptions.
Unscented transformation, an efficient, consistent and unbiased transformation procedure suggested by
Julier & Uhlmann [2] can be used for error propagation studies. UT method is superficially similar to
Monte Carlo method but uses a small deterministically chosen set of sample points which are selected ac-
cording a specific deterministic algorithm. It was shown [3] that this deterministic method of UT produces
better results compared to that of sandwich formula, for nonlinear error propagation.
Keywords: error propagation, unscented transform
AMS subject classifications. 60G06
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Bayesian estimation & its application in data interpolation
Kallol Roy
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kallolr@igcar.gov.in

Abstract

Estimation of unmeasured states and monitoring of changes in the statistical parameters of the residues/innovations,
form an important approach towards model-based fault detection & diagnosis (FDD). This requires the for-
mulation of system dynamics in the state-space framework

xk = AK |k−1xk−1 +Bk−1uk−1 +wk−1

zk = Hkxk +Dkuk +vk

wherein the conditional probability density function (pdf) of the state-vector (X), conditioned on the mea-
surement, z p(xk|zk), is propagated through a predictor-corrector process to obtain the optimum estimate
of the state while minimizing its error covariance

E[(x̂k − xk)T (x̂k − xk)]= E[x̃T
k x̃k]

The Bayesian formulation yields the conditional pdf of the kth state, which is equated to the likelihood
function & the prior

posterior= p(xk|z1:k)= p(zk|xk).p(xk|z1:k−1)
p(zk|z1:k−1)

= likelihood.prior
evidence

and it is this formulation which governs the Bayesian estimation methodology.
Here an overview of the Bayesian estimation problem is presented, which discusses the formulation of

the Kalman filter as a Bayesian estimator resulting in a closed form solution, provided the dynamics are
linear and the uncertainties are Gaussian. The sequential Monte-Carlo filters (SMC), or particle filters,
which addresses both non-linear & non-Gaussian problems, but do not offer a closed form solution, are also
introduced.

The model-based data interpolation problem, by study of the behavior of the estimated states, Xk &
the residues (zk −Hx̂−k ) along with the convergence of the error covariance matrix Pk = (1−KkH)P−

k and
by use of multiple-model filtering, GLR (generalized likelihood ratio) methods, sequential probability ra-
tio tests (SPRT) on the residues, etc. are explained, along with typical applications in engineering data
processing/interpolation.
Keywords: Bayesian estimation, Kalman filter
AMS subject classifications. 62P35
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Overview of nuclear data activities in India

Alok Saxena

Nuclear Physics Division, BARC, Mumbai 400085, India. aloks@barc.gov.in

Abstract

The nuclear data activities in India has been coordinated by Nuclear Data Physics Centre of India (ND-
PCI), which operated under Board of Research of Nuclear Sciences, Department of Atomic Energy. It
consisted of scientists and faculties from various divisions of DAE units and universities. Detailed and ac-
curate nuclear data are required from design and safety point of view for India’s three stage nuclear power
programme, accelerator shield design, personal dosimetry, radiation safety, production of radioisotopes for
medical applications, radiation damage studies, waste transmutation etc. The NDPCI has coordinated
projects / collaborations with universities and various units of department of atomic energy (DAE) across
India involving physicist, radio-chemists, reactor physicists and computer engineers. It has provided a
platform for coordinated efforts in all aspects of nuclear data, viz., measurements, analysis, compilation
and evaluation involving national laboratories and universities in India. NDPCI has organized many
theme meetings cum workshops on various topics of interest. NDPCI has contributed more than 350 en-
tries to EXFOR database of IAEA on nuclear reactions. We are maintaining the mirror website of nuclear
data section of IAEA. NDPCI scientists have carried out many experiments related to nuclear data us-
ing BARC-TIFR pelletron facility, FOTIA, electron accelerator at Khargar, Dhruva, CERN n-TOF facility,
Legnaro national laboratory, electron accelerator, Pohang Korea. There are number of computer simula-
tion studies which were carried out using the various nuclear data libraries for sensitivity studies and
benchmarking for nuclear reactor applications. There are number of students, part of DAE-BRNS projects
of NDPCI, who participated in collaborative experiments using DAE facilities. The NDPCI scientists are
participating in IAEA activities through CRPs and NRDC and INDC meetings. NDPCI has contributed to
the increased awareness about the nuclear data activities among the teaching institutes and organization
of schools/workshops under the NDPCI banner has also led to more students/faculty taking part in nuclear
data programmes. The present talk will give a glimpse of these activities.
Keywords: nuclear data, nuclear data libraries
AMS subject classifications. 81V35

Neutron time-of-flight cross section measurements and its
applications

Peter Schillebeeckx

European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel, Belgium.
peter.schillebeeckx@ec.europa.eu

Abstract

Neutron induced reaction cross sections are essential nuclear data for a wide variety of nuclear technology
applications and other disciplines ranging from fundamental physics, medicine, security, archaeology to
astrophysics. The majority of the cross sections of neutron induced reactions that are recommended in
evaluated data libraries are parameterized in terms of nuclear reaction theory. Unfortunately no nuclear
reaction theory exist that can predict the model parameters from first principles. Therefore, they can only
be determined from an adjustment to experimental data. In the resolved resonance region (RRR) the R-
matrix theory is employed, while in the unresolved resonance region (URR) cross sections are described by
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the Hauser-Feshbach theory including width fluctuations. At higher energies the optical model in addition
to statistical and pre-equilibrium reaction theory is used. The production of cross section data in the
resonance region will be discussed. In addition, the use of resonances to characterise materials and objects
will be explained.

Experimentally, the neutron cross sections in the resonance region are best studied at a pulsed white
neutron source that is optimised for time-of-flight (TOF) measurements [1]. The resonance parameters in
the RRR are derived from a RSA at a TOF-spectrometer with an extremely good energy resolution. Such an
analysis requires a good understanding of the response functions of the TOF spectrometer. In addition a set
of complementary independent experimental observables is required [1]. These experimental observables
result from transmission and reaction cross section measurements [1].

The different components affecting the TOF response will be studied. The impact of the TOF response
function and Doppler broadening on the determination of resonance parameters will be explained. Detec-
tion techniques for the measurement of total and reaction cross section together with their specific data
reduction and analysis procedures will be presented. In addition examples of a RSA to derive parameters
in the RRR will be given [2]-[3] and problems related the treatment of cross section data in the URR will
be explained [3]-[8]. In addition, the use of experimental data to produce evaluated cross section data will
be discussed [9]-[11].

Most of the material will be best on results of experiments carried out at the TOF facility GELINA
installed at the JRC Geel (B) [12]. This facility has been designed to study neutron-induced reactions in
the resonance region. It is a multi-user facility, providing a pulsed white neutron source, with a neutron
energy range between 10 meV and 20 MeV and a time resolution of 1 ns. Results obtained at GELINA will
be compared with results of similar measurements at other TOF facilities.

Finally the use of resonance structures to study properties of materials and objects will be presented
[13]. These resonance structures are the basis of two analytical methods, Neutron-Resonance-Capture-
Analysis (NRCA) and Neutron-Resonance-Transmission-Analysis(NRTA), which have been developed at
the JRC Geel. NRTA and NRCA are non-destructive analysis (NDA) methods which are applicable to al-
most all stable elements and isotopes; determine the bulk elemental composition; do not require any sample
taking or surface cleaning and result in a negligible residual radioactivity. They have been already been
applied to determine the elemental composition of an archaeological objects and to characterize nuclear ref-
erence materials and nuclear waste. Due to the expertise with NRTA and NRCA, the JRC Geel has been
invited by the JAEA (Japan Atomic Energy Agency) to assist them in the development of a NDA method
to quantify nuclear material in particle-like debris of melted fuel [13], [14]. It is also being investigated as
an analytical technique to determine the nuclide vector of spent nuclear fuel pellets and solutions.
Keywords: neutron resonances, resonance parameters, cross section, NDA, neutron resonance analysis,
time-of-flight
AMS subject classifications. 81V35; 82D75; 93E24
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Adjustment of model parameters by a fit to experimental data

Peter Schillebeeckx

European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel, Belgium.
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Abstract

Cross sections of neutron induced reactions in evaluated data libraries are parameterized in terms of nu-
clear reaction theory. Unfortunately no nuclear reaction theory exist that can predict the model parameters
from first principles. Therefore, they can only be determined from an adjustment to experimental data. In
the resolved resonance region the R-matrix theory is employed, while in the unresolved resonance region
cross sections are described by the Hauser-Feshbach theory including width fluctuations. At higher ener-
gies the optical model in addition to statistical and pre-equilibrium reaction theory is used.

In this presentation principles to derive model parameters and their covariance in a fit to experimental
data are discussed with an emphasis on the analysis of cross section data in the resolved and unresolved
resonance region. The basic principles of least squares fitting are reviewed. Bias effects related to weighted
least square adjustments are discussed and the reason for extreme low uncertainties of cross sections in

40



Special Lectures & Invited Talks Abstracts: DAE-BRNS Theme Meeting

the resolved resonance region that are recommended in evaluated data file is verified. The presentation is
strongly based on the work of Refs. [1] and [2].

A full Bayesian statistical analysis reveals that the level to which the initial uncertainty of the experi-
mental parameters propagates, strongly depends on the experimental conditions. In the resolved resonance
region the uncertainties of the model parameters due to the background can become very small for high
precision data, that is, for high counting statistics. Also for thick sample measurements and high preci-
sion data the covariance of the normalisation does not fully propagate to the resonance parameters. These
conclusions are independent of the method that is applied to propagate the experimental covariance of the
experimental parameters. By adjusting the model parameters to experimental data based on a maximum
likelihood principle one supposes that the model used to describe the experimental observables is perfect.
In case the quality of the model cannot be verified a more conservative method based on a renormalization
of the covariance matrix should be applied to propagate the experiment recommended.

In the unresolved resonance region an additional complication appears whden average resonance pa-
rameters are derived from an adjustment to the data applying the Hauser-Feshbach theory including width
fluctuations. Due to the remaining resonance structure in the data the model cross section will be under-
estimated when a normalization uncertainty is introduced based on the experimental values. This bias
effect is similar to the one observed in Peelle’s Pertinent Puzzle. It appears when the data are weighted
by factors which are not consistent with the model that is applied. A recipe to avoid such problems will be
given.
Keywords: nuclear reaction models, resonance parameters, least squares adjustment, Bayesian theory,
Peelle’s Pertinent Puzzle
AMS subject classifications. 62F15;81V35; 82D75; 93E24
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On the role of the covariance matrix in the linear statistical
model

Simo Puntanen

University of Tampere, Finland. simo.puntanen@uta.fi

Abstract

In this talk we consider the linear statistical model y=Xβ+ε, which can be shortly denoted as the triplet
M = {y,Xβ,V}. Here X is a known n× p fixed model matrix, the vector y is an observable n-dimensional
random vector, β is a p×1 vector of fixed but unknown parameters, and ε is an unobservable vector of
random errors with expectation E(ε)= 0, and covariance matrix cov(ε)=V, where the nonnegative definite
matrix V is known. In our considerations it is essential that the covariance matrix V is known; if this is
not the case the statistical considerations become much more complicated.

An extended version of M can be obtained by denoting y∗ a q×1 unobservable random vector containing
“new future” unknown observations. These new additional observations are assumed to come from y∗ =
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X∗β+ε∗, where X∗ is a known q× p matrix, β is the same vector of unknown parameters as in M, and ε∗
is a q-dimensional random error vector. The covariance matrix of ε∗ as well as the cross-covariance matrix
between ε∗ and ε are assumed to be known.

Our main focus is to define and introduce in the general form, without rank conditions, the concepts of
best linear unbiased estimator, BLUE, and the best linear unbiased predictor, BLUP. With the BLUE of
Xβ we mean the estimator Gy which is unbiased and it has the smallest covariance matrix (in the Löwner
sense) among all linear unbiased estimators of Xβ. Correspondingly, a linear unbiased predictor By is the
BLUP for y∗ whenever the covariance matrix of the prediction error, i.e., cov(y−Gy) is minimal in the
Löwner sense.

This talk is concentrating on statistical properties of the covariance matrix in the general linear model,
skipping thereby the main topic of the Theme Meeting. For the references we may mention [1], [2], and [3].
Keywords: BLUE, BLUP, linear statistical model, Löwner partial ordering, generalized inverse
AMS subject classifications. 62J05; 62J10
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Adjustment of nuclear data libraries using integral benchmarks
1Henrik Sjöstrand, 2Petter Helgesson

Uppsala University, Department of Physics and Astronomy. 1henrik.sjostrand@physics.uu.se,
2petter.helgesson@physics.uu.se

Abstract

Integral experiments can be used to adjust nuclear data libraries and consequently the uncertainty re-
sponse in important applications. In this work we show how we can use integral experiments in a con-
sistent way to adjust the TENDL library. A Bayesian method based on assigning weights to the different
random files using a maximum likelihood function [1] is used. Emphasis is put on the problems that arise
from multiple isotopes being present in an integral experiment [2]. The challenges in using multiple inte-
gral experiments are also addressed, including the correlation between the different integral experiments.

Methods on how to use the Total Monte Carlo method to select benchmarks for reactor application will
further be discussed. In particular, in respect to the so-called fast correlation coefficient and the fast-TMC
method [14].
Keywords: Total Monte Carlo, nuclear data evaluation, integral experiments
AMS subject classifications. 62P35; 81V35; 62-07
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Choosing nuclear data evaluation techniques to obtain complete
and motivated covariances

1Henrik Sjöstrand, 2Petter Helgesson
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Abstract

The quality of evaluated nuclear data and its covariances is affected by the choice of the evaluation al-
gorithm. The evaluator can choose to evaluate in the observable domain or the parameter domain and
choose to use a Monte Carlo- or deterministic techniques [1]. The evaluator can also choose to model
potential model-defects using, e.g., Gaussian Processes [2]. In this contribution, the performance of differ-
ent evaluation techniques is investigated by using synthetic data. Different options for how to model the
model-defects are also discussed.

In addition, the example of a new Ni-59 is presented where different co-variance driven evaluation
techniques are combined to create a final file for JEFF-3.3 [3].
Keywords: Total Monte Carlo, Nuclear data evaluation
AMS subject classifications. 62P35, 81V35, 62-07
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43



Abstracts: DAE-BRNS Theme Meeting Special Lectures & Invited Talks

Surrogate nuclear reactions for determining compound nuclear
reaction cross sections of unstable nuclei for fusion technology

applications1

S. V. Suryanarayana

Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, India.
suryanarayan7@yahoo.com

Abstract

In D-T fusion reactor, large amount radio nuclides will be produced during reactor operation as well as
after shutdown. These radio, nuclides will interact with slow and fast neutrons and produce large amount
of hydrogen and helium which leads to the swelling and embrittlement of the structural and wall ma-
terials. These radio nuclides may also affect neutronics of the reactor, whereas fusion neutronics stud-
ies so far considered only the stable isotopes ofCr, Fe, Ni, because these elements and Mn, Co, Nb are
main constituents of structural materials. The radiological hazard comes from the following radio nu-
clides in the mass region ∼ 50−60, 53Mn(T 1

2
= 3.74×106 y), 54Mn(T 1

2
= 312.03 d), 56Mn(T 1

2
= 2.5789 h),

55Fe(T 1
2
= 2.73 y), 60Fe(T 1

2
= 1.5×106 year), 59Fe(T 1

2
= 44.6 d)57Co(T 1

2
= 271.74 d), 58Co(T 1

2
= 70.86 d),

60Co(T 1
2
= 5.27 y), 57Ni(T 1

2
= 35.60 h), 59Ni(T 1

2
= 7.6×104 y), 63Ni(T 1

2
= 100.1 y), 51Cr(T 1

2
= 27.7025 d),

65Zn(T 1
2
= 244 d) and 94Nb(T 1

2
= 2.03×104 y); they originate from transmutation reactions of neutrons

with the elements in the initial SS composition. Therefore, we need data of (n, p), (n,α), (n,d), (n, t), (n,3 He)
reaction cross section on these radio targets and isotopic systematics as a function of mass number covering
stable to radio nuclides from 1 MeV to 20 MeV. For many of these isotopes, EXFOR data does not exist or
in some cases very sparsely measured. The nuclear reaction codes Talys and Empire predict the cross sec-
tions only approximately, due to insufficient systematics over radio nuclides. The measured reaction cross
sections can benchmark the potentials, level density options in various mass regions, also provide critical
input to test the evaluated nuclear data libraries. For measuring the cross sections, we adopt Surrogate
reaction approach (SRA), specifically Surrogate Ratio Method (SRM). This SRA/SRM may be useful when
mono energetic neutron beam of desired energy is not available, do not have a target of stable/unstable
nuclei, target nucleus does not have sufficient abundance, enriched targets are very costly, off-line gamma
method is not possible owing to very short half lives or products are stable, target nuclei are produced only
transiently in reactor operation, when the targets are very difficult to handle due to high activity.

Following SRA/SRM, we measured cross sections for reactions 55Fe(n, p) by using it surrogate reac-
tion 52Cr(6Li,d)56Fe∗ → 55Fe+ p; 55Fe(n,α) reaction by 52Cr(6Li,d)56Fe∗ → 55Fe+α; 59Ni(n, p) reaction
by 56Fe(6Li,d) 60Ni∗ → 59Co+ p, by measuring (d, p) and (d,α) coincidence events. We are preparing to
measure cross sections for 53Mn(n, p), 55Mn(n, p) by SRA/SRM approach. These measurements details will
be presented in the talk. Further, we will discuss some case studies of TALYS model calculations for 14
MeV neutron induced reactions on 65Zn, 59Ni, 63Ni, 57Co, 58Co, 60Co, 55Fe, 59Fe etc.. The SRA experiments
for some 14 MeV neutron induced reactions are given below, one sample case will be presented.

