

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

Effect of adding regressors on the equality of the BLUEs under two linear models

Stephen J. Hasletta, Simo Puntanenb,*

ARTICLE INFO

Article history:
Received 7 July 2008
Received in revised form
19 June 2009
Accepted 19 June 2009

Accepted 19 June 2009 Available online 27 June 2009

MSC: 15A42

62J05

62H12 62H20

Keywords:

Best linear unbiased estimator

BLUE

Frisch-Waugh-Lovell theorem

Gauss-Markov model

OLSE

Ordinary least squares

Orthogonal projector

Partitioned linear model Reduced linear model

Updating linear regression

ABSTRACT

In this paper we consider the estimation of regression coefficients in two partitioned linear models, shortly denoted as $\mathcal{M}_{12} = \{\mathbf{y}, \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2, \mathbf{V}\}$, and $\underline{\mathcal{M}}_{12} = \{\mathbf{y}, \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2, \underline{\mathbf{V}}\}$, which differ only in their covariance matrices. We call \mathcal{M}_{12} and $\underline{\mathcal{M}}_{12}$ full models, and correspondingly, $\mathcal{M}_i = \{\mathbf{y}, \mathbf{X}_i \boldsymbol{\beta}_i, \mathbf{V}\}$ and $\underline{\mathcal{M}}_i = \{\mathbf{y}, \mathbf{X}_i \boldsymbol{\beta}_i, \underline{\mathbf{V}}\}$ small models. We give a necessary and sufficient condition for the equality between the best linear unbiased estimators (BLUEs) of $\mathbf{X}_1 \boldsymbol{\beta}_1$ under \mathcal{M}_{12} and $\underline{\mathcal{M}}_{12}$. In particular, we consider the equality of the BLUEs under the full models assuming that they are equal under the small models.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the partitioned linear model

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon},\tag{1.1}$$

or more succinctly,

$$\mathcal{M}_{12} = \{ \mathbf{y}, \mathbf{X}\boldsymbol{\beta}, \mathbf{V} \} = \{ \mathbf{y}, \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2, \mathbf{V} \}, \tag{1.2}$$

where $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$, $E(\varepsilon) = \mathbf{0}$, $cov(\mathbf{y}) = cov(\varepsilon) = \mathbf{V}$. We denote the expectation vector and covariance matrix, respectively, by $E(\cdot)$ and $cov(\cdot)$.

E-mail addresses: s.j.haslett@massey.ac.nz (S.J. Haslett), simo.puntanen@uta.fi (S. Puntanen).

^aInstitute of Fundamental Sciences, Massey University, Palmerston North, New Zealand

^bDepartment of Mathematics and Statistics, FI-33014, University of Tampere, Finland

^{*} Corresponding author.