65Zn(n, p) using enriched 63Cu :α− p coincidence measurements for in 63Cu(7Li,α)66Zn→ 65Cu+ p
65Zn(n, p) using enriched 62Ni,d+ p coincidence with enriched target 62Ni(6Li,d)66Zn→ 65Cu+ p
65Zn(n,α) using enriched 62Ni : d+α coincidence 62Ni(6Li,d)66Zn→ 62Ni+α
63Ni(n, x) and 59Fe(n, p) reactions are not feasible by SRA, as surrogate pairs are difficult to get.
57Co(n, p) reactions using enriched 56Fe : α+ p coincidence for 56Fe(6Li,α)58Co → 57Fe+ p

1Our Experimental Team: Bhawna Pandey, Jyoti Pandey, B. K. Nayak, A. Saxena, S. Santra, D. Sarkar, E. T. Mirgulae, K. Mahata,
P .C. Rout, G. Mohanto, A. Parihari, A. Kundu, D. Chattopadyayay, B. Srinivasan, H. M. Agarwal, Asim Pal et al. and Manipal
University Team K. M. Prasad, S. Punchithaya, Y. Santhi and K. Meghna for Covariances studies of this data.
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58Co(n, p) reactions using enriched 57Fe : 57Fe(6Li,α)59Co→ 58Fe+ p
60Co(n, p) reactions using enriched 58Fe : 58Fe(7Li,α)61Co → 60Co+ p

Keywords: nuclear reaction cross section, EXFOR
AMS subject classifications. 62P35

A case study on the cross section data of 232Th(n,2n)231Th: A look,
with a covariance analysis at the 1961 data of Butler and Santry

(EXFOR ID 12255)

Abhishek Cherath1 and S. Ganesan2

1405, Jasmine, Neelkanth Gardens, Govandi EAST, Mumbai - 400088, India.
abhicherath@gmail.com

2Formerly Raja Ramanna Fellow, Reactor Physics Design Division, Bhabha Atomic Research
Centre, Mumbai, India. ganesan555@gmail.com

Abstract

We examined, as a case study, the experimental values of 232Th(n,2n)231Th nuclear reaction published by
J.P.Butler & D.C. Santry [1]. The numerical data are available in the EXFOR compilation [2, 3], EXFOR
ID 12255. This is one of the best data of this nuclear reaction measured very carefully at that time and
considered even today as a very valuable data in the process of creating modern evaluated nuclear data
files. In this student exercise, we have attempted to estimate Butler and Santry’s experimental data with
a covariance analysis. Butler and Santry used the monitor cross sections of 32S(n, p)32P reaction by L.
Allen et al. [4], which is considered even today as very high-quality dosimetry data available for nuclear
data evaluators. We noticed that Butler and Santry have used [1] the monitor reaction cross section values
of 32S(n, p)32P but do mention, in their Table II for their results, the monitor (Allen’s) data without the
errors available in Allen’s data. We are inclined to believe that the errors in the monitor cross sections
provided in [4] which were available that time were not taken into account by Butler and Santry. [2] In
the EXFOR entry (ID 12255), the text in EXFOR entry under keywords “ERR-ANALYS” and “METHOD”
also mentions [3] for #ENTRY 12255 L=2, “ERR-ANALYS (DATA-ERR) Quoted errors do not include any
errors in the monitor cross section.”, which agrees with our subjective understanding. Therefore, in this
work, a cubic B-spline fit is first performed to fit the monitor 32S(n, p)32P reaction cross section data based
on numerical data reported by Allen et al., [4] and to obtain through the fit the covariance matrix associate
with those fitted data. The so obtained monitor reaction data with covariance matrix are then used to
estimate the cross sections of 232Th(n,2n)231Th nuclear reaction with the covariance error matrix. We
also present discussions on the subjective understanding that influences this “re-estimation” process of old
EXFOR data. The work presented in the paper is for illustrative and learning purposes. A complete and
comprehensive renormalization for purpose of a professional nuclear data evaluation would require more
work with considerable subjective and objective analysis involving all attributes in each of the experiments
in the EXFOR database.
Keywords: Nuclear reactions, 232Th(n,2n)231Th, EXFOR database, covariance, error propagation, re-
gression analysis, cubic B-spline fit, monitor reaction, evaluated nuclear data files
AMS subject classifications. 62P35
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Calculating efficiencies and their uncertainties propagation in
efficiency

Vidya Devi

Institute of Engineering and Technology Bhaddal, Ropar-Punjab, India
vidyathakur@yahoo.co.in

Abstract

It is difficult to transform a probability density function (PDF) through a general nonlinear function that
is why uncertainty propagation is also difficult. In this abstract we will briefly present some methods such
as Sandwich formula, Unscented transform technique and Monte Carlo method for the determination of
the Uncertainty propagation. We generate and present the covariance information by taking into account
various attributes influencing the uncertainties and also the correlations between them.
Keywords: uncertainty propagation, Monte Carlo method
AMS subject classifications. 62P35

Measurement and uncertainty propagation of the (γ,n) reaction
cross-section of 58Ni and 59Co at 15 MeV bremsstrahlung

Reetuparna Ghosh

Department of Physics, North Eastern Hill University, Shillong 793022, Meghalaya, India.
reetuparna.ghosh@gmail.com

Abstract

Activation cross-section of photon-induced reaction on structural materials 58Ni and 59Co was measured
at the bremsstrahlung endpoint energy 15 MeV from an S band electron linac. The uncertainties in the
(γ,n) reaction cross-section of both 58Ni and 59Co were estimated by using the concept of covariance anal-
ysis. The cross-section of 58Ni(γ,n)57Ni reaction in the present work is slightly lower than the previous
experimental data and the TENDL-2015 data. The cross-section of 59Co(γ,n)58Co reaction has been mea-
sured for the first time. However, the present experimental data of 59Co(γ,n)58Co reaction is very low in
comparison to the TENDL-2015 and JENDL/PD-2004 data.
Keywords: covariance, cross-section
AMS subject classifications. 62P35, 81V35
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Estimation of efficiency of the HPGe detector and its covariance
analysis

R. K. Meghna, Sripathi P., K. M. Prasad, Y. Santhi, H. Naik, S. V. Suryanarayan and S.
Ganesan

Abstract

In the present paper efficiency of the HPGe detector is determined at characteristic gamma energies
0.08421 MeV and 0.7433 MeV obtained in the reactions 232

90 Th(n,2n)231
90 Th and

232
90 Th(n, f )97

40Zr using the least square method. 133
56 Ba and 152

63 Eu are used as standard sources whose
gamma energy ranges from 0.05316 MeV to 1.4080 MeV. Energy-efficiency model is well represented by an
empirical formula. The energy range spanned in this model does not extend much below 0.2 MeV. The prin-
ciple of least squares is used in sequence to find the covariance and correlation matrices and the variation
of efficiency is plotted.
Keywords: least square method, 133

56 Ba, 152
63 Eu

AMS subject classifications. 62P35

A stochastic convergence analysis of random number generators
as applied to error propagation using Monte Carlo method and

unscented transformation technique
Sangeetha Prasanna Ram1, Jayalekshmi Nair2 and S. Ganesan3

1Instrumentation Department, VES Institute of Technology, Chembur Mumbai, India.
sangeeta.prasannaram@ves.ac.in

2VES Institute of Technology, Chembur, Mumbai, India. principal.vesit@ves.ac.in
3Former Raja Ramanna Fellow, BARC, Reactor Physics Design Division, Bhabha Atomic

Research Centre, Mumbai, India. ganesan555@gmail.com

Abstract

This paper compares the stochastic convergence of the Uniform Random number generators of two simu-
lation software namely Matlab and Python and establishes the significance in choosing the right random
number generator for error propagation studies. It further discusses about the application of Gaussian
type of these random number generators to nonlinear cases of Error propagation using the Monte Carlo
method and unscented transformation technique by means of a nonlinear transformation of one dimen-
sional random variable of nuclear data.
Keywords: Monte Carlo method, unscented transformation, stochastic convergence, random number gen-
erators, nuclear data
AMS subject classifications. 60G; 60H; 60J; 62M; 68U
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Covariance matrices of DPA cross sections from TENDL-2015 for
structural elements with NJOY-2016 and CRaD codes

Uttiyoarnab Saha1, K. Devan2 and S. Ganesan3

1,2Homi Bhabha National Institute, Reactor Neutronics Division, Indira Gandhi Centre for
Atomic Research, Kalpakkam 603102, India. 1uttiyoarnabsaha@gmail.com,

2devan@igcar.gov.in
3Former Raja Ramanna Fellow, Reactor Physics Design Division, Bhabha Atomic Research

Centre, Mumbai, India. ganesan555@gmail.com

Abstract

In the recently concluded IAEA-CRP on Primary Radiation Damage Cross Sections [1] and the studies
made at IGCAR, it has been observed that there is a spread in the neutron damage and heating cross
sections computed using various basic evaluated nuclear data libraries, such as ENDF/B-VII.1, TENDL-
2015, JENDL-4.0 etc., available from the IAEA (Ref: wwwnds. indcentre.org.in). This spread in the derived
quantities reflect the non–uniqueness or nonconvergence of evaluated nuclear data from various sources,
the non-uniqueness arising due to differences in the procedures in basic data evaluations, wherein the
measured data with their associated experimental errors and correlations of results from nuclear model
based calculations are employed. Since such differences in the basic evaluated nuclear reaction cross
sections result from various causes including mainly the uncertainties in nuclear model parameters input
to nuclear model codes (such as TALYS or EMPIRE) within their distributions, a new approach based
on Total Monte Carlo (TMC) [2] [3] has been recently developed and used for uncertainty propagation
in the derived quantities. In the present work, neutron damage energy cross sections of few isotopes of
structural elements are computed from a large set of TMC based random ENDF-6 files in TENDL 2015 [3]
with NJOY 2016 [4] and indigenously developed CRaD [5] codes. The statistical uncertainties involved are
quantified and compared through the calculation of covariance and correlation matrices in a fine energy
group structure (175 group VITAMIN-J).
Keywords: derived quantities, neutron heating, neutron damage, random, Total Monte Carlo
AMS subject classifications. 62
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Covariance analysis in neutron activation measurements of
59Co(n,2n)58Co and 59Co(n,γ)60Co reactions in the MeV region

Y. Santhi Sheela1, K. Manjunatha Prasad2, N. Sreekumaran Nair3 and S. Ganesan4

1,2Department of Statistics, PSPH, MAHE, Manipal, India. 1krishsanthi76@gmail.com,
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4Former Raja Ramanna Fellow of DAE, RPDD, BARC, Trombay, Mumbai,
ganesan555@gmail.com

Abstract

Uncertainties in any measurement is inevitable so is in the case of nuclear data measurements. Estimating
the measurements with uncertainty as accurate as possible is very important for the reasons of safety
and economy. In the process of estimation of nuclear data, it is necessary to identify different sources of
uncertainty associated with all the attributes involved, which propagates the error in the estimation. Using
law of error propagation, in the present work, we generalize the methodology of Smith [1] used for obtaining
covariance matrix of n measurements derived from observations of m attributes in n experiments, where
the observations of different attributes are uncorrelated.

In the work, we consider all possible attributes which influence the measurements, correlations be-
tween them, and identify different steps of error propagations in the process of measurements and demon-
strate the same in finding the cross sections of 59Co(n,2n)58Co, 59Co(n,γ)60Co reactions at effective neu-
tron energies of 11.98 and 15.75 MeV. The partial errors due to different attributes are presented and the
present measurements are compared with evaluated data taken from different libraries such as ENDF/B-
VII.1, JENDL-4.0, JEFF-3.2, ROSFOND-2010, TENDL-2015, CENDL-3.1.
Keywords: nuclear data covariance, uncertainties, evaluated data libraries and correlations
AMS subject classifications. 62P35, 62J12, 62J10
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Program: ICLAA 2017

December 11, 2017 (Monday)

09:00 - 09:10 K. Manjuantha Prasad and Ravindra B. Bapat: Welcome & Overview of the conference
SESSION 1; Chair Person: Ravindra B Bapat

09:10 - 10:10 Stephen James Kirkland: Markov Chains as Tools for Analysing Graphs I

10:10 - 10:50 Sivaramakrishnan Sivasubramanian: The arithmetic Tutte polynomial of two matrices asso-
ciated to trees

10:50 - 11:10 Tea Break
SESSION 2; Chair Person: Michael Tsatsomeros

11:10 - 11:50 S K Neogy: On testing matrices with nonnegative principal

11:50 - 12:30 Rafikul Alam: Fiedler companion pencils for rational matrix functions and the recovery of
minimal bases and minimal indices"

12:30 - 13:10 K C Sivakumar: Nonnegative/nonpositive generalized inverses and applications in LCP

13:10 - 14:30 Lunch Break
SESSION 3; Chair Person: S. Arumugam

14:30 - 15:30 Sharad S Sane: Some Linear Algebra related questions in the theory of Block Design I

15:30 - 16:00 Matjaz Kovse: Distance matrices of partial cubes

16:00 - 16:20 Tea Break
SESSION 4; Chair Person: Sivaramakrishnan Sivasubramanian

16:20 - 17:00 S H Kulkarni: Continuity of the pseudospectrum

17:00 - 17:40 Murali K Srinivasan: Eigenvalues and eigenvectors of the perfect matching association scheme

17:40 -18:40 S. Arumugam: Vector spaces associated with graphs

19:15 - 20:00 Inaugural Day Function of ICLAA 2017

20:00 - 21:00 DINNER
December 12, 2017 (Tuesday)

SESSION 5; Chair Person: TES Raghavan

09:00 - 10:00 Sharad S Sane: Some Linear Algebra related questions in the theory of Block Design II

10:00 - 11:00 Stephen James Kirkland: Markov Chains as Tools for Analysing Graphs II

11:00 - 11:30 Tea Break

11:30 - 13:00 Contributory Talks ( CT - 1)

13:00 - 14:30 Lunch Break
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SESSION 6; Chair Person: S K Neogy

14:30 - 15:30 T E S Raghavan: On completely mixed games

15:30 - 16:10 B V Rajarama Bhat: Two states

16:10 - 16:30 Tea Break

16:30 - 18:30 Contributory Talks ( CT - 2)
December 13, 2017 (Wednesday)

SESSION 7; Chair Person: Vasudev Guddattu

09:00 - 09:40 Simo Puntanen: Upper bounds for the Euclidean distances between the BLUPs"

09:40 - 10:20 Stephen John Haslett: Linear models and sample surveys

10:20 - 11:00 Ebrahim Ghorbani: Eigenvectors of chain graphs

11:00 - 11:30 Tea Break

11:30 - 13:00 Contributory Talks ( CT - 3)

13:00 - 14:15 Lunch Break
SESSION 8; Chair Person: Muddappa Seetharama Gowda

14:15 - 15:00 Ajit Iqbal Singh: Fibonacci fervour in linear algebra and quantum information theory

15:10 - 15:50 Arup Bose: To be announced

16:00 - 19:00 Cultural Program at Karantha Bhavan, KOTA

19:00 - 20:00 Dinner at Karantha Bhavan, KOTA

December 14, 2017 (Thursday)

SESSION 9; Chair Person: Helmut Leeb

09:00 - 09:50 Jeffrey Hunter: Mean first passage times in Markov Chains - How best to compute?

09:50 - 10:30 Augustyn Markiewicz: Approximation of covariance matrix by banded Toeplitz matrices

10:30 - 11:10 Martin Singull: The use of antieigenvalues in statistics

11:10 - 11:30 Tea Break/Photo Session

11:30 - 13:00 Contributory Talks ( CT - 4)

13:00 - 14:30 Lunch Break
SESSION 10; Chair Person: Asha Kamath

14:30 - 15:10 Michael Tsatsomeros: Stability and convex hulls of matrix powers

15:10 - 15:50 Muddappa Seetharama Gowda: On the solvability of matrix equations over the semidefinite
cone
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15:50 - 16:20 Somnath Datta: A combined PLS and negative binomial regression model for inferring asso-
ciation networks from next-generation sequencing count data

16:20 - 16:40 Tea Break

16:40 - 18:40 Contributory Talks ( CT - 5)
December 15, 2017 (Friday) Session 11; Chair Person: Augustyn Markiewicz

09:00 - 09:50 Helmut Leeb: R-matrix based solution of Schrödinger equations with complex potentials

09:50 - 10:30 Zheng Bing: Condition numbers of the multidimensional total least squares problem

10:30 - 11:10 N Eagambaram: An approach to General Linear Model using hypothetical variables

11:10 - 11:30 Tea Break
SESSION 12; Chair Person: Steve J Kirkland

11:30 - 12:10 André Leroy: When singular nonnegative matrices are products of nonnegative idempotent
matrices?

12:10 - 13:00 Sukanta Pati: Inverses of weighted graphs

13:00 - 14:30 Lunch Break
SESSION 13; Chair Person: Simo Puntanen

14:30 - 15:30 Bhaskara Rao Kopparty: Generalized inverses of infinite matrices

15:30 - 16:15 Tea Break

16:15 - 16:45 VALEDICTORY

Contributory Talks

December 12, 2017 (Tuesday)

CT 1 – A; Chair Person : Sukanta Pati Venue: Bhargava Hall

11:30 – 12:00 Fouzul Atik: On the distance and distance signless Laplacian eigenvalues of graphs and the
smallest Gersgorin disc

12:00 – 12:30 Sasmita Barik: On the spectra of bipartite multidigraphs

12:30 – 13:00 Dipti Dubey: On principal pivot transforms of hidden Z matrices
CT 1 – B; Chair Person : Steve J Kirkland Venue: Shrikhande Hall

11:30 – 12:00 Sachindranath Jayaraman: Nonsingular subspaces of Mn(F), F a field

12:00 – 12:30 P Sam Johnson: Hypo–EP operators

12:30 – 13:00 Vatsalkumar Nandkishor Mer: Semipositivity of matrices over the n–dimensional ice cream
cone and some related questions
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CT 1 – C; Chair Person : Murali K Srinivasan Venue: S K Mitra Hall

11:30 – 12:00 Mukesh Kumar Nagar: Immanants of q–Laplacians of trees

12:00 – 12:30 Anjan Kumar Bhuniya: A topological proof of Ryser’s formula for permanent and a similar
formula for determinant of a matrix

12:30 – 13:00 Manami Chatterjee: A relation between Fibonacci numbers and a class of matrices
CT 2 – A; Chair Person : S. Arumugam Venue: Bhargava Hall

16:30 – 17:00 Debashis Bhowmik: Semi-equivelar maps on the surface of Euler characteristic-2

17:00 – 17:30 Niranjan Bora: Study of spectrum of certain multi–parameter spectral problems

17:30 – 18:00 Ranjan Kumar Das: Generalized Fiedler pencils with repetition for polynomial eigenproblems and
the recovery of eigenvectors, minimal bases and minimal indices

18:00 – 18:30 Supriyo Dutta: Graph Laplacian quantum states and their properties
CT 2 – B; Chair Person : K. C. Sivakumar Venue: Shrikhande Hall

16:30 – 17:00 Projesh Nath Choudhury: Matrix Semipositivity Revisited

17:00 – 17:30 Lavanya Suriyamoorthy: M–operators on partially ordered Banach spaces

17:30 – 18:00 Ramesh G: On absolutely norm attaining paranormal operators

18:00 – 18:30 Kurmayya Tamminana: Comparison results for proper double splittings of rectangular ma-
trices

CT 2 – C; Chair Person : P Sam Johnson Venue: S K Mitra Hall

16:30 – 17:00 Kshittiz Chettri: On spectral relationship of a signed lollipop graph with its underlying cycle

17:00 – 17:30 Balaji V.: Further result on skolem mean labeling

17:30 – 18:00 Shendra Shainy V: Cordial labeling for three star graph

18:00 – 18:30 Ranveer Singh: B–partitions and its application to matrix determinant and permanent
CT 2 – D; Chair Person : G Sudhakara Venue: Berman Hall

16:30 – 17:00 Mohammad Javad Nikmehr: Nilpotent graphs of algebraic structures

17:00 – 17:30 Somnath Paul: Distance Laplacian spectra of graphs obtained by generalization of join and
lexicographic product

17:30 – 18:00 Pankaj Kumar Das: Necessary and sufficient conditions for locating repeated solid burst

18:00 – 18:30 Mahendra Kumar Gupta: Causal detectability for linear descriptor systems
December 13, 2017 (Wednesday) CT 3 – A; Chair Person : S. Sivasubramanian Venue:

Bhargava Hall

11:30 – 12:00 Soumitra Das: On Osofsky’s 32–elements matrix ring

12:00 – 12:30 Sriparna Chattopadhyay: Laplacian–energy–like invariant of power graphs on certain finite
groups
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12:30 – 13:00 Biswajit Deb: Reachability problem on graphs by a robot with jump: some recent studies
CT 3 – B; Chair Person : Martin Singull Venue: Shrikhande Hall

11:30 – 12:00 Ashma Dorothy Monteiro: Prediction of survival with inverse probability weighted Weibull
models when exposure is quantitative

12:00 – 12:30 Debashish Sharma: Inverse eigenvalue problems for acyclic matrices whose graph is a dense
centipede

12:30 – 13:00 Gokulraj S: Strong Z–tensors and tensor complementarity problems

CT 3 – C; Chair Person : Shreemathi S. Mayya Venue: S K Mitra Hall

11:30 – 12:00 M Rajesh Kannan: On distance and Laplacian matrices of a tree with matrix weights

12:00 – 12:30 Nijara Konch: Further results on AZI of connected and unicyclic graph

12:30 – 13:00 Malathi V.: Nordhaus gaddum type sharp bounds for graphs of diameter two
December 14, 2017 (Thursday)

CT 4 – A; Chair Person : Sharad S Sane Venue: Bhargava Hall

11:30 – 12:00 B R Rakshith: Some graphs determined by their spectra

12:00 – 12:30 Arindam Ghosh: A note on Jordan derivations over matrix algebras

12:30 – 13:00 Anu Varghese: Bounds for the distance spectral radius of split graphs
CT 4 – B; Chair Person : Ajit Iqbal Singh Venue: Shrikhande Hall

11:30 – 12:00 Ranjit Mehatari: On the adjacency matrix of complex unit gain graphs

12:00 – 12:30 Ramesh Prasad Panda: The Laplacian spectra of power graphs of cyclic and dicyclic finite
groups

12:30 – 13:00 Abhyendra Prasad: Study of maps on surfaces using face face incident matrix
CT 4 – C; Chair Person : Parameshwara Bhat Venue: S K Mitra Hall

11:30 – 12:00 T. Anitha: On Laplacian spectrum of reduced power graph of finite cyclic and dihedral groups

12:00 – 12:30 Jyoti Shetty: Some properties of Steinhaus graphs

12:30 – 13:00 M A Sriraj: Partition energy of corona of complete graph and its generalized complements
CT 5 – A; Chair Person : Pradeep G Bhat Venue: Bhargava Hall

16:40 - 17:10 Ranveer Singh: B-partitions and its application to matrix determinant and permanent

17:10 - 17:40 Kurmayya Tamminana: Comparison results for proper double splittings of rectangular ma-
trices

17:40 - 18:10 Divya P Shenoy: Determinants in the study of Generalized Inverses of Matrices over Com-
mutative Ring

18:10 - 18:40 Adenike Olusola Adeniji: Spectrum of full transformation semigroup

CT 5 - B; Chair Person : André Leroy Venue: Shrikhande Hall
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16:40 - 17:10 David Raj Micheal: Computational Methods to find Core-EP inverse

17:10 - 17:40 Vinay Madhusudanan:

17:40 - 18:10 Nupur Nandini: Jacobi type identities

18:10 - 18:40 Mojtaba Bakherad: The Jensen-Mercer operator inequality and some its refinements

CT 5 - C; Chair Person : Kedukodi Babushri Srinivas Venue: S K Mitra Hall

16:40 - 17:10 Sonu Rani: On the distance spectra and distance Laplacian spectra of graphs with pockets

17:10 - 17:40 Jadav Ganesh: Perturbation of minimum attaining operators

17:40 - 18:10 Dhanajaya Reddy: Minimum matching dominating sets of circular arc graphs

18:10 - 18:40 Ahmad Jafarian: An alternative approach for solving fully fuzzy linear systems based on FNN

CT 5 - D; Chair Person : Kuncham Sham Prasad Venue: Berman Hall

16:40 - 17:10 P. G. Romeo: On category of R-modules and duals

17:10 - 17:40 Rajaiah Dasari: Modified triangular and symmetric splitting method for the steady state
vector of Markov chains

17:40 - 18:10 Akash Murthy: Incentive structure reorgnization to maximize healthcare players’ payoff
while keeping the healthcare service provider’s company solvent
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Vector spaces associated with a graph1

S. Arumugam

Adjunct Professor, Department of Mathematics, Amrita Vishwa Vidyapeetham,
Coimbatore-641112, India. s.arumugam.klu@gmail.com

Abstract

Let G = (V , E) be a graph of order n and size m. The set of all edge-induced subgraphs of G forms a
vector space over the field of integers modulo 2, under the operation symmetric difference and usual scalar
multiplication. This vector space is denoted byΨ(G). A circuit in G is a cycle or edge disjoint union of cycles
in G. The set C (G) of all circuits of G is a subspace ofΨ(G) and is called the circuit subspace of G. Let λ(G)
denote the collection of all cutsets and edge disjoint union of cutsets of G. The set λ(G) is a subspace of
Ψ(G) and is called the cutset subspace of G. In this talk we present a survey of some of the classical results
on these vector spaces, highlighting duality, orthogonality and applications. We also discuss how a graph
Γ(V ) can be associated with a finite vector space V and discuss some properties of Γ(V ).
Keywords: circuit space, cutsets, orthogonality
AMS subject classifications. 05C12, 05C25, 05C62
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Mean first passage times in Markov Chains - How best to
compute?

Jeffrey Hunter

Department of Mathematical Sciences School of Engineering, Computer and Mathematical
Sciences, Auckland University of Technology Auckland, New Zealand.

jeffrey.hunter@aut.ac.nz

Abstract

The presentation gives a survey of a variety of computational procedures for finding the mean first passage
times in Markov chains. The presenter has recently published a new accurate computational technique
[1] similar to that developed by Kohlas [2] based on an extension of the Grassmann, Taksar, Heyman
(GTH) algorithm [3] for finding stationary distributions of Markov chains. In addition, the presenter has
recently developed a variety of new perturbation techniques for finding key properties of Markov chains
including finding the mean first passage times [4]. These procedures are compared with other well known
procedures including the standard matrix inversion technique of Kemeny and Snell, [5], some simple gen-
eralized matrix inverse techniques developed by the presenter [6] and the FUND technique of Heyman [7]
for finding the fundamental matrix of a Markov chain. The accurate procedure of the presenter is favoured
following MATLAB comparisons using some test problems that have been used in the literature for com-
paring computational techniques for stationary distributions. One distinct advantage is that the stationary
distribution does not have to be found in advance but is extracted from the computations.
Keywords: Markov chain, stochastic matrix, moments of first passage times, generalized matrix inverses
AMS subject classifications. 15A09; 15B51; 60J10
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Markov chains as tools for analysing graphs

Stephen Kirkland

University of Manitoba, Canada, Canada. Stephen.Kirkland@umanitoba.ca

Abstract

An n× n entrywise nonnegative matrix A is called stochastic if it has all row sums equal to 1. Given a
nonnegative vector x0 ∈ Rn such that its entries sum to 1, we form the sequence of iterates xT

k ,k ∈ N via
the recurrence xT

k = xT
k−1 A,k ∈ N. The sequence xk is then a Markov chain associated with the stochastic

matrix A. The theory of Markov chains has been with us for over a century, and they are used in a wide
array of applications, including conformation of biomolecules, vehicle traffic models, and web search.

In this talk we focus on the use of Markov chain techniques as methods for understanding the structure
of directed and undirected graphs. We begin with an overview of some of the key ideas and quantities in
the study of Markov chains. We then move on to explore the use of Markov chains in analysing graphs.
In particular, we will discuss measures of centrality, detection of clustering, and an overall measure of
connectedness.
Keywords: Markov chain, stochastic matrix
AMS subject classifications. 60J10

Generalized inverses of infinite matrices

Bhaskara Rao Kopparty

Indiana University Northwest, 3400 Broadway, Gary, IN 46408. bkoppart@iun.edu

Abstract

A formulation for studying generalized inverses of infinite matrices is developed. After proving sev-
eral results, we shall propose some problems. The results supplement the studies by Sivakumar and
Shivakumar[1].
Keywords: infinite matrices
AMS subject classifications. 15A09

References

[1] P. N. Shivakumar, K. C. Sivakumar and Y. Zhang. Infinite Matrices and Their Recent Applications
2016: Springer.

63



Abstracts: ICLAA 2017 Special Lectures & Plenary Talks

R-matrix based solution of Schrödinger equations with complex
potentials 2

Th. Srdinko1, J. Fries2, B. Raab3 and H. Leeb4

Atominstitut, TU Wien, Vienna, Austria.1tsrdinko@ati.ac.at
2e1425904@student.tuwien.ac.at, 3e1027403@student.tuwien.ac.at,

4helmut.leeb@tuwien.ac.at

Abstract

The description of reaction processes in nuclear and atomic physics requires the solution of Schrödinger
equations. Albeit microscopic considerations lead to Schrödinger equations with non-local potentials, most
applications make use of equivalent local potentials. In this contribution we present a method for the
solution of Schrödinger equations involving complex non-local potentials. Our method is inspired by the
R-matrix formalism which divides the configuration space into an internal and an external space, where
the solution in the internal part is represented by an appropriate set of basis functions. Thus the repre-
sentation of the corresponding coupled Bloch-Schrödinger equations leads to a complex symmetric matrix.
Using the Tagaki factorization of complex symmetric matrices we extended the R-matrix formalism to
complex potentials. The proposed method also allows the solution of Schrödinger equations with complex
non-local potentials. In combination with the Lagrange mesh technique the proposed method becomes very
appealing for application and has been successfully used. Some examples are given in this presentation.
Keywords: quantum mechanics, Schrödinger equation, Lagrange mesh technique
AMS subject classifications. 81U05, 65L99
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On completely mixed games
T.E.S. Raghavan

University of Illinois at Chicago, USA. terctu@gmail.com

Abstract

Any non-zero sum two person game in normal form is represented by a pair of real m×n matrices A and B.
Player I selects secretly a row "i" and player II selects secretly a column "j" and player I receives ai j while
player II receives bi j. A mixed strategy for player I is any probability vector x = (x1, x2, . . . , xm) where row
i is selected with probability xi. Independently a mixed strategy y = (y1, y2, . . . , yn) can be used to select
column j with probability yj. Thus players I and II receive respectively ai j,bi j with probability xi.yj. The
expected payoff to player I is

∑
i j ai j xi yj = (x A y). The expected payoff to player II is (xBy). A pair of mixed

strategies (x∗, y∗) constitute a Nash equilibrium pair if

v1 = (x∗ A y∗)≥ (x A y∗) for all mixed strategies x for player I

and
v2 = (x∗ By∗)≥ (x∗ By) for all mixed strategies y for player II.

The following theorems will be discussed:
2The work was supported by the Euratom project CHANDA (605203) and a grant of the Eurofusion Consortium (Materials)
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Theorem 1. [2]. Every bimatrix game admits at least one equilibrium pair in mixed strategies.

We call a bimatrix game completely mixed iff in every equilibrium pair the two players’ mixed strategies
are completely mixed.

Theorem 2. If a bimatrix game is completely mixed then

• The equilibrium pair is unique.

• The matrix is square (i.e. m = n).

• In case A+B =O and v1 = 0, the rank of the matrix A is n−1.

• In case A+B =O and v1 = 0, all cofactors of A are different from 0 and are of the same sign.

An N-person game is played as follows: Given finite sets S1,S2, . . . ,Sn, players 1,2, . . .n choose secretly
an element s1 ∈ S1, s2 ∈ S2, . . . sn ∈ Sn respectively. Let hi : S1×S2×Sn → R, i = 1,2, . . .n be payoffs to players
i = 1,2, . . .n. Given a set of mixed strategies x1, x2, . . . , xn for the respective players, let hi(x1, x2, xi, xn) be
the expected payoff to player i when all players stick to their mixed strategies. The set of mixed strategies
x1, x2, . . . , xn constitute a Nash equilibrium for the game if and only if f for each player i and pure choice
si ∈ Si, the expected payoff to player i when he simply chooses an element si ∈ Si while all the other players
j 6= i stick to their given mixed strategies satisfies

hi(x1, x2, si, xn)≤ hi(x1, x2, xi, xn),∀si ∈ Si, i = 1,2, . . .n.

Thus no player can gain by unilateral deviation to any pure strategies.

Theorem 3. [2] Every n-person game admits at least one Nash equilibrium tuple in mixed strategies.

As soon as we introduce another player with at least 2 pure strategies for the player, uniqueness of the
equilibrium is no more true. All we can say is

Theorem 4. If an n-person game is completely mixed then its equilibrium set cannot contain any non-
degenerate line segment.

Theorem 5. For a 3 person completely mixed game for the special case where |Si| = 2, i = 1,2,3 the equilib-
rium tuple is unique.

Theorem 6. [5]. Any algebraic number can be chosen as the equilibrium payoff for some player of a com-
pletely mixed 3 person game.

Theorem 7. [5] We can construct completely mixed n-person games with a continuum of equilibrium strate-
gies.

The so called order field property is valid for bimatrix games and an explicit finite step pivoting algo-
rithm was given by Lemke and Howson.(1964). It finally reduces to algorithmically solving for the so called
(Linear Complementarity problem): Given a real square matrix M of order n and given an n-vector q check
whether

w = Mz+ q,has a solution w ≥ 0, z ≥ 0, (w z)= 0

and if so how to locate one such pair (w, z).

Theorem 8. The linear complementarity problem has a unique solution for any given n-vector q if and
only if the matrix M has all of its principal minors positive. In this case Lemke’s algorithm will solve for the
unique solution.

Theorem 9. For the special case when the matrix M is a non- singular M−matrix the unique solution can
be found by a simplex pivoting algorithm.

Keywords: Completely mixed games, linear complementarity
AMS subject classifications. 90C33
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Some linear algebra related questions in the theory of block
designs

Sharad S. Sane

Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai-400076,
India. sane@math.iitb.ac.in, sharadsane@gmail.com

Abstract

This talk will mainly focus on the existence and structural questions concerning the objects mentioned in
the title. The full talk is divided in two parts. Beginning with symmetric designs, I will allude to projective
planes and biplanes and in particular to biplanes with characteristic 3. Later part of this talk will discuss
quasi-symmetric designs that are in a sense combinatorial generalizations of symmetric designs. On the
other hand and on the positive side of it, structural study of quasi-symmetric designs is facilitated due to
the fact one can associate a simple graph with such a structure which turns out to be a non-trivial and
interesting strongly regular graph in many cases of interest. The talk will discuss this connection in some
details. The relationship between quasi-symmetric and symmetric designs is not well understood, though
it is believed to exist and the existence questions in both the cases are expected to be equally difficult.
The second talk will discuss the notorious long standing λ-design conjecture of Ryser and Woodall and
with particular attention to the related linear algebra. The conjecture is widely believed to be true and
a number of attempts have been made to prove it. Main interest in this conjecture is because of a bold
assertion in the statement that essentially tells us that λ-designs can only be constructed in a canonically
stipulated manner. The talk will discuss all the relevant results including some new ones in this area.
Keywords: block design, regular graph
AMS subject classifications. 05C50
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Fiedler companion pencils for rational matrix functions and the
recovery of minimal bases and minimal indices

Rafikul Alam

Department of Mathematics, IIT Guwahati, Guwahati -781039, India. rafik@iitg.ernet.in

Abstract

Linearization is a standard method for computing eigenvalues, eigenvectors, minimal bases and minimal
indices of matrix polynomials. Linearization is a process by which a matrix polynomial is transformed to a
matrix pencil and has been studied extensively over the years. Frobenius companion pencils are examples
of linearizations of matrix polynomials and are well known for almost 140 years. Recently, Fiedler intro-
duced a family of companion pencils known as Fiedler companion pencils which provides an important class
of linearizations of matrix polynomials. The poles and zeros of rational matrix functions play an important
role in many applications. For computing eigenvalues, eigenvectors, poles, minimal bases and minimal in-
dices of rational matrix functions, we construct Fiedler-like companion pencils for rational matrix functions
and show that these pencils are linearizations of the rational matrix functions in an appropriate sense. We
describe the recovery of minimal bases and minimal indices of rational matrix function from those of the
Fiedler pencils. In fact, we show that the recovery of minimal bases are operation-free, that is, the minimal
bases can be recovered from those of the Fiedler pencils without performing any arithmetic operations.
Keywords: rational matrix function, Rosenbrock system matrix, matrix polynomial, eigenvalue, eigenvec-
tor, minimal realization, matrix pencil, linearization, Fiedler pencil.
AMS subject classifications. 65F15, 15A57, 15A18, 65F35
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Two states

B. V. Rajarama Bhat

Indian Statistical Institute, Bangalore, India. bvrajaramabhat@gmail.com

Abstract

D. Bures defined a metric on states of a C∗−algebra as the infimum of the distance between associated
vectors in common GNS representations. We take a different approach by looking at the completely
bounded distance between relevant joint representations. The notion has natural extension to unital
completely positive maps. The study yields new understanding of GNS representations of states and in
particular provides a new formula for Bures metric. This is a joint work with Mithun Mukherjee (See:
https://arxiv.org/abs/1710.00180).
Keywords: states, completely positive maps, Hilbert C∗-modules, Bures distance
AMS subject classifications. 46L30, 46L08
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Condition numbers of the multidimensional total least squares
problem

Bing Zheng, Lingsheng Meng and Yimin Wei

1School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, Gansu, PR
China, bzheng@lzu.edu.cn

Abstract

In this talk, we present the Kronecker-product-based formulae for the normwise, mixed and componentwise
condition numbers of the multidimensional total least squares (TLS) problem. For easy estimation, we
also exhibit Kronecker-product-free upper bounds for these condition numbers. The upper bound for the
normwise condition number is proved to be optimal, greatly improve the results by Gratton et al. for
the truncated solution of the ill-conditioned basic TLS problem. As a special case, we also provide a lower
bound for the normwise condition number of the classic TLS problem when having a unique solution. These
bounds are analyzed in detail. Furthermore, we prove that the tight estimates of mixed and componentwise
condition numbers recently given by other authors for the basic TLS problem are exact. Some numerical
experiments are performed to illustrate our results.
Keywords: multidimensional total least squares, truncated total least squares, condition number, singu-
lar value decomposition
AMS subject classifications. 65F35, 65F20
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A combined PLS and negative binomial regression model for
inferring association networks from next-generation sequencing

count data
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A major challenge of genomics data is to detect interactions displaying functional associations from large-
scale observations. In this study, a new cPLS-algorithm combining partial least squares approach with neg-
ative binomial regression is suggested to reconstruct a genomic association network for high-dimensional
next-generation sequencing count data. The suggested approach is applicable to the raw counts data,
without requiring any further pre-processing steps. In the settings inves-tigated, the cPLS-algorithm out-
performed the two widely used comparative methods, graphical lasso and weighted correlation network
analysis. In addition, cPLS is able to estimate the full network for thousands of genes without major
computational load. Finally, we demonstrate that cPLS is capable of finding biologically meaningful as-
sociations by analysing an example data set from a previously published study to examine the molecular
anatomy of the craniofacial development.
Keywords: association networks, network reconstruction, negative binomial regression, next-generation
sequencing, partial least-squares regression
AMS subject classifications. 62P10, 62J12
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An approach to General Linear Model using hypothetical
variables

N. Eagambaram
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Abstract

Consider the general linear model, Y = Xβ+ ε where Y is a vector of dimension n, X is an n×k matrix
and ε is a n-dimensional random variable with covariance matrix σ2G. X and G are known whereas β
and σ2 are unknown. Procedures for estimation of functions of β and σ2 are well known in the case of
non-singular G. Here, similar procedures are explored by adding hypothetical variables to Y so as to have
a non-singular covariance matrix in the modified model.
Keywords: linear model, hypothetical random variables, generalized inverse, matrix partial order
AMS subject classifications. 62J12
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Eigenvectors of chain graphs

Ebrahim Ghorbani
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Abstract

A graph is called a chain graph if it is bipartite and the neighborhoods of the vertices in each color class
form a chain with respect to inclusion. Let G be a graph and λ be an (adjacency) eigenvalues of G with
multiplicity k. A vertex v of G is called a downer, or neutral, or Parter vertex of G (and λ) depending
whether the multiplicity of λ in G − v is k−1, or k, or k+1, respectively. We consider vertex types of a
vertex v of a chain graph in the above sense which has a close connection with v-entries in the eigenvectors
corresponding to λ.
Keywords: chain graph, graph eigenvalue, eigenvector
AMS subject classifications. 05C50
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On the solvability of matrix equations over the semidefinite cone

M. Seetharama Gowda

Department of Mathematics and Statistics, University of Maryland, Baltimore County,
Baltimore, Maryland 21250, USA. gowda@umbc.edu

Abstract

In matrix theory, various algebraic, fixed point, and degree theory methods have been used to study the
solvability of equations of the form f (X ) = Q, where f is a transformation (possibly nonlinear), Q is a
semidefinite/definite matrix and X varies over the cone of semidefinite matrices. In this talk, we describe
a new method based on complementarity ideas. This method gives a unified treatment for transformations
studied by Lyapunov, Stein, Lim, Hiller and Johnson, and others. Our method actually works in a more
general setting of proper cones and, in particular, on symmetric cones in Euclidean Jordan algebras.
Keywords: solvability, semidefinite cone, complementarity, proper cone, symmetric cone
AMS subject classifications. 15A24, 90C33
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Linear models and sample surveys
Stephen Haslett

Statistical Consulting Unit, The Australian National University, Canberra ACT 2601
Australia. stephen.haslett@anu.edu.au

Abstract

When sample surveys with complex design (which may include stratification, clustering, unequal selection
probabilities and weighting) are used as data for linear models then additional complications are intro-
duced into estimation of model parameters and variances. The standard techniques for linear models for
sample surveys either model conditional on survey design variables or use design weights based on selec-
tion probabilities assuming no covariance between population elements.

When design weights are used, an extension to incorporate joint selection as well as selection proba-
bilities is possible, and when there is correlated error structure this is essential for efficient estimation in
linear models and for design unbiased estimation of covariance from the sample.

Sample designs can be either with or without replacement of units when sampling. Although without
replacement sampling is more accurate for a given sample size, when sampling with probability propor-
tional to size (pps), with replacement sampling is often used because pps without replacement is difficult to
implement due to selection probabilities for the remaining units changing after each draw. However, with
replacement sampling complicates fitting linear models and requires generalized inverses for any sample
for which any unit is selected more than once.
Keywords: linear models, sample surveys, survey design, superpopulation, without replacement, with
replacement, ginverse
AMS subject classifications. 15A03; 15A09; 15A24, 15B48; 62D05; 62F12; 62J05; 62J10

Continuity of the pseudospectrum
S. H. Kulkarni

Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036. India.
shk@iitm.ac.in

Abstract

Let A be a complex unital Banach algebra with unit 1. We shall identify a complex scalar λ with the
element λ1 ∈ A. For a ∈ A, the spectrum σ(a) of a is defined by

σ(a) := {λ ∈C :λ−a is not invertible in A}.

It is well known that the map a 7→ σ(a) is not continuous. In this talk we show that the pseudospectrum
behaves in a better way in many situations. Let ε> 0. The ε- pseudospectrum Λε(a) is defined by

Λε(a) := {λ ∈C : ‖(λ−a)−1‖ ≥ 1
ε

}
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with the convention that ‖(λ−a)−1‖ =∞ if λ−a is not invertible. This convention makes the spectrum to
be a subset of the ε- pseudospectrum for every ε > 0. The basic reference for the pseudospectrum is the
book [2].

We show that for every fixed ε> 0 the map a 7→Λε(a) is right continuous and it is continuous if one of
the following conditions is satisfied:

1. The resolvent set C\σ(a) is connected.

2. The algebra A is the algebra of all bounded operators on a Banach space X such that X or its dual
space X ′ is complex uniformly convex.

These conditions are satisfied when T is a compact operator on a Banach space X or when T is a
bounded operator on an Lp space, 1≤ p ≤∞.

Some of these results can be found in [1].
Keywords: Banach algebra, spectrum, pseudospectrum
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When singular nonnegative matrices are products of nonnegative
idempotent matrices?

A. Alahmadi1, S. K. Jain2 and A. Leroy3
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2King Andulaziz University, Jeddah, SA and Ohio University, USA.
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Abstract

It is well-known that singular matrices over fields, division rings, Euclidean domains, self-injective regular
rings can be presented as a product of idempotent matrices (see the works by Erdos, Laffey, O’Meara-
Hanna, Alahmadi-Jain-Lam-Leroy, among others). During the ICLAA 2014 it was asked whether a real
nonnegative singular matrix can be represented as a product of real nonnegative idempotent matrices.
The answer is negative in general even for nice symmetric stochastic matrices. But we exhibit families of
matrices for which the answer is yes. For instance here is list of type of singular nonnegative matrices for
which it is known that the decomposition holds.

1. Singular nonnegative matrices of rank 1 or 2.

2. Singular nonnegative matrices having a nonnegative von Neumann inverse.

3. Singular nonnegative quasi-permutation matrices.

4. Singular periodic nonnegative matrices.

It is still an open problem to find necessary and sufficient conditions for the nonnegative decomposition to
occur.
Keywords: nonnegative matrices, idempotent matrices
AMS subject classifications. 15B48
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Approximation of covariance matrix by banded Toeplitz matrices
Augustyn Markiewicz

Poznań University of Life Sciences, Poland. amark@up.poznan.pl

Abstract

The need for estimation of covariance matrix with a given structure arises in various multivariate mod-
els. We are studying this problem for banded Toeplitz structure using Frobenius-norm discrepancy. The
estimation is made by approximating the unstructured sample covariance matrix by non-negative definite
Toeplitz matrices. For this purpose some authors are using the projection on a given space of Toeplitz
matrices [1]. We characterize the linear space of matrices for which this method is valid and we show that
the space of Toeplitz matrices is not the case. The solution of this problem is the projection on a cone of
non-negative definite Toeplitz matrices [2]. We give the methodology and the algorithm of the projection
based on the properties of a cone of non-negative definite Toeplitz matrices. The statistical properties of
this approximation are studied.
Keywords: covariance estimation, covariance structure, Frobenius norm
AMS subject classifications. 62H20; 65F99
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On testing matrices with nonnegative principal minors 3

S. K. Neogy

Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Delhi: 110016. skn@isid.ac.in

Abstract

In this paper, we revisit various methods proposed in the literature on testing matrices with nonnegative
principal Minors and discuss various characterizations useful for testing P(P0)-matrices. We also identify
few subclasses of P0-matrix for which there is a polynomial time algorithm and review various characteri-
zations of a P(P0)-matrix using linear complementarity.
Keywords: P(P0)-matrix, polynomial algorithm, linear complementarity problem
AMS subject classifications. 90C33; 15A09; 15A24
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Inverses of weighted graphs
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Abstract

Consider a connected weighted graph G. Let A(G) be its adjacency matrix. Assume that A(G) is nonsin-
gular. Then the matrix A(G)−1 may have both positive and negative entries. However, for some G, the
inverse A(G)−1 is similar to a nonnegative matrix, say B, via a signature matrix (a diagonal matrix with
diagonal entries from {1,−1}). We call the graph of this matrix B as the inverse graph of G and we also say
G is invertible.

Recall that a structural characterization of nonsingular graphs is not yet known. Consider a bipartite
graph G with a unique perfect matching M and let Gw be the weighted graph obtained from G by giving
weights to its edges using the positive weight function w : E(G) → (0,∞) such that w(e) = 1 for each e ∈M .
The unweighted graph G may be viewed as a weighted graph with the weight function w ≡ 1, where the
weight of each edge is 1. The matrix A(Gw) always has determinant ±1. Hence Gw is nonsingular for each
of the above described weight functions w.

Let G be a bipartite graph with a unique perfect matching M . By G/M, let us denote the graph obtained
from G by contracting each matching to a single vertex. It is known that if G/M is also bipartite, then Gw
is invertible for each weight function w.

We discuss the following questions.

1. Is the converse of the above result true? That is, if Gw is invertible for each w, is it necessary that
G/M is bipartite?

2. Are there cases, when Gw is invertible for one weight function w but it is not for each w?

3. Are there cases, when ‘Gw is invertible for one w’ will force that ‘G/M is bipartite’ (or ‘Gw is invertible
for each w’)?

Keywords: graph inverse, bipartite graphs with unique perfect matching
AMS subject classifications. 05C50
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Upper bounds for the Euclidean distances between the BLUPs
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Abstract

In this paper we consider the linear model M = {y, Xβ,V }, where y is the observable random vector with
expectation Xβ and covariance matrix V . Our interest is on predicting the unobservable random vector
y∗, which comes from y∗ = X∗β+ε∗, where the expectation of y∗ is X∗β and the covariance matrix of y∗
is known as well as the cross-covariance matrix between y∗ and y. We introduce upper bounds for the
Euclidean distances between the BLUPs, best linear unbiased predictors, when the prediction is based on
the original model and when it is based on the transformed model T = {F y,F Xβ,FV F ′}. We also show how
the upper bounds are related to the linear sufficiency of F y. The concept of linear sufficiency is strongly
connected to the transformed model T: If F y is linearly sufficient for Xβ under M, then the BLUEs of Xβ
are the same under M and T.
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The concept of linear sufficiency was essentially introduced in early 1980s by [1, 2]. In this paper we
generalize their results in the spirit of [3], [4] and [5].
Keywords: best linear unbiased estimator, best linear unbiased predictor, linear sufficiency, linear mixed
model, transformed linear model
AMS subject classifications. 62J05; 62J10
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Fibonacci fervour in linear algebra and quantum information
theory

Ajit Iqbal Singh

INSA Emeritus Scientist, The Indian National Science Academy, New Delhi.
ajitis@gmail.com

Abstract

Fibonacci numbers appear in the context of matrices, resonance valence bond states, Symmetric informa-
tionally complete positive operator valued measures and other related matters in Quantum Information
theory. We will give a brief account together with adaptation of the recursive process in other set-ups.
Keywords: Fibonacci numbers, permutation matrix, resonance valence bond state, quantum entangle-
ment, equiangular lines, symmetrically informationally complete positive operator valued measure (SIC-
POVM), Zauner’s matrix, Fibonacci matrix, Fibonacci-Lucas SIC-POVM, optimal quantum tomography.
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The use of antieigenvalues in statistics

Martin Singull
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Abstract

For fifty years ago Karl Gustafson published a series of papers and developed an antieigenvalue theory
which has been applied, in a non-statistical manner, to several different areas including, numerical anal-
ysis and wavelet analysis, quantum mechanics, finance and optimisation. The first antieigenvector u1
(actually there are two) is the vector which is the one which is the most "turned" by an action of a positive
definite matrix A with a connected antieigenvalue µ1 which indeed is the cosine of the maximal "turning"
angle given as

µ1 =
2
√
λ1λp

λ1 +λp
,

where λ1 is the largest and λp is the smallest eigenvalue of A, respectively. Antieigenvalues have been
introduced in statistics when, for example, analysing sample correlation coefficients, as a measures of
efficiency of least squares estimators, and when testing for sphericity, see [1, 2, 3]. In this talk we will
consider the distribution for a random antieigenvalue and discuss the use of it.
Keywords: eigenvalue, aniteigenvalue, probability distribution
AMS subject classifications. 62H10, 15A42, 15A18, 15B52
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Nonnegative/nonpositive generalized inverses and applications
in LCP

K. C. Sivakumar

Department of Mathematics, IIT Madras, Chennai 600036, India. kcskumar@iitm.ac.in

Abstract

Let A be a real square matrix whose off-diagonal entries are nonpositive. A necessary and sufficient
condition for A−1 to exist and have nonnegative entries is that A is a P-matrix (namely, the principal
minors of A are positive). This in turn, is equivalent to the statement that the linear complementarity
problem LCP(A, q) has a unique solution. Note that LCP(A, q) is to find x ≥ 0 such that Ax+ q ≥ 0 and
xT (Ax+ q) = 0. In this talk, we shall present a survey of the literature where results that are similar in
spirit to the result stated above, are recalled. Quite frequently, these conditions are stated in terms of
nonnegativity or nonpositivity of generalized inverses of matrices involving A as a submatrix.
Keywords: linear complementarity problem, M-matrix, P-matrix, Q-matrix, inverse positive matrix
AMS subject classifications. 15A09, 15B48

The arithmetic Tutte polynomial of two matrices associated to
trees 4

Sivaramakrishnan Sivasubramanian1 and R. B. Bapat2

1Dept of Maths, IIT Bombay. krishnan@math.iitb.ac.in
2Stat-Math Unit, ISI Delhi. rbb@isid.ac.in

Abstract

Arithmetic matroids arising from a list A of integral vectors in Zn are of recent interest and the arith-
metic Tutte polynomial MA (x, y) of A is a fundamental invariant with deep connections to several areas.
In this work, we consider two lists of vectors coming from the rows of matrices associated to a tree T. Let
T = (V ,E) be a tree with |V | = n and let LT be the q-analogue of its Laplacian L in the variable q. Assign
q = r for r ∈Z with r 6= 0,±1 and treat the n rows of LT after this assignment as a list containing elements
of Zn. We give a formula for the arithmetic Tutte polynomial MLT (x, y) of this list and show that it depends
only on n, r and is independent of the structure of T. An analogous result holds for another polynomial
matrix associated to T: EDT , the n×n exponential distance matrix of T. More generally, we give formulae

4Acknowledgement: The authors acknowledge support from IRCC, IIT Bombay and from the JC Bose Fellowship
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for the multivariate arithmetic Tutte polynomials associated to the list of row vectors of these two matrices
which shows that even the multivariate arithmetic Tutte polynomial is independent of the tree T.

As a corollary, we get the Ehrhart polynomials of the following zonotopes:
(i) ZEDT obtained from the rows of EDT and (ii) ZLT obtained from the rows of LT .

Keywords: arithmetic matroids, arithmetic Tutte polynomial, distance matrices, trees
AMS subject classifications. 05E99; 15B36; 52B05
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Eigenvalues and eigenvectors of the perfect matching association
scheme

Murali K. Srinivasan

Department of Mathematics, IIT Bombay, India. murali.k.srinivasan@gmail.com

Abstract

We revisit the Bose-Mesner algebra of the perfect matching association scheme (= Hecke algebra of the
Gelfand pair (S2n,Hn), where Hn is the hyperoctahedral group). Our main results are: an algorithm to
calculate the eigenvalues from symmetric group characters by solving linear equations; universal formulas,
as content evaluations of symmetric functions [1, 3], for the eigenvalues of fixed orbitals (generalizing a
result of Diaconis and Holmes [2]); and an inductive construction of the eigenvectors (generalizing a result
of Godsil and Meagher [4]).
Keywords: perfect matching scheme, content evaluation of symmetric functions
AMS subject classifications. 05E10, 05E05, 05E30
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Stability and convex hulls of matrix powers
Patrick K. Torres1 and Michael J. Tsatsomeros2

Department of Mathematics and Statistics, Washington State University, Pullman, USA.
1patrick.torres@wsu.edu, 2tsat@math.wsu.edu

Abstract

Invertibility of all convex combinations of a matrix A and the identity matrix I is equivalent to the real
eigenvalues of A, if any, being positive. Invertibility of all matrices whose rows are convex combinations of
the respective rows of A and I is equivalent to all of the principal minors of A being positive (i.e., A being a
P-matrix). These results are extended to convex combinations of higher powers of A and of their rows. The
invertibility of matrices in these convex hulls is associated with the eigenvalues of A lying in open sectors
of the right-half plane. The ensuing analysis provides a new context for open problems in the theory of
matrices with P-matrix powers.
Keywords: P-matrix, nonsingularity, positive stability, matrix powers, matrix hull
AMS subject classifications. 15A48; 15A15
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Spectrum of full transformation semigroup
Adeniji, A. O.

Department of Mathematics, Faculty of Science, University of Abuja, P.M.B. 117, Abuja,
Nigeria.

adeniji4love@yahoo.com

Abstract

Let X be a set following natural ordering of numbers and let IDTn be the identity difference full transfor-
mation semigroup, a subsemigroup of full transformation semigroup, Tn. The spectral radius of α is 1 for
all α ∈ IDTn,n ≥ 2. Let S(α) be the shift of α. Then |S(α)| sets the boundaries for eigenvalues of α. One
dimensional linear convolution of the spectrum of Tn denoted by C(Tn:r) is obtained using Cayley table and
that Symmetric group has complex spectrum and convolution.
Keywords: full transformation semigroup, identity difference transformation semigroup, matrix, eigen-
values, spectrum, convolution and Green’s relations
AMS subject classifications. 20M20

References

[1] A. O. Adeniji. Identity difference transformation semigroups 2013: PhD Thesis, University of Ilorin,
Ilorin.

[2] O. Ganyushkin, V. Mazorchuk. Classical finite transformation semigroups 2009: An introduction,
Springer.

[3] J. Green. On the structure of semigroups. Ann. Math., 54:163-172, 1951.

[4] J. M. Howie. The semigroup generated by the idempotents of a full transformation semigroup. J.
London Math. Soc., 41:707-716,1966.

[5] J. M. Howie. Some subsemigroups of infinite full transformation semigroup. Proc. Roy. Soc. Edin-
burgh, A81:169-184, 1981

[6] J. M. Howie, R. B. McFadden. Idempotent rank in finite full transformation semigroups. Proc. Roy.
Soc. Edinburgh Sect., A114:161-167, 1990.

[7] J. M. Howie, P. M. Higgins and Rukuc. On relative ranks of full transformation semigroup. Comm.
Algebra, 26:733-748, 1998.

[8] A. Laradji, A. Umar. Combinatorial results for semigroups of order-preserving full transformations.
Semigroup Forum, 72:51-62, 2006.

[9] Michael, Y. Li and A. Umar. Liancheng Wang: A criterion for stability of matrices. Journal of Mathe-
matical Analysis and Applications, 225(1):249-264, 1998.

[10] A. Umar. On the semigroups of order - decreasing finite full transformations. Proc. Roy. Soc. Edin-
burgh Sect., A120:129-142, 1992.

[11] A. Umar. Combinatorial results for orientation - preserving partial transformations. Journal of Inte-
ger Sequences, 2(2):1-16, 2011.

85



Abstracts: ICLAA 2017 Conibtributory Talks

On the distance and distance signless Laplacian eigenvalues of
graphs and the smallest Geršgorin disc

Fouzul Atik1 and Pratima Panigrahi2

1Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, New Delhi, India.
fouzulatik@gmail.com

2Department of Mathematics, Indian Institute of Technology Kharagpur, India.
pratima@maths.iitkgp.ernet.in

Abstract

The distance matrix of a simple connected graph G is D(G) = (di j), where di j is the distance between the
ith and jth vertices of G. The distance signless Laplacian matrix of the graph G is DQ(G)= D(G)+Tr(G),
where Tr(G) is a diagonal matrix whose ith diagonal entry is the transmission of the vertex i in G. In
this work we first give upper and lower bounds for the spectral radius of a nonnegative matrix. Applying
this result we find upper and lower bounds for the distance and distance signless Laplacian spectral radius
of graphs and obtain the extremal graphs for these bounds. Also we give upper bounds for the modulus
of all distance (respectively distance signless Laplacian) eigenvalues other than the distance (respectively
distance signless Laplacian) spectral radius of graphs. Finally for some classes of graphs we show that
all distance (respectively distance signless Laplacian) eigenvalues other than the distance (respectively
distance signless Laplacian) spectral radius lie in the smallest Geršgorin disc of the distance (respectively
distance signless Laplacian) matrix.
Keywords: distance matrix, distance eigenvalue, distance spectral radius, distance signless Laplacian
matrix, Geršgorin disc.
AMS subject classifications. 05C50
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On the spectra of bipartite multidigraphs

Sasmita Barik1 and Gopinath Sahoo

School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, India. 1sasmita@iitbbs.ac.in

Abstract

We define adjacency matrix as well as Laplacian matrix of a multidigraph in a new way and study the
spectral properties of some bipartite multidigraphs. It is well known that a simple undirected graph is bi-
partite if and only if the spectrum of its adjacency matrix is symmetric about the origin (with multiplicity).
We show that the result is not true in general for multidigraphs and supply a class of non-bipartite mul-
tidigraphs which have this property. We describe the complete spectrum of a multi-directed tree in terms
of the spectrum of the corresponding modular tree. In case of the Laplacian matrix of a multidigraph, we
obtain a necessary and sufficient condition for which the Laplacian matrix is singular. Finally, it is proved
that the absolute values of the components of the eigenvectors corresponding to the second smallest eigen-
value of the Laplacian matrix of a multi-directed tree exhibit monotonicity property similar to the Fiedler
vectors of an undirected tree ([3]).
Keywords: multidigrah; bipartite multidigraph; multi-directed tree; weighted digraph; adjacency matrix;
spectrum
AMS subject classifications. 05C50; 05C05; 15A18
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Semi-equivelar maps on the surface of Euler characteristic–2
Debashis Bhowmik1 and A. K. Upadhyay2

Department of Mathematics, IIT Patna, Bihta, India. 1debashisiitg@gmail.com,
2upadhyay@iitp.ac.in

Abstract

Semi-equivelar maps are generalization of equivelar maps. We classify some Semi-equivelar maps with 12
vertices on the surface of Euler characteristic (χ)=−2 and calculate their Automorphism Groups.
Keywords: semi-equivelar maps, automorphism group.
AMS subject classifications. 52B70, 57M20, 57N05
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A topological proof of Ryser’s formula for permanent and a
similar formula for determinant of a matrix

Sajal Kumar Mukherjee1 and Anjan Kumar Bhuniya2

Department of Mathematics, Visva-Bharati, Santiniketan - 731235, India.
1anjankbhuniya@gmail.com, 2shyamal.sajalmukherjee@gmail.com

Abstract

In this paper we give a topological proof of Ryser’s formula for permanents. Also we give a purely combi-
natorial proof of a Ryser-type formula for determinants. The later argument also includes a combinatorial
proof of an interesting identity about Stirling number of second kind.
Keywords: permanent, determinant, Stirling number, simplicial complex, Ryser’s formula.
AMS subject classifications. 05A05; 05A19; 05E45.
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Study of spectrum of certain multi-parameter spectral problems

Niranjan Bora

Dibrugarh University Institute of Engineering & Technology, (DUIET), Dibrugarh University,
Assam, India. niranjanbora11@gmail.com

Abstract

In this paper, Multi-parameter matrix eigenvalue problems of the form

(A i −
k∑

j=1
λ jBi j)xi = 0, i = 1,2, . . . ,k

has been considered, where λi ∈ Ck are spectral parameters, A i,Bi j are self-adjoint, bounded linear op-
erators, that act on separable Hilbert Spaces Hi, and xi ∈ Hi. The problem is to find k-tuple of values
λ = (λ1,λ2, . . . ,λk) ∈ Ck for non-zero vector xi. The k-tuple λ ∈ Ck is called an eigenvalue and the corre-
sponding decomposable tensor product x = x1 ⊗ x2 ⊗ x3 · · · ⊗ xk is called eigenvector (right). Similarly, left
eigenvector can also be defined. To study the spectrum, the problem has been identified into three cate-
gories from the viewpoint of definiteness conditions adopted by Atkinson. For numerical treatment, the
case k > 3 is considered.
Keywords: multi-parameter matrix eigenvalue problems, Kronecker product, tensor product space
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A relation between Fibonacci numbers and a class of matrices 5

Manami Chatterjee1 and K C Sivakumar2

Department of Mathematics, IIT Madras, India. 1manami.math@gmail.com,
2kcskumar@iitm.ac.in

Abstract

Farber and Berman proved that ifAn is the collection of all upper triangular, {0,1}, invertible matrices, then
for any integer s lying between 2−Fn−1 and 2+Fn−1, there exists a matrix A ∈An such that S(A−1) = s,
where S(A−1) stands for the sum of all entries of A−1 and Fn is the Fibonacci number defined by Fn =
Fn−1 +Fn−2, n > 3, F1 = F2 = 1. We will establish the analogue of this result for the collection of all upper
triangular, {0,1}, singular, group invertible matrices.
Keywords: Fibonacci number, group inverse, upper triangular matrix, {0,1} matrix, sum of entries
AMS subject classifications. 15A09; 15A15; 15B36
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Laplacian-energy-like invariant of power graphs on certain finite
groups 6

Sriparna Chattopadhyay
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Abstract

The power graph G (G) of a finite group G is the graph whose vertices are the elements of G and two
distinct vertices are adjacent if and only if one is an integral power of the other. Here we first find the
Laplacian spectrum of the power graph of additive cyclic group Zn and the dihedral group Dn partially.
Then we concentrate on Laplacian-energy-like invariant of G (Zn) and G (Dn). For a nonzero real number
α, let sα(G) be the sum of αth power of the nonzero Laplacian eigenvalues of a graph G and s 1

2
(G) is known

as Laplacian-energy-like invariant (LEL for short) of G. Here we improve lower bound of sα(G) for α< 0 or
α> 1 and upper bound of sα(G) for 0 < α< 1 given by Zhou [15] for the particular classes of graphs G (Zn)
and G (Dn). Moreover we found lower bounds of sα(G (Zn)) and sα(G (Dn)) for 0<α< 1 in terms of number of
vertices and Zagerb index. As a result we get bounds for Laplacian-energy-like invariant of these graphs.
Keywords: finite groups, power graphs, Laplacian spectrum, Laplacian-energy-like invariant
AMS subject classifications. 05C25; 05C50
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On spectral relationship of a signed lollipop graph with its
underlying cycle

Kshittiz Chettri1 and Biswajit Deb2

1Dept. of Mathematics,SGC Tadong. chabi.12.in@gmail.com
2Dept. of Mathematics, SMIT, Majhitar. biswajittalk@gmail.com

Abstract

Let Hg
n,k denote the lollipop graph on g vertices obtained by identifying a vertex of the signed cycle Cn

of order n and an end vertex of the signless path Pk+1 of order k+1.The sign of the edge connecting the
vertex v (say) of the cycle Cn to an end vertex of the path is the product of the signs of edges adjacent to v in
Cn. This sign is assigned to remaining edges in Pk+1. In this work we have deduced a general relationship
between the characterstic polynomial of Hg

n,k and Cn for k = 1, i.e., when the path is of length 1. Further,
we comment on the general case k. Also, the relationship between L− spectra and Q− spectra of Cn and
Hg

n,k are explored where L and Q stand for Laplacian and signless Laplacian matrix of a signed graph
respectively.
Keywords: cycle, lollipop graphs, paths,signed graph, Laplacian, signless Laplacian.
AMS subject classifications. 13C10; 15A09; 15A24; 15B57
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Matrix semipositivity revisited
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Abstract

Semipositive matrices (matrices that map at least one nonnegative vector to a positive vector) and mini-
mally semipositive matrices (semipositive matrices whose no column-deleted submatrix is semipositive) are
well studied in matrix theory. In this talk, we present a pot-pourri of results on these matrices. Considera-
tions involving products, difference and the principla pivot transform. We also study the following classes
of matrices in relevance to semipositivity and minimal semipositivity: N-matricces, almost N-matrices and
almost P-matrices.
Keywords: semipositive matrix, minimally semipositive matrix, principal pivot transform, Moore-Penrose
inverse, interval of matrices, N-matrix, almost N-matrix.
AMS subject classifications. 15A09,15B48.
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Generalized Fiedler pencils with repetition for polynomial
eigenproblems and the recovery of eigenvectors, minimal bases

and minimal indices
Ranjan Kumar Das1 and Rafikul Alam2

Department of Mathematics, IIT Guwahati, Guwahati, India. 1d.ranjan@iitg.ernet.in,
2rafik@iitg.ernet.in

Abstract

A polynomial eigenvalue problem (PEP) is to solve

P(λ)x :=
( m∑

i=0
A iλ

i
)
x = 0, where A i ∈Cn×n, i = 0,1, . . . ,m,

for λ ∈C and a nonzero x ∈Cn. Linearization is a classical and most widely used method for solving a PEP
in which a PEP is transformed to a generalized eigenvalue problem of the form (A +λB)u = 0 of larger
size. Structured (symmetric, anti-symmetric, palindromic, etc.) PEP arises in many applications. For a
structured PEP, it is desirable to construct structure-preserving linearizations so as to preserve the spectral
symmetry of the PEP which may be important from physical as well as computational view point. In this
talk, we consider a special class of structure-preserving linearizations known as generalized Fiedler pencil
with repetition (GFPR) and describe the recovery of eigenvectors, minimal bases and minimal indices of
PEP from those of the GFPRs.
Keywords: matrix polynomials, matrix pencils, eigenvector, minimal indices, minimal bases, lineariza-
tion.
AMS subject classifications. 65F15, 15A57, 15A18, 65F35
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On Osofsky’s 32-elements matrix ring

Soumitra Das

Department of Mathematics, North-Eastern Hill University, Permanent Campus,
Shillong-793022, Meghalaya, India. soumitrad330@gmail.com

Abstract

Let A = Z/(4) be the ring of integers module 4 and B = (2)/(4) be the ideal in A. The ring R =
(
A B
0 A

)
is

known as Osofsky’s 32-elements matrix ring, and it first appeared in [9] as an example to illustrate the
fact that injective hull of a ring may not have a ring structure in general. This paper is an attempt to
make an exhaustive study on this matrix ring. Among many things, we found that this ring, along with
Example 6.7 in [7], turns out to be another source of example of a semiperfect, CD3-ring for which not every
cyclic right R-module is quasi-discrete. We observed that the ring has the following properties: Artinian
(left/right), π-regular, I0, 2-primal, ACC annihilator (left/right), ACC principal(left/right), Clean, Coher-
ent (left/right), Cohopfian (left/right), Connected, C3, DCC annihilator (left/right), Dedekind finite, essen-
tial socle (right/left), exchange, finite, finite uniform dimension (right/left), finitely cogenerated (right/left),
finitely generated socle (right/left), Goldie (right/left), IBN, Kasch (right/left), NI (Nilpotents from an ideal),
Nil radical, Nilpotent radical, Noetherian (right/left), Non-zero Socle (right/left), Orthogonally finite, Per-
fect (right/left), Polynomial Identity, Quasi-duo (right/left), Semilocal, Semiperfect, Semiprimary, Semireg-
ular, Stable range 1, Stably finite, Strongly π-regular, T-nilpotent radical (right/left), top regular, Zorn

However, the ring lacks the following properties: Abelian, Armendariz, Baer, Bezout (right/left), Be-
zout domain (right/left), Cogenerator ring (right/left), C1, C2, distributive (right/ left), division ring, do-
main, Dual (right/left), duo (right/left), FI-injective (right/left), Finitely pseudo-Frobenius (right/left), Free
ideal ring (right/left), Frobenius, Fully prime, Fully semi prime, Hereditary (right/left), Local, Nonsin-
gular (right/left), Ore domain (right/left), Primary, Prime, Primitive (right/left), Principal ideal domain
(right/left), Principally injective (right/left), (right/ left), Quasi-Frobenius, Reduced, Reversible, Rickart
(right/left), Self injective (right/ left), Semi free ideal ring, Semicommutative (SI condition, Zero-insertive),
(right/left), Semiprime, Semiprimitive, Semisimple, Simple, Simple Artinian, Simple Socle (right/left),
Simple-injective (right/left), Strongly Connected, Strongly regular, Symmetric, Uniform (left/ right), Unit
regular, V ring (right/ left), Valuation ring (right/left), Von Neumann regular, IN (Ikeda-nakayama).

Keywords: matrix ring, injective hull, CD3-ring.
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Necessary and sufficient conditions for locating repeated solid
burst

Pankaj Kumar Das

Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur, Assam-784028.
pankaj4thapril@yahoo.co.in, pankaj4@tezu.ernet.in

Abstract

Wolf and Elspas [4] introduced a midway concept (known as error location coding) between error detection
and error correction. Error locating codes have been found to be efficient in feedback communication
systems. Solid burst error is one type of error commonly found in many memory communication channels
viz. semiconductor memory data, supercomputer storage system.

In busy communication channels, it is found by Dass, Verma and Berardi [1] that errors repeat them-
selves. They have initiated the idea of repeated errors and introduced 2–repeated burst. Further, m-
repeated burst was introduced by Dass and Verma in [2]. Extending this idea, ‘2-repeated solid burst of
length b’ and ‘m–repeated solid burst of length b’ are studied by Rohtagi and Sharma [3]. They presented
necessary and sufficient conditions for codes correcting such errors. Cyclic codes for the detection of such
errors were also studied.

In this paper, we study linear codes that detect and locate such repeated solid burst of length b. We
provide necessary and sufficient conditions for the existence of linear codes that can locate such errors. An
example is also given.
Keywords: parity check matrix, solid burst errors, error pattern-syndromes, EL-codes
AMS subject classifications. 94B05, 94B25, 94B65.
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Modified triangular and symmetric splitting method for the
steady state vector of Markov chains
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1,2Department of Mathematics, Osmania University, Hyderabad, Telangana,
India.1dsreddy.hari@gmail.com, 3Department of Mathematics, Kakatiya University,
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Abstract

In this paper, we used a modified triangular and symmetric splitting (MTS) method in order to solve the
regularized linear system Ax = b associated with stochastic matrices. We proved that there exist ε ≥ 0
such that the regularized matrix A = QT + εI is positive definite, where I is the real identity matrix of
designated dimension of QT , and QT is stochastic rate matrix with positive diagonal and non-positive
off-diagonal elements. Theoretical analysis shows that the iterative solution of MTS method converges
unconditionally to the unique solution of the regularized linear system.
Keywords: self-similarity, circulant stochastic matrices, steady state probability vector, MTS Method,
convergence analysis.
AMS subject classifications. 65F15; 65F35; 65F10; 45C05; 15B51
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Reachability problem on graphs by a robot with jump: some
recent studies

Biswajit Deb
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University. biswajittalk@gmail.com

Abstract

Consider a graph G on n vertices with a robot at one vertex, one empty vertex and obstacles in the remain-
ing n−2 vertices. Let S be a set of non-negative integers. A robot can jump from a vertex u to a vertex v
provided v is empty and there is u− v path of length m for some m ∈ S. An obstacle can be moved to an
adjacent empty vertex only. The graph G is called complete S-reachable if the robot can be taken to any
vertex of G irrespective of its starting vertex. In this talk we will discuss some recent developments in the
characterization of complete S-reachable graphs.
Keywords: diameter, reachability, starlike trees, mRJ-moves
AMS subject classifications. 91A43, 68R10, 05C05
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On principal pivot transforms of hidden Z matrices
Dipti Dubey1 and S. K. Neogy

Indian Statistical Institute, Delhi centre, India. 1diptidubey@isid.ac.in

Abstract

In this talk, we demonstrate how the concept of principal pivot transform can be effectively used to extend
many existing results on hidden Z matrices. In fact, we revisit various results obtained for hidden Z class
by Mangasarian [2, 3, 4], Cottle and Pang [1] in context of solving linear complementarity problems as
linear programs. We identify hidden Z matrices of special category and discuss the number of solutions of
the associated linear complementarity problems. We also present game theoretic interpretation of various
results related to hidden Z class .
Keywords: principal pivot transform, hidden Z-matrix, linear complementarity problem
AMS subject classifications. 90C33
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Graph Laplacian quantum states and their properties

Supriyo Dutta

Department of Mathematics, Indian Institute of Technology Jodhpur. dutta.1@iitj.ac.in

Abstract

A quantum state can be represented by a density matrix that is a positive semidefinite, Hermitian matrix
with unit trace. Given a combinatorial graph G there is a density matrix given by

ρ(G)= K(G)
trace(K(G))

, (10.1)

where K(G) = L(G), the Laplacian matrix or K(G) = Q(G), the signless Laplacian matrix. We call the
underlined quantum state as graph Laplacian quantum state [1, 2]. A number of important properties of
the underlined quantum state can be illustrated by the structure of the graph G. In this talk I shall discuss
about quantum entanglement, and discord from a graph theoretic perspective [3, 4, 5, 6].
Keywords: combinatorial graphs, Laplacian matrices, quantum states, density matrix, local unitary op-
erators, quantum entanglement, discord.
AMS subject classifications. 05C50, 81Q99
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On absolutely norm attaining paranormal operators

G. Ramesh

Department of Mathematics, IIT Hyderabad, Telangana 502285 rameshg@iith.ac.in

Abstract

Let H be a complex Hilbert space and T : H → H be a bounded linear operator. Then T is said to be
norm attaining if there exists a unit vector x0 such that ‖Tx0‖ = ‖T‖. If for any closed subspace M of H,
the restriction T|M : M → H of T to M is norm attaining, then T is called an absolutely norm attaining
operator or A N -operator. These operators are studied in [1, 2, 3]. In this talk, we present the structure of
paranormal A N -operators and give a necessary and sufficient condition under which a paranormal A N -
operator is normal.
Keywords: compact operator, norm attaining operator, A N -operator, Weyl’s theorem, paranormal opera-
tor, reducing subspace
AMS subject classifications. 47A15, 47B07, 47B20, 47B40
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Perturbation of minimum attaining operators7
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Abstract

We prove that the minimum attaining property of a bounded linear operator on a Hilbert space H whose
minimum modulus lies in the discrete spectrum, is stable under small compact perturbations. We also
observe that given a bounded operator with strictly positive essential minimum modulus, the set of compact
perturbations which fail to produce a minimum attaining operator is smaller than a nowhere dense set. In
fact it is a porous set in the ideal of all compact operators on H. Further, we try to extend these stability
results to perturbations by all bounded linear operators with small norm and obtain subsequent results.
Keywords: minimum modulus, spectrum, essential spectrum, porous set
AMS subject classifications. Primary 47B07, 47A10, 47A75, 47A55, 47B65
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A note on Jordan derivations over matrix algebras 8

Arindam Ghosh1 and Om Prakash2
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Abstract

In 2006, Zhang and Yu [4] have shown that every Jordan derivation from triangular algebra U over 2-
torsionfree commutative ring into itself is a derivation. Let C be a commutative ring with identity 1 6= 0.
We prove that every Jordan derivation over an upper triangular matrix algebra Tn(C) is a derivation. We
also prove the result for Jordan derivation on Tn(F), where F = {0,1} and further we characterize Jordan
derivation on full matrix algebras Mn(C).
Keywords: Jordan derivations, derivations, upper triangular matrix algebra, full matrix algebra
AMS subject classifications. 47B47; 47L35
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Causal detectability for linear descriptor systems
Mahendra Kumar Gupta1, Nutan Kumar Tomar2 and Raghunathan Rengaswamy3
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Abstract

Consider the linear descriptor systems of the form

Eẋ = Ax+Bu, (10.2a)

y = Cx, (10.2b)

where x ∈ Rn, u ∈ Rk, y ∈ Rp are the state vector, the input vector, and the output vector, respectively.
E, A ∈Rm×n, B ∈Rm×k, C ∈Rp×n are known constant matrices. During past few decades, a lot of work has
been done on various types of observer design for the systems of the form (10.2), see [1, 2] and the references
therein. Among all the observers, Luenberger observers were paid the most attention due to its explicit
nature. Several techniques have been developed to design Luenberger observer for the descriptor system
(10.2) and sufficient conditions on system operators have been provided for the existence of the Luenberger
observer. Hou and Müller [3] have proved that a rectangular descriptor system (10.2) can be observed by
a Luenberger observer if and only if it is causally detectable. But these authors have given the condition
of causal detectability of the system on a transformed system that can only be obtained by applying a
finite number of orthogonal transformations on the original system. Thus without getting the transformed
system, it is not possible to know that for a given descriptor system a Luenberger observer can be designed
or not. In this work, the causal observability has been established in terms of system coefficient matrices.
Therefore, necessary and sufficient conditions for the existence of Luenberger observers are provided in
terms of system matrices.
Keywords: observer design, descriptor systems, Luenberger observer, causal detectability
AMS subject classifications. 47N70; 93B07; 93B30; 93B11; 93B10; 93C05
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An alternative approach for solving fully fuzzy linear systems
based on FNN

1Jafarian A. and Measoomy Nia S.

Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, IRAN.
1jafarian5594@yahoo.com

Abstract

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism
and generalization. The focus of this paper is to introduce an efficient computational method which can be
applied to approximate solution of a fuzzy linear equations system with fuzzy square coefficients matrix
and fuzzy right hand vector. Supposedly the given fuzzy system has an unique fuzzy solution, an architec-
ture of fuzzy feed-forward neural networks (FFNN) is presented in order to find the approximate solution.
The proposed FFNN can adjust the fuzzy connection weights by using a learning algorithm that is based
on the gradient descent method. The proposed method is illustrated by several examples. Also results are
compared with the exact solutions by using computer simulations.
Keywords: fully fuzzy linear system, fuzzy neural network(FNN), learning algorithm, cost function

Nonsingular subspaces of Mn(F), F a field
Sachindranath Jayaraman

School of Mathematics, IISER Thiruvananthapuram, India.
sachindranathj@iisertvm.ac.in, sachindranathj@gmail.com

Abstract

For a field F, a subspace V of Mn(F) is said to be nonsingular if every nonzero element of V is nonsingular.
When F = C, any such subspace has dimension at most 1 and when F = R, a nonsingular subspace of
dimension n in Mn(R) will exist if and only if n = 2,4,8. Our objective is to understand the structure of
nonsingular subspaces of dimension in n in Mn(R). Connections with a specific linear preserver problem
will be pointed out.
Keywords: nonsingular subspace, invertibility (full-rank) preservers, linear preservers of minimal semi-
positivity
AMS subject classifications. 15A86, 15B48, 15A09
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Hypo-EP Operators9

P. Sam Johnson

National Institute of Technology Karnataka, Mangalore, India nitksam@gmail.com

Abstract

An analytic characterization of hypo-EP operator is given. Sum, product, restriction and factorization of
hypo-EP operators are discussed.
Keywords: hypo-EP operator, EP operator, Moore-Penrose inverse
AMS subject classifications. 47A05, 47B20
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On distance and Laplacian matrices of a tree with matrix weights
10
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Abstract

The distance matrix of a simple connected graph G is D(G)= (di j), where di j is the distance between the
vertices of i and j in G. We consider a weighted tree T on n vertices with each of the edge weight is a square
matrix of order s. The distance di j between the vertices i and j is the sum of the weight matrices of the
edges in the unique path from i to j. Then the distance matrix D of T is a block matrix of order ns×ns. In
this paper we establish a necessary and sufficient condition for the distance matrix D to be invertible and
the formula for the inverse of D, if it exists. This generalizes the existing result for the distance matrix of
a weighted tree, when the weights are positive numbers. Some more results which are true for unweighted
tree and tree with scaler weights are extended here in case of tree with matrix weights. We also extend
some result which involves relation between the eigenvalues of distance and Laplacian matrices of trees.
Keywords: trees, distance matrix, Laplacian matrix, matrix weights, inverse.
AMS subject classifications. 05C50, 05C22.
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Further results on AZI of connected and unicyclic graph11

Nijara Konch1 and Ankur Bharali2

Department of Mathematics, Dibrugarh University, Assam-786004, India.
1nijarakonch1@gmail.com, 2a.bharali@dibru.ac.in

Abstract

The Augmented Zagreb index (AZI) of a graph G, initially refers as a molecular descriptor of certain
hydrocarbons is defined as

AZI(G)= ∑
uv∈E(G)

(
dudv

du +dv −2

)3
,

where E(G) is the edge set of G and du and dv are respectively degrees of end vertices u and v of the edge
uv. This topological index introduced by Furtula et al.[6], has characterized as a useful measure in the
study of the heat and formation in heptane and octanes. In this paper, we obtain further results on AZI
for connected complement of a graph, and n- vertex unicyclic chemical graph with some improvement as
well as extremal cases. We also obtain some standard AZI results for known graphs.
Keywords: augmented Zagreb index, chemical graph, unicyclic graph
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Distance matrices of partial cubes12

R. B. Bapat1 and M. Kovše2

1Indian Statistical Institute, New Delhi, 110016, India. rbb@isid.ac.in
2School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, India. kovse@iitbbs.ac.in

Abstract

Partial cubes are isometric subgraphs of hypercubes. Median graph is a graph in which every three vertices
u,v, and w have a unique median: a vertex m that belongs to shortest paths between each pair of u,v, and
w. Median graphs present one of the most studied subclasses of partial cubes. We determine the Smith
normal form of the distance matrices of partial cubes and the factorisation of Varchenko determinant of
product distance matrices of median graphs.
Keywords: distance matrix, Smith normal form, hypercube, isometric embedding, partial cube, median
graph
AMS subject classifications. 05C12; 05C50
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On the spectrum of the linear dependence graph of finite
dimensional vector spaces13

Sushobhan Maity1 and A. K. Bhuniya2

Department of Mathematics, Visva-Bharati, Santiniketan-731235.
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Abstract

In this paper, we introduce a graph structure called linear dependence graph of a finite dimensional vector
space over a finite field. Some basic properties of the graph like connectedness, completeness, planarity,
clique number, chromatic number etc. have been studied. Also, adjacency spectrum, Laplacian spectrum
and distance spectrum of the linear dependence graph have been studied.
Keywords: graph, linear dependence, Laplacian, distance, spectrum
AMS subject classifications. 05C25; 05C50; 05C69
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On the adjacency matrix of complex unit gain graphs
Ranjit Mehatari1 and M. Rajesh Kannan2

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302
1ranjitmehatari@gmail.com

Abstract

A complex unit gain graph is a graph in which each orientation of an edge is given a complex number with
modulus 1 and it’s inverse is assigned to the opposite orientation of the edge. The adjacency matrix of a
complex unit gain graph [5] is a Hermitian matrix. Interestingly the spectral theory of complex unit gain
graphs generalizes the spectral theory of undirected graphs [1, 2] and some weighted graphs [4]. Here, we
establish some useful properties of the adjacency matrix of complex unit gain graph. We provide bounds
for the eigenvalues of the complex unit gain graphs. Then we establish some of the properties of the
adjacency matrix of complex unit gain graph in connection with the characteristic [3] and the permanental
polynomials. Then we derive spectral properties of the adjacency matrices of complex unit gain bipartite
graphs. Finally, for trees and unicyclic graphs, we establish relationships between the characteristic and
permanental polynomials of adjacency matrix of complex unit gain graph with the usual characteristic and
permanental polynomials of the (0,1) adjacency matrix of the underlying graph.
Keywords: gain graphs, characteristics polynomial of graphs, permanental polynomials of graphs, eigen-
values, unicyclic graphs, bipartite graphs.
AMS subject classifications. 05C50, 05C22
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Semipositivity of matrices over the n-dimensional ice cream cone
and some related questions 14

Vatsalkumar N. Mer1, Sachindranath Jayaraman2 and Chandrashekaran Arumugasamy3
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Abstract

An m× n matrix A with real entries is said to be semipositive if there exists x ≥ 0 such that Ax > 0,
where the inequalities are understood componentwise. Our objective is to characterize semipositivity over

the Lorentz or ice cream cone in Rn, defined by L n+ = {x = (x1, . . . , xn) ∈ Rn|xn ≥ 0,
n−1∑
i=1

x2
i ≤ x2

n}. We also

investigate products of the form A1 A−1
2 , where A1is either positive or semipositive and A2 is positive and

invertible. Time permitting, preservers of semipositivity with respect to L n+ will be pointed out.
Keywords: semipositive matrices, Lorentz cone, linear preservers
AMS subject classifications. 15B48,15A99

References

[1] J. Dorsey, T. Gannon, N. Jacobson, C. R. Johnson and M. Turnansky. Linear preservers of semi-positive
matrices. Linear and Multilinear Algebra, DOI: 10.1080/03081087.2015.1122723, 2015.

[2] M. J. Tsatsomeros. Geometric mapping properties of semipositive matrices. Linear Algebra and its
Applications, 498:349-359, 2016.

[3] R. Loewy, H. Schneider. Positive operators on the n-dimensional ice cream cone. J. Math. Anal. Appl.,
49(2): 375-392, 1975.

Computational methods to find core-EP inverse15

K. Manjunatha Prasad1 and David Raj Micheal2

Manipal Academy of Higher Education, Manipal, Karnataka, India.
1km.prasad@manipal.edu, kmprasad63@gmail.com, 2daviddgl2013@gmail.com

Abstract

Core-EP inverse G of a square matrix A is an outer inverse such that Column space (A)=Row space (A)=
Column space (Ak) for some k ≥ index (A). Core-EP inverse has been firstly defined and obtained an ex-
plicit expression by Prasad [1] in 2015. In this work, we describe the bordering method and iterative
method to find the core-EP inverse and core-EP generelized inverse.
Keywords: core-EP inverse, core-EP generalized inverse, bordering, g-inverse, iterative method
AMS subject classifications. 15A09, 15A29, 15A36
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Prediction of survival with inverse probability weighted Weibull
models when exposure is quantitative

Ashma Dorothy Monteiro1, Shreemathi S. Mayya2, K. Manjunatha Prasad3 and K. K.
Achary4

1,2,3Department of Statistics, PSPH, MAHE, Manipal, India, 1ashmamonteiro@gmail.com,
2shreemathi.mayya@manipal.edu, 3kmprasad63@gmail.com
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Abstract

Survival analysis, based on propensity scores (PS), is a promising methodology to conduct causal infer-
ence. Propensity score method for analyzing time-to-event outcomes in the categorical exposure case is
perceived to be very efficient in the estimation of effect measures such as marginal survival curves and
marginal hazard ratio in the cohort studies. These methods include techniques such as matching, covari-
ate adjustment, stratification and inverse probability of weighting (IPW) to adjust for confounding factors
between exposure groups.

But in several practical situations, the exposure/s could be continuous variable/s. For example in the
study of risk factors for diabetic foot, plantar foot pressures may be considered as exposures, which are
continuous variables in nature. Also, we come across distribution of the survival time that is different from
exponential distribution. The generalization of the exponential distribution to include the shape parameter
is the Weibull distribution.

The objective of this presentation is to describe and compare propensity score weighted model Weibull
survival model with basic Weibull survival model for different shape parameters of survival distribution.
Also, we present a methodology to compare PS based Weibull models for predicting survival (hazard rate)
when the exposure is quantitative and continuous.
Keywords: propensity score, Weibull survival, inverse probability weights, causal inference
AMS subject classifications. 62N99
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Incentive structure reorgnization to maximize healthcare
players’ payoff while keeping the healthcare service provider’s

company solvent
Akash Murthy1 and Mahathi Gunturu2
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2Microsoft me.mahathi@gmail.com

Abstract

This study focuses on modeling an incentive structure of stakeholders (Doctors, Patients, Service Providers)
in healthcare sector and optimize the stakeholders’ Payoff with the use of solution concepts of Game Theory
and Decision eMaking to arrive at an optimal solution which puts a downward pressure on the cost of
healthcare for all the players. This is done by considering the Ruin probability problem to determine the
risk or surplus process to keep the average cost burden on the consumers floating at the community health
level. These models are of the type non-cooperative extensive games which determines the tractability in
healthcare from the point of view of the utility function of stakeholders.
Keywords: Game theory, ruin probability, healthcare, extensive games
AMS subject classifications. 13C10; 15A09; 15A24; 15B57
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Immanants of q-Laplacians of trees 16

M. K. Nagar1 and S. Krishnan2

Department of Mathematics IIT Bombay, India. 1mukeshngr@iitb.ac.in,
2krishnan@math.iitb.ac.in

Abstract

Let T be a tree on n vertices with Laplacian matrix LT and q-Laplacian LT . Let χλ be the character
of the irreducible representation of the symmetric group Sn indexed by the partition λ of n. Let denote
dλ(LT ) and dλ(LT ) as the immanant of LT and LT respectively, indexed by λ. The immanantal polynomial
of LT indexed by partition λ ` n is defined as f LT

λ
(x) = dλ(xI −LT ). Let f LT

λ
(x) = ∑n

r=0(−1)r cLT
λ,rxn−r. Let

dλ(LT ) = cLT
λ,n

χλ(id) be the normalized immanant of LT indexed by λ, where id is the identity permutation in
Sn.

When λ= k,1n−k, inequalities are known for dk,1n−k (LT ) as k increases (see [1, 4, 5]). By using match-
ings and assigning statistics to vertex orientations, we generalize these inequalities to the matrix LT , for
all q ∈ R and to the bivariate q, t-Laplacian L

q,t
T for a specific set of values q, t, where both q, t ∈ R or both

q, t ∈C. Our statistic based approach also gives generalization of inequalities given in [2] for a Hadamard
inequality changing index k(LT ) of LT , to the matrices LT and L

q,t
T for trees.

Csikvári [3] defined a poset on the set of unlabelled trees on n vertices. We proved that when we go up
in this poset, |cLT

λ,r | (the coefficient of (−1)rxn−r in f LT
λ

(x) in absolute value) decreases for all q ∈ R and for
0≤ r ≤ n.
Keywords: normalized hook immanants, q-Laplacian, trees, Hadamard inequality
AMS subject classifications. 15A15; 05C05
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Jacobi type identities
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Abstract

Jacobi identity relates any minor of A−1, the inverse of a matrix A, with determinant |A| and the com-
plementary minor in the transpose of A. Several extensions have been attempted by Stanimirović et al.
[1] and Bapat [2], where the given matrix over a real or complex field is singular and rectangular. In this
paper, we consider the matrices over a commutative ring and characterize the class of outer inverses for
which Jacobi type identities could be extended.
Keywords: matrices over commutative ring, determinantal rank, generalized inverse, outer inverse, Ja-
cobi identity, Rao-regular matrix
AMS subject classifications. 15A09
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Determinants in the study of Generalized Inverses of Matrices
over Commutative Ring
Divya Shenoy P1, K. Manjunatha Prasad2
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Abstract

Determinantal rank serves as an alternative notion for the column rank of a matrix, when the matrices
are with entries from a commutative ring. The notion of minors defined with the help of determinant,
also helps in characterizing the matrices having generalized inverses, and in providing determinantal
formula for generalized inverses, whenever they exist. The Jacobi identity provides an expression for the
minors of a nonsingular matrix in terms of the determinant of a given matrix. We were successful in
extending the Jacobi identity for the outer inverses of a matrix over a commutative ring. In the process,
we attempted to characterize the existence of an outer inverse in terms of minors of a given matrix and
provide a determinantal formula for the same. As a special case, a determinantal formula for a Rao–
regular outer inverse has been provided. Also, the minus partial order on the class of regular matrices
over a commutative ring has been characterized and an extension of rank–additivity, whenever a matrix is
dominated by the other matrix with respect to the minus partial order has been explored.
Keywords: matrices over commutative ring, determinantal rank, generalized inverse, Drazin inverse,
Jacobi identity, Rao-regular matrix
AMS subject classifications. 15A09
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The Laplacian spectra of power graphs of cyclic and dicyclic
finite groups 17
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Abstract

The power graph of a group G is the graph whose vertex set is G and two distinct vertices are adjacent if
one is a power of the other. In this article, the Laplacian spectra of power graphs of certain finite groups
is studied. Firstly, certain upper and lower bounds of algebraic connectivity of power graphs of finite cyclic
groups are obtained. Then the Laplacian spectra of power graphs of dicyclic groups is investigated and the
complete Laplacian spectra of power graphs of some class of dicyclic groups are determined.
Keywords: power graph, Laplacian spectrum, algebraic connectivity, cyclic group, dicyclic group
AMS subject classifications. 05C50; 05C25
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Distance Laplacian spectra of graphs obtained by generalization
of join and lexicographic product

Somnath Paul
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Abstract

The distance Laplacian matrix of a simple connected graph G is defined as DL(G) = Tr(G)−D(G), where
D(G) is the distance matrix of G and Tr(G) is the diagonal matrix whose main diagonal entries are the
vertex transmissions in G. In this article, we determine the distance Laplacian spectra of the graphs
obtained by generalization of the join and lexicographic product of graphs (namely joined union). It is
shown that the distance Laplacian spectra of these graphs not only depend on the distance Laplacian
spectra of the participating graphs but also depend on the spectrum of another matrix of vertex-weighted
Laplacian kind (analogous to the definition given by Chung and Langlands [6]).
Keywords: distance Laplacian matrix, join, lexicographic product, joined union
AMS subject classifications. 05C50; 05C12; 15A18.

References

[1] M. Aouchiche and P. Hansen. Two Laplacians for the distance matrix of a graph. Linear Algebra
Appl., 439:21–33, 2013.

[2] M. Aouchiche and P. Hansen. Distance spectra of graphs: a survey. Linear Algebra Appl., 458:301–
386, 2014.

[3] S. Barik and G. Sahoo. On the distance spectra of coronas. Linear Multilinear Algebra, 65(8): 2017.
DOI: 10.1080/03081087.2016.1249448

[4] S. Barik, S. Pati and B.K. Sarma. The spectrum of the corona of two graphs. SIAM J. Discrete Math.,
24:47–56, 2007.

[5] D.M. Cardoso, M.A. de Freitas, E.A. Martins and M. Robbiano. Spectra of graphs obtained by a
generalization of the join graph operation. Discrete Math., 313:733–741, 2013.

[6] F.R.K. Chung and R.P. Langlands. A combinatorial Laplacian with vertex weights. J. Comb. Theory
A, 75:316–327, 1996.

[7] A. Gerbaud. pectra of generalized compositions of graphs and hierarchical networks. Discrete Math.,
310:2824–2830, 2010.

[8] Y. P. Hou and W.C. Shiu. The spectrum of the edge corona of two graphs. Electronic J. Linear Algebra,
20:586–594, 2010.

[9] C. McLeman and E. McNicholas. Spectra of coronae. Linear Algebra Appl., 435:998–1007, 2011.

[10] M. Neumann and S. Pati. The Laplacian spectra of graphs with a tree structure. Linear and Multi-
linear Algebra, 57:267–291, 2009.

116



Conibtributory Talks Abstracts: ICLAA 2017

[11] A.J. Schwenk. Computing the characteristic polynomial of a graph. in: R. Bary, F. Harary (Eds.),
Graphs Combinatorics, in: Lecture Notes in Mathematics, Springer-Verlag, Berlin, 406:153–172,
1974.
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Study of maps on surfaces using face face incident matrix
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Abstract

We introduce face face (FF) incidence matrix associated to maps on surfaces. Eigenvalues of this matrix
correponds to many topological properties. We present some observations in this direction.
Keywords: maps on surfaces
AMS subject classifications. 05E45; 05C50
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On Laplacian spectrum of reduced power graph of finite cyclic
and dihedral groups 18
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Abstract

The reduced power graph P (G) of a group G is the graph having all the elements of G as its vertex set and
two vertices u and v are adjacent in P (G) if and only if u 6= v and 〈u〉 ⊂ 〈v〉 or 〈v〉 ⊂ 〈u〉. In this paper, we
study the Laplacian spectrum of the reduced power graph of additive cyclic group Zn and dihedral group
Dn. We determine the algebraic connectivity of P (Zn) and P (Dn). Moreover, we give a lower bound for the
Laplacian energy of P (Zn).
Keywords: finite group, reduced power graph, Laplacian eigenvalues, algebraic connectivity, Laplacian
energy
AMS subject classifications. 05C50; 05C25
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Some graphs determined by their spectra
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Abstract

The graph Kn\K l,m is obtained from the complete graph Kn by removing all the edges of a complete
bipartite subgraph K l,m. In [2], Cámara and Haemers proved that the graph Kn\K l,m is determined by
its spectrum. In this paper, we show that the graph Kn\K1,m with m ≥ 4 is determined by its signless
Laplacian spectrum and also we prove that the graph Kn\K l,m is determined by its distance spectrum. In
addition, we show that the join graph mK2 ∨Kn is determined by its signless Laplacian spectrum. This
result extends earlier studies on signless Laplacian spectral determination of mK2 ∨Kn, when n = 1,2 see
[1, 5].
Keywords: cospectral graphs, signless Laplacian spectrum, distance spectrum.
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On the distance spectra and distance Laplacian spectra of graphs
with pockets 19
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Abstract

Let F,Hv be simple connected graphs. Let v be a specified vertex of Hv and u1, . . . ,uk ∈ F. Then the graph
G = G[F,u1, . . . ,uk,Hv] obtained by taking one copy of F and k copies of Hv, and then attaching the i-th
copy of Hv to the vertex ui, i = 1, . . . ,k, at the vertex v of Hv (identify ui with the vertex v of the i-th
copy) is called a graph with k pockets. We give some results describing the distance spectrum of G using
the distance spectrum of F and the adjacency spectrum of Hv. Consequently, a class of distance singular
graphs is obtained. Further, the distance Laplacian spectrum of G is also described using the distance
Laplacian spectrum of F and the Laplacian spectrum Hv. In a particular case, distance and distance
Laplacian spectra of generalized stars are discussed.
Keywords: graphs, eigenvalues, spectrum, distance matrix, distance Laplacian matrix
AMS subject classifications. 05C50, 05C12, 15A18
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Strong Z -tensors and tensor complementarity problems20
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Abstract

For an m-order n-dimensional real tensor A (hypermatrix) and q ∈Rn, the tensor complementarity problem
denoted by TCP(A , q) is to find an x ∈Rn such that

x ≥ 0, y=A xm−1 + q ≥ 0 and 〈x, y〉 = 0.

Motivated by the study on strong Z-matrices[1] in standard linear complementarity problems, we define
strong Z -tensors as a subclass of Z -tensors. In this talk, we present some of the properties of strong
Z -tensors in tensor complementarity problems.
Keywords: tensor complementarity problem, strong Z -tensor.
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Inverse eigenvalue problems for acyclic matrices whose graph is
a dense centipede

Debashish Sharma1 and Mausumi Sen2
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Abstract

The reconstruction of a matrix having a pre-defined structure from given spectral data is known as an
inverse eigenvalue problem (IEP) [1]. The objective of an IEP is to construct matrices of a certain pre-
defined structure which also satisfy the given restrictions on eigenvalues and eigenvectors of the matrix or
its submatrices. The level of difficulty of an IEP depends on the structure of the matrices which are to be
reconstructed and on the type of eigen information available. Whereas eigenvalue problems for matrices
described by graphs have been studied by several authors[2, 3, 4, 5, 6], IEPs for matrices described by
graphs have received little attention [7, 8]. In this paper, we consider two IEPs involving the reconstruction
of matrices whose graph is a special type of tree called a centipede. We introduce a special type of centipede
called dense centipede. We study two IEPs concerning the reconstruction of matrices whose graph is a dense
centipede from given partial eigen data. In order to solve these IEPs, a new system of nomenclature of
dense centipedes is developed and a new scheme is adopted for labelling the vertices of a dense centipede as
per this nomenclature . Using this scheme of labelling, any matrix of a dense centipede can be represented
in a special form which we define as a connected arrow matrix. For such a matrix, we derive the recurrence
relations among the characteristic polynomials of the leading principal submatrices and use them to solve
the above problems. Some numerical results are also provided to illustrate the applicability of the solutions
obtained in the paper.
Keywords: dense centipede, inverse eigenvalue problem, acyclic matrix, leading principal submatrices
AMS subject classifications. 05C50, 65F18
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Some properties of Steinhaus graphs
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Abstract

A Steinhaus graph is a simple graph whose adjacency matrix is a Steinhaus matrix. Steinhaus matrix is
a matrix obtained by Steinhaus triangle, Steinhaus triangle were first studied by Harboth[1] and later by
Chang[2]. Mullunzzo in 1978 made graphs from Steinhaus trianle by extending the Steinhaus triangle
in to an adjacency matrix of a Graph. In this paper we introduced Steinhaus complement of a graph
and Steinhaus self complementary graph .We characterize Steinhaus complementary graph G using two
complement of graph G.
Keywords: adjacency matrix, Steinhaus complement, K-complement.
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B-partitions and its application to matrix determinant and
permanent

Ranveer Singh

Indian Institute of Technology Jodhpur, India
pg201283008@iitj.ac.in

Abstract

There is a digraph corresponding to every square matrix over C. We generate a recurrence relation using
the Laplace expansion to calculate the determinant and the permanent of a square matrix. Solving this
recurrence relation, we found that the determinant and the permanent can be calculated in terms of the
determinant and the permanent of some specific induced subdigraphs of blocks in the digraph, respectively.
Interestingly, these induced subdigraphs are vertex-disjoint and they partition the digraph. We call such
a combination of subdigraphs as B-partition. Let G be a graph (directed or undirected) having k number
of blocks B1,B2, . . . ,Bk. A B-partition of G is a partition into k vertex-disjoint subgraph (B̂1, B̂1, . . . , B̂k)
such that B̂i is induced subgraph of Bi for i = 1,2, . . . ,k. The terms

∏k
i=1 det(B̂i),

∏k
i=1 per(B̂i) are the det-

summands and the per-summands, respectively, corresponding to the B-partition (B̂1, B̂1, . . . , B̂k). The
procedure to calculate the determinant and the permanent of a square matrix using the B-partitions is
given in [1]. In particular, the determinant (permanent) of a graph having no loops on its cut-vertices
is equal to the summation of the det-summands (per-summands), corresponding to all the possible B-
partitions. Thus, we calculate the determinant and the permanent of some graphs, which include block
graph, block graph with negatives cliques, bi-block graph, signed unicyclic graph, mixed complete graph,
negative mixed complete graph, and star mixed block graphs.
Keywords: B-partitions, blocks (2-connected components), determinant, permanent.
AMS subject classifications. 15A15; 05C20; 68R10.
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Let G be a graph and Pk = V1,V2, . . . ,Vk be a partition of its vertex set V . Recently E. Sampathkumar
and M. A. Sriraj in [3] have introduced L-matrix of G = (V ,E) of order n with respect to a partition Pk =
{V1,V2, . . . ,Vk} of the vertex set V . It is a unique square symmetric matrix Pk(G) = [ai j] whose entries ai j
are defined as follows:

ai j =


2 if vi and v j are adjacent where vi, v j ∈Vr,
−1 if vi and v j are non-adjacent where vi, v j ∈Vr,
1 if vi and v j are adjacent between the sets

Vr and Vs for r 6= s where vi ∈Vr and v j ∈Vs,
0 otherwise.

This L-matrix determines the partition of vertex set of graph G uniquely. We determine the partition
energy using its L-matrix. The eigenvalues of the partition matrix PV1∪V2∪...∪Vk (G) = Pk(G) are called k-
partition eigenvalues. We define the energy of a graph with respect to a given partition as the sum of the
absolute values of the k-partition eigenvalues of G called k-partition energy or partition energy of a graph
and is denoted by EPk (G).

In this paper we obtain partition energy of Corona of Kn and Kn−1 and also its generalized complements
with respect to uniform partition.

Uniform graph partition is a type of graph partitioning problem that consists of dividing a graph into
components, such that the components are of about the same size and there are few connections between
the components. Important applications of graph partitioning include scientific computing, partitioning
various stages of a VLSI design circuit and task scheduling in multi-processor systems. Recently, the
graph partition problem has gained importance due to its application for clustering and detection of cliques
in social, pathological and biological networks. Hence we have considered Uniform graph partition in this
paper to find the partition energy of some large graphs.
Keywords: corona, n-complement, n(i)-complement, n-partition energy
AMS subject classifications. 15A18, 05C50
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M-operators on partially ordered Banach spaces
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Abstract

For a matrix A ∈ Rn×n whose off-diagonal entries are nonpositive, there are several well-known proper-
ties that are equivalent to A being an invertible M-matrix. One of them is the positive stability of A. A
generalization of this characterization to partially ordered Banach spaces is considered in this article. Rela-
tionships with certain other equivalent conditions are derived. An important result on singular irreducible
M-matrices is generalized using the concept of M-operators and irreducibility. Certain other invertibility
conditions of M-operators are also investigated.
Keywords: M-operators, positive stability, irreducibility, invertibility
AMS subject classifications. [msc2010]15B48, 46B40, 47B65, 47B99
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Comparison results for proper double splittings of rectangular
matrices

K. Appi Reddy1 and T. Kurmayya2

Department of Mathematics, National Institute of Technology, Warangal
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Abstract

In this article, we consider two proper double splittings satisfying certain conditions, of a semi-monotone
rectangular matrix A and derive new comparison results for the spectral radii of the corresponding iter-
ation matrices. These comparison results are useful to analyse the rate of convergence of the iterative
methods (formulated from the double splittings) for solving rectangular linear system Ax = b.
Keywords: double splittings, semi-monotone matrix, spectral radius, Moore-Penrose inverse, group in-
verse.
AMS subject classifications. 15A09; 65F15

References

[1] S.Q. Shen and T.Z. Huang, Convergence and Comparision Theorems for Double Splittings of Matrices.
Computers and Mathematics with Applications, 51:1751-1760, 2006.

[2] A.Ben-Israel and T.N.E. Greville. Generalized Inverses:Theory and Applications 2003: 2nd edition,
Springer Verlag, New York.

[3] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences 1994: Classics
in Applied Mathematics, SIAM.

[4] Y. Song. Comparison thoerems for splittings of matrices. Numer.Math, 92:563-591, 2002.

126



Conibtributory Talks Abstracts: ICLAA 2017

Cordial labeling for three star graph 21

Shendra Shainy V1 and Balaji V2

Department of Mathematics, Sacred Heart College, Tirupattur, India.
1shendrashainy3103@gmail.com, 2pulibala70@gmail.com

Abstract

Cordial labelingis used to label the vertices and edges of a graph with {0,1} under constraint, such that the
number of vertices with label 0 and 1 differ by atmost 1 and the number of edges with label 1 and 0 differ
by atmost 1. In this paper we prove that the three star graph K1,p ∧K1,q ∧K1,r is a cordial graph for all
p ≥ 1 , q ≥ 1 and r ≥ 1.
Keywords: cordial graph and star
AMS subject classifications. 05C78.
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Further result on skolem mean labeling22

Maheshwari V1, Sudhakar S2 and Balaji V3

1Department of Mathematics, Vells University, Chennai, India.
2,3Department of Mathematics, Sacred Heart College, Tirupattur, India.

1mahaprabu76@gmail.com 2sudha31.sr@gmail.com 3pulibala70@gmail.com

Abstract

In this paper, we prove if a ≤ b < c, the seven star K1,a ∪K1,a ∪K1,a ∪K1,a ∪K1,a ∪K1,b ∪K1,c is a skolem
mean graph if |b− c| < 4+5a for a = 2,3,4, ...;b = 2,3,4, ... and 5a+b−3≤ c ≤ 5a+b+3.
Keywords: Skolem mean graph and star
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Bounds for the distance spectral radius of split graphs 23

Anu Varghese1 and A. Vijayakumar2
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India. 1anukarintholil@gmail.com, 2vambat@gmail.com

Abstract

A graph G is a split graph, if its vertex set can be partitioned into an independent set and a clique. It is
known that the diameter of a split graph is atmost 3. We obtain sharp bounds for the distance spectral
radius of split graphs. We also find the distance spectral radius of biregular split graphs of diameter 2 and
that of biregular split graphs in which the distance between any two vertices in the independent set is 3.
Keywords: split graphs, distance matrix, distance spectral radius.
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Nordhaus-Gaddum type sharp bounds for graphs of diameter two
Malathy V.1 and Kalyani Desikan2

Department of Mathematics, SAS, VIT University, India.
1malathy.viswanathan2015@vit.ac.in, 2kalyanidesikan@vit.ac.in

Abstract

The spectral radius of a graph is the largest eigenvalue of its adjacency matrix and its Laplacian spectral
radius is the largest eigenvalue of its Laplacian matrix. Here we try to find Nordhaus-Gaddum type bounds
for spectral radius of adjacency matrix, Laplacian spectral radius of the graph G. We here by establish
sharp bounds for λ(G)+λ(Gc),µ(G)+µ(Gc),λ(G) ·λ(Gc),µ(G) ·µ(Gc) for star graph and Friendship graphs
which possess the following unique properties like (a) It is of diameter - 2, every vertex is connected to the
common vertex O. (b) µ(G)+µ(Gc) = 2n−1 and (c) Its complement is a disjoint union of edge-disconnected
components of a connected regular graph and an isolated vertex. In this paper we restrict our discussion
to odd values of n, in particular for n = 7,9,11,13, . . . ,2k+1 for k = 3,4,5.........
Keywords: Adjacency matrix, Laplacian matrix, Nordhaus-Gaddum type bounds, star graph, friendship
graph, complement of a graph
AMS subject classifications. 05C50; 15A42
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Gaussian prime labeling of some cycle related graphs
Rajesh Kumar T. J.1 and Mathew Varkey T. K.2

Department of Mathematics, TKM College of Engineering, Kollam, Kerala, India
1vptjrk@gmail.com, 2mathewvarkeytk@gmail.com

Abstract

A graph G on n vertices is said to have prime labelling if there exists a labelling from the vertices of G
to the first n natural numbers such that any two adjacent vertices have relatively prime labels. Gaussian
integers are the complex numbers whose real and imaginary parts are both integers. A Gaussian prime
labelling on G is a bijection l : V (G) → [γn],the set of the first n Gaussian integers in the spiral ordering
such that if uv ∈ E(G) ,then l(u) and l(v) are relatively prime. Using the order on the Gaussian integers,
we investigate the Gaussian prime labelling of some cycle related graphs and unicyclic graphs.
Keywords: Gaussian Prime labelling, Gaussian integers, unicyclic graphs
AMS subject classifications. 05C78
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Skolem mean labeling of parallel transformation of a class of
trees

Mathew Varkey T. K.

Department of Mathematics, TKM College of Engineering, Kollam, Kerala, India.
mathewvarkeytk@gmail.com

Abstract

A graph G = (V ,E) with p vertices and q edges is said to be Skolem mean labeling of a graph for q ≥ p+1,
if there exists a function f : V (G) → {1,2,3, . . . , p} such that the induced map f ∗ : E(G) → {2,3,4, . . . , p}
defined by

f ∗(uv)=
{

f (u)+ f (v)
2 if f (u)+ f (v) is even

f (u)+ f (v)+1
2 if f (u)+ f (v) is odd

.

Then the resulting edges get distinct labels from the set {2,3, . . . , p}. In this paper we investigate the Skolem
Mean Labeling of parallel transformation of a class of trees.
Keywords: Skolem mean labeling, trees
AMS subject classifications. 05C78
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Finite-direct-injective modules and column finite matrix rings
Sanjeev Kumar Maurya1 and A. J. Gupta2

Department of Mathematical Sciences, IIT(BHU) Varanasi, Varanasi 221005, India.
1sanjeevm50@gmail.com, 2agupta.apm@itbhu.ac.in

Abstract

In this paper we generalize the concept of direct injective (or C2) modules to finite direct injective modules.
Some properties of finite direct injective modules with respect to column finite matrix rings are investi-
gated. We show that direct summand of finite direct injective modules inherits the property, while direct
sum need not. Some well known classes of rings are characterize in terms of finite direct injective modules.
Keywords: C2-module, C3-module, finite-direct-injective module, regular ring
AMS subject classifications. 16D50, 16E50
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Minimum matching dominaitng sets of circular-arc graphs

Dhananjaya Reddy

Department of Mathematics, Govt. Degree & PG College, Puttur, A.P., India.
djreddy65@gmail.com

Abstract

A graph G is called a circular-arc graph if there is a one-to-one correspondence between V and A such that
two vertices in V are adjacent in G if and only if their corresponding arcs in A intersect. A dominating
set for a graph G = (V ,E) is a subset D of V such that every vertex not in D is adjacent to at least one
member of D. The theory of domination in graphs introduced by [1] and [3] is an emerging area of research
in graph theory today. A matching in G is a subset M of edges of E such that no two edges in M are
adjacent. A matching M in G is called a perfect matching if every vertex of G is incident to some edge in
M. A dominating set D of G is said to be a matching dominating set if the induced subgraph 〈D〉 admits a
perfect matching. The cardinality of the smallest matching dominating set is called matching domination
number. In this paper presents an algorithm for finding minimum matching dominating sets in circular
arc graphs.
Keywords: circular arc graphs, dominating set, domatic number, matching dominating sets
AMS subject classifications. 05C, 65S
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On category of R-modules and duals

P. G. Romeo
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Abstract

In [5] K.S.S.Nambooripad describe categories with subobjects in which every inclusion splits and every
morphism has factorization as a category C with factorization property. A cones in such categories C is
certain map from vC to C and a cone γ in C is a proper cone if there is at least one component of γ an
epimorphism. Here it is shown that the category of R-modules where R is any commutative ring -a well
known abelian category- is a proper category. Further we discuss the semigroup of cones in this category
and the dual category.
Keywords:
AMS subject classifications.

134



Posters Abstracts: ICLAA 2017

References

[1] A. H. Clifford, G. B. Preston. The algebraic theory of semigroups 1961: Math Surveys No. 7, American
Mathematical Society, Providence,R.I.

[2] J. M. Howie. Fundamentals of semigroup theory 1995: Clarendon Press, Oxford. ISBN 0-19-851194-9.

[3] S. Mac Lane. Categories for the working mathematician 1971: Springer Verlag, Newyork, ISBN 0-
387-98403-8.

[4] Michal Artin. Algebra 1994: ISBN 81-203-0871-9.

[5] K.S.S. Nambooripad. Theory of cross connections 1994: Publication No. 28 - Centre for Mathematical
Sciences, Trivandrum.

[6] P. G. Romeo. Concordant Semigroups and Balanced Categories. Southeast Asian Bulletin of Mathe-
matics, 31:949–961, 2007.

135



(from left) Prof Sharad S Sane,
Prof Murali K. Srinivasan,

Prof N. Eagambaram, Prof R.
B. Bapat and Prof T. E. S.
Raghavan at Malpe Beach

Prof Steve Kirkland
chairing a session

(from left) K. P. S. Bhaskara
Rao, Sharad S. Sane and

Seetharama Gowda on dis-
cussion during Tea Break



List of Delegates: ICLAA 2017
1. Rasila V. A.

Cochin University of Science and Technology, India, 17rasila17@gmail.com
2. Adenike Olusola Adeniji

University of Abuja, Abuja, Nigeria, adeniji4love@yahoo.com*
3. Rafikul Alam

Indian Institute of Technology Guwahati, India, rafik@iitg.ernet.in
4. Vinay Arora

Panjab University (PUSSGRC), India, vinay2037@gmail.com*
5. S. Arumugam

Kalasalingam University, India, s.arumugam.klu@gmail.com
6. Chandrashekaran Arumugasamy

Central University of Tamil Nadu, Thiruvarur, India, chandrashekaran@cutn.ac.in
7. Fouzul Atik

Indian Statistical Institute, Delhi Centre, India, fouzulatik@gmail.com
8. Mojtaba Bakherad

University of Sistan and Baluchestan, Iran, Islamic Republic of, mojtaba.bakherad@yahoo.com*
9. Oskar Maria Baksalary

Adam Mickiewicz University, Poland, obaksalary@gmail.com*
10. R. Balakrishnan

Bharathidasan University, India, mathrb13@gmail.com*
11. Ravindra B. Bapat

Indian Statistical Institute Delhi Centre, India, rbb@isid.ac.in
12. Sasmita Barik

Indian Institute of Technology Bhubaneswar, India, sasmita@iitbbs.ac.in*
13. Shaikh Ameer Basha

Bangalore University, India, shaikhameerbasha@gmail.com*
14. Ram Bharosh

National Institute of Technology Rourkela, India
rambharoshnnl1998@gmail.com*

15. B. V. Rajarama Bhat
Indian Statistical Institute Bangalore, India, bhat@isibang.ac.in

16. Rajendra Bhatia
Indian Statistical Institute, India, rbh@isid.ac.in*

17. S. Parameshwara Bhatta
Mangalore University, India, s_p_bhatta@yahoo.co.in*

18. Debashis Bhowmik
Indian Institute of Technology Patna, India, debashisiitg@gmail.com

19. Anjan Kumar Bhuniya
Visva-Bharati, Santiniketan, India, anjankbhuniya@gmail.com*

20. Zheng Bing
Lanzhou University, China, bzheng@lzu.edu.cn

21. Paritosh Biswas
von Karman Society, India, p.biswas1943@gmail.com*

22. Niranjan Bora
Dibrugarh University Institute of Engineering & Technology, India,
niranjanbora11@gmail.com

23. Arup Bose

137



List of Delegates: ICLAA 2017

Indian Statistical Institute, India, bosearu@gmail.com*
24. Manami Chatterjee

Indian Institute of Technology Madras, India, manami.math@gmail.com
25. Sriparna Chattopadhyay

NISER Bhubaneswar, India, sriparna@niser.ac.in*
26. Guoliang Chen

East China Normal University, China, glchen@math.ecnu.edu.cn*
27. Kshittiz Chettri

SGC Tadong, Gangtok, India, chabi.12.in@gmail.com
28. Projesh Nath Choudhury

Indian Institute of Technology Madras, India, n.projesh@gmail.com
29. Deepa D.

Kerala University, India, deeparajk@yahoo.co.in
30. Soumitra Das

North Eastern Hill University, India, soumitrad330@gmail.com
31. Sunil Das

Indian Institute of Technology Guwahati, India, sunil2chandra@gmail.com
32. Pankaj Kumar Das

Tezpur University, India, pankaj4thapril@yahoo.co.in*
33. Ranjan Kumar Das

Indian Institute of Technology Guwahati, India
d.ranjan@iitg.ernet.in

34. Rajaiah Dasari
Osmania University, India, dsreddy.hari@gmail.com*

35. Somnath Datta
University of Florida, United States, somnath.datta@ufl.edu

36. Biswajit Deb
Sikkim Manipal Institute of Technology, India, biswajittalk@gmail.com

37. Hiranya Kishore Dey
Indian Institute of Technology Bombay, India, hiranya.dey@gmail.com

38. Amitav Doley
Dibrugarh University, India, amitav1987doley@gmail.com*

39. Dipti Dubey
Indian Statistical Institute Delhi Centre, India, diptidubey@isid.ac.in

40. Supriyo Dutta
Indian Institute of Technology Jodhpur, India, dutta.1@iitj.ac.in*

41. N. Eagambaram
Former DDG, India, ekambaramn@gmail.com

42. Richard Barry Ellard
University College Dublin, Ireland, richardellard@gmail.com

43. Ramesh G.
Indian Institute of Technology Hyderabad, India, rameshg@iith.ac.in

44. Sudhakara G.
Manipal Institute of Technology, Manipal, India, sudhakara.g@manipal.edu

45. Jadav Ganesh
Indian Institute of Technology Hyderabad, India, ma12p1003@iith.ac.in*

46. Ebrahim Ghorbani
K.N. Toosi University of Technology, Iran, Islamic Republic of, e_ghorbani@ipm.ir

138



List of Delegates: ICLAA 2017

47. Arindam Ghosh
Indian Institute of Technology Patna, India, arindam.rkmrc@gmail.com

48. Chinmay Kumar Giri
National Institute of Technology Raipur, India, ckg2357@gmail.com*

49. Muddappa Seetharama Gowda
University of Maryland, Baltimore County, United States, gowda@umbc.edu

50. Vasudeva Guddattu
MAHE, Manipal, India, vasudev.guddattu@manipal.edu

51. Mahathi Gunturu
Microsoft, India, me.mahathi@gmail.com*

52. Mahendra Kumar Gupta
Indian Institute of Technology Madras, India, mahendra14389@gmail.com*

53. Shahistha H.
Manipal Institute of Technology, Manipal, India, shahistha.hanif@manipal.edu

54. Sujatha H. S.
Manipal Institute of Technology, India, sujatha.jayaprakash@manipal.edu

55. Stephen John Haslett
Australian National University, Australia, stephen.haslett@anu.edu.au

56. M. M. Holliyavar
K.L.E Society’s Jagadguru Tontadarya College, India, mmholliyavar@gmail.com*

57. Hazel Margaret Hunter
Auckland University of Technology, New Zealand, hazelmhunter@gmail.com

58. Jeffrey Hunter
Auckland University of Technology, New Zealand, jeffrey.hunter@aut.ac.nz

59. Akhlaq Husain
BML Munjal University Gurgaon, India, akhlaq.husain@bml.edu.in*

60. Aaqib Iqbal
University of Kashmir, India, this.is.aaqib.iqbal@gmail.com*

61. Rajesh Kumar T. J.
TKM College of Engineering, Kollam, Kerala, India, vptjrk@gmail.com

62. Ahmad Jafarian
Islamic Azad university, Urmia, Iran, Islamic Republic of, Jafarian5594@yahoo.com*

63. Tanweer Jalal
National Institute of Technology, Srinagar, India, tjalal@nitsri.net*

64. Rakesh Jana
Indian Institute of Technology Guwahati, India, jana.rakesh.math@gmail.com

65. Sachindranath Jayaraman
IISER Thiruvananthapuram, India, sachindranathj@gmail.com

66. P. Sam Johnson
National Institute of Technology Karnataka, India, nitksam@gmail.com

67. Nayan Bhat K.
MAHE, Manipal, India, bhatnayan@gmail.com

68. Harikrishnan P. K.
Manipal Institute of Technology, India, pkharikrishnans@gmail.com

69. Mathew Varkey T. K.
TKM College of Engineering, Kollam, Kerala, India, mathewvarkeytk@gmail.com

70. Kamaraj K.
Anna University, India, krajkj@yahoo.com

139



List of Delegates: ICLAA 2017

71. Mitra K.
P. A. College of Engineering, India, mitra.math@pace.edu.in*

72. Debajit Kalita
Tezpur University, India, k.debajit@gmail.com*

73. Asha Kamath
MAHE, Manipal, India, asha.kamath@manipal.edu

74. M. Rajesh Kannan
Indian Institute of Technology Kharagpur, India, rajeshkannan1.m@gmail.com

75. Mounesha H. Kantli
K.L.E Society’s Jagadguru Tontadarya College, India, mkantli@gmail.com*

76. Meghna R. Karkera
MAHE, Manipal, India, mkarkera98@gmail.com

77. Stephen James Kirkland
University of Manitoba, Canada, Canada, Stephen.Kirkland@umanitoba.ca

78. Nijara Konch
Dibrugarh University, India, nijarakonch1@gmail.com

79. Bhaskara Rao Kopparty
Indiana University Northwest, United States, bkoppart@iun.edu

80. Matjaz Kovse
Indian Institute of Technology Bhubaneswar, India, matjaz.kovse@gmail.com

81. S. H. Kulkarni
Indian Institute of Technology Madras, India, shk@iitm.ac.in

82. V. B. Kiran Kumar
Cochin University of Science And Technology (CUSAT), India, kiranbalu36@gmail.com*

83. Rakesh Kumar
Indian Institute of Technology Bhubaneswar, India, rkmath1729@gmail.com

84. Jais Kurian
St Stephen’s College, Uzhavoor, India, jaiskurian1729@gmail.com

85. Arbind Kumar Lal
Indian Institute of Technology Kanpur , India, arlal@iitk.ac.in*

86. Helmut Leeb
TU Wien, Atominstitut, Austria, leeb@kph.tuwien.ac.at

87. André Leroy
Université d̀ Artois, France, andreleroy55@gmail.com

88. Gayathri M.
The Gandhigram Rural Institute - Deemed University, India, mgayathri.maths@gmail.com

89. Vinay Madhusudanan
Manipal Institute of Technology, Manipal, India, vinay.m2000@gmail.com

90. Sushobhan Maity
Visva-Bharati, Santiniketan, India, susbhnmaity@gmail.com*

91. Aijaz Ahmad Malla
University of Kashmir, Srinagar, India, ahaijaz99@gmail.com*

92. Augustyn Markiewicz
Poznan University of Life Sciences, Poland, amark@up.poznan.pl

93. Maria Mathews
MAHE, Manipal, India, mariamathews92@gmail.com

94. Sanjeev Kumar Maurya
Indian Institute of Technology (BHU) Varanasi, India, sanjeevm50@gmail.com*

140



List of Delegates: ICLAA 2017

95. Shreemathi Mayya
MAHE, Manipal, India, shreemathi.mayya@manipal.edu

96. Ranjit Mehatari
Indian Institute of Technology Kharagpur, India, ranjitmehatari@gmail.com*

97. Vatsalkumar Nandkishor Mer
IISER Thiruvananthapuram, India, vatsal.n15@iisertvm.ac.in

98. David Raj Micheal
MAHE, Manipal, India, daviddgl2013@gmail.com

99. Sabyasachi Mondal
Indian Institute of Technology Guwahati, India, sabyamath1992@gmail.com

100. Ashma Dorothy Monteiro
MAHE, Manipal, India, ashmamonteiro@gmail.com

101. Shruti Murthy
MAHE, Manipal, India, itzshruti@gmail.com

102. Akash Murthy
Euprime, India, akash@euprime.org*

103. Vipin N.
Manipal University, Manipal, India, vipin.nair@manipal.edu

104. Mukesh Kumar Nagar
Indian Institute of Technology Bombay, India, nagar.m.1988@gmail.com

105. Rakesh Nandi
National Institute of Technology Raipur, India, nandi.rakesh6@gmail.com*

106. Nupur Nandini
MAHE, Manipal, India, n.nandini048@gmail.com

107. S. K. Neogy
Indian Statistical Institute Delhi Centre, India, skn@isid.ac.in

108. Mohammad Javad Nikmehr
K. N. Toosi University of Technology, Iran, Islamic Republic of, nikmehr@kntu.ac.ir*

109. Nilima
MAHE, Manipal, India, nilima.ar@manipal.edu

110. Divya Shenoy P.
Manipal Institute of Technology, Manipal, India, divya.shenoy@manipal.edu

111. Sushmitha P.
Indian Institute of Technology Madras, India, sushitulasi@gmail.com

112. Ramesh Prasad Panda
Indian Institute of Technology Guwahati, India, r.panda@iitg.ernet.in

113. Shradha Parsekar
MAHE, Manipal, India, shradha6969@gmail.com

114. Sukanta Pati
Indian Institute of Technology Guwahati, India, pati@iitg.ernet.in

115. Rashmirekha Patra
Sambalpur University Institute of Information Technology, India, rashmath12@gmail.com*

116. Jerin Paul
MAHE, Manipal, India, jerin.paul@manipal.edu

117. Somnath Paul
Tezpur University, Assam, India, somnath.paul60@gmail.com*

118. Sumathi K. Prabhu
Manipal Institute of Technology, MAHE, Manipal, India, chaitra.udipi@gmail.com

141



List of Delegates: ICLAA 2017

119. K. Manjunatha Prasad
MAHE, Manipal, India, km.prasad@manipal.edu

120. Kuncham Syam Prasad
Manipal Institute of Technology, India, kunchamsyamprasad@gmail.com

121. Abhyendra Prasad
Indian Institute of Technology Patna, India, abhyendra.pma14@iitp.ac.in*

122. Simo Puntanen
University of Tampere, Finland, simo.puntanen@uta.fi

123. Amitha Puranik
MAHE, Manipal, India, puranik.amitha@gmail.com

124. Rajkumar R.
The Gandhigram Rural Institute - Deemed University, India, rajkumar.iitm@gmail.com*

125. T. E. S. Raghavan
University of Illinois at Chicago, United States, terctu@gmail.com

126. B. R. Rakshith
University of Mysore, India, ranmsc08@yahoo.co.in

127. Sonu Rani
Indian Institute of Technology Bhubaneswar, India, snyadav96@gmail.com

128. Bilal Ahmad Rather
University of Kashmir, India, bilalahmadrr@gmail.com*

129. N. Ravishankar
MAHE, Manipal, India, ravi.shankar@manipal.edu

130. Dhananjaya Reddy
Government Degree College, Puttur, India, djreddy65@gmail.com

131. P. G. Romeo
Cochin University of Science and Technology, India, romeo_parackal@yahoo.com*

132. Veeramani S.
Indian Institute of Technology Hyderabad, India, ma13p1005@iith.ac.in*

133. Gokulraj S.
Central University of Tamil Nadu, Thiruvarur, India, gokulrajs93@gmail.com

134. Mohana K. S.
Mangalore University, India, krish305@gmail.com

135. Aniruddha Samanta
Indian Institute of Technology Kharagpur, India, aniruddha.samanta@iitkgp.ac.in

136. Sharad S. Sane
Indian Institute of Technology Bombay, India, sharadsane@gmail.com

137. Bhaba Kumar Sarma
Indian Institute of Technology Guwahati, India, bhabasarma@gmail.com*

138. Kuldeep Sarma
Tezpur University, India, kuldeep.sarma65@gmail.com*

139. Deepak Sarma
Tezpur University, India, deepaks@tezu.ernet.in*

140. Rezwan Ul Shaban
University of Kashmir, India, rezwanbhat21@gmail.com*

141. Debashish Sharma
Gurucharan College, Silchar, India, debashish0612@gmail.com

142. Khalid Shebrawi
Al Balqa’ Applied University, Jordan, shebrawi@yahoo.com

142



List of Delegates: ICLAA 2017

143. Y. Santhi Sheela
MAHE, Manipal, India, krishsanthi76@gmail.com

144. Jyoti Shetty
Manipal Institute of Technology, Manipal, India, jyotishetty.shetty@gmail.com

145. Adilson de Jesus Martins da Silva
University of Cape Verde, Cape Verde, adilson.dasilva@docente.unicv.edu.cv*

146. Ajit Iqbal Singh
The Indian National Science Academy, New Delhi, India, ajitis@gmail.com

147. Ranveer Singh
Indian Institute of Technology Jodhpur, India, pg201283008@iitj.ac.in

148. Martin Singull
Linköping University, Sweden, martin.singull@liu.se

149. K. C. Sivakumar
Indian Institute of Technology Madras, India, kcskumar@iitm.ac.in

150. Sivaramakrishnan Sivasubramanian
Indian Institute of Technology Bombay, India, siva.krishnan@gmail.com

151. Hilary Smith
Australia, hilary_smith@xtra.co.nz*

152. Manoj Solanki
S. V. College, (Autonomous), India, solomanoj14@gmail.com*

153. Kedukodi Babushri Srinivas
Manipal Institute of Technology, India, babushrisrinivas@gmail.com

154. Murali K. Srinivasan
Indian Institute of Technology Bombay, India, murali.k.srinivasan@gmail.com

155. M. A. Sriraj
Vidyavardhaka College of Engineering, Mysuru, India, masriraj@gmail.com

156. Ashish K. Srivastava
Saint Louis University, USA, United States, asrivas3@slu.edu*

157. Sudeep Stephen
The University of Newcastle, Australia, Australia, sudeep.stephens@gmail.com

158. Lavanya Suriyamoorthy
Indian Institute of Technology Madras, India, mathlavi@gmail.com

159. Anitha T.
The Gandhigram Rural Institute - Deemed University, India, tanitha.maths@gmail.com

160. Kurmayya Tamminana
National Institute of Technology Warangal, India, kurmi1979@gmail.com

161. Michael Tsatsomeros
Washington State University, United States, tsat@math.wsu.edu

162. Balaji V.
Thiruvalluvar University, India, pulibala70@gmail.com

163. Shendra Shainy V.
Thiruvalluvar University, India, shendrashainy3103@gmail.com

164. Anu Varghese
BCM College, Kottayam, India, anukarintholil@gmail.com

165. Dhanyashree Vinay
SMVITM, Bantakal, India, dhanyashree88@gmail.com

166. Malathy Viswanathan
VIT University, India, malathy.viswanathan2015@vit.ac.in

143



Prof Sukanta Pati deliv-
ering a talk on ‘Inverses
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