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Abstract
It is well known, due originally to C.R. Rao in early 1970s, that the best linear unbiased estimator, BLUE, of X— in
the linear model M = {y, X—, V} can be expressed in the form X(XÕW≠X)≠XÕW≠y, where W is a specific
matrix of the form W = V+XTXÕ with T satisfying the column space condition C (W) = C (X : V). We denote
this class of matrices as W. Choice of T as an identity matrix gives an obvious member W = V + XXÕ œ W.
The matrices belonging to the class W have several interesting mathematical properties. In particular, the use of
matrix W œ W appears to be surprisingly handy and helpful tool when dealing with the linear statistical models.
Our aim is to review and collect together some essential features of W and its use in linear statistical models.
While doing this, we go through some related basic properties of the best linear unbiased estimation.

Keywords: Best linear unbiased estimator, BLUE, Column space, Generalized inverse, Löwner ordering,Linear
su�ciency, Partitioned linear model.
MSC: 62J05, 62J10

1 Introduction: Basic Tools
We begin this article by introducing the notation and the basic mathematical tools that we are going
to use; these matters will occupy the first two sections. In a nutshell, we slowly approach the problems
what we meet if we want to use a particular kind of estimator in the linear model to catch the best linear
unbiased estimator, BLUE, for the unknown parametric function. In our considerations the matrix of the
type W = V + XTX

Õ, where X
Õ is the transpose of X, will have the main role. But before the main

goal, we need some basic tools and definitions.
In this article we consider the linear model y = X— + Á or shortly

M = {y, X—, V} .

Here y is an n-dimensional observable response variable, and Á is an unobservable random error with a
known covariance matrix cov(Á) = cov(y) = V (can be singular) and expectation E(Á) = 0 œ n. The
matrix X is a known n ◊ p matrix, i.e., X œ n◊p, and — œ p is a vector of fixed (but unknown)
parameters. We will denote µ = X— so that E(y) = µ = X—. Sometimes the covariance matrix is of
the type ‡

2
V, where ‡

2 is an unknown positive constant.

© 2022 Author(s). (https://www.thegsa.in/).
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By the partitioned linear model we mean that y = X1—1 + X2—2 + Á, or shortly denoted

M12 = {y, X—, V} = {y, X1—1 + X2—2, V} .

In addition to the full model M12, we will consider the small models Mi = {y, Xi—i, V}, i = 1, 2, and
the reduced model

M12·2 = {M2y, M2X1—1, M2VM2} ,

where M2 = In ≠ PX2 , with PX2 being the orthogonal projector onto the column space of X2 and In

is the n ◊ n identity matrix. Premultiplying the model M by an f ◊ n matrix F yields the transformed

model

Fy = FX— + FÁ , or shortly T = {Fy, FX—, FVF
Õ} .

The reduced model M12·2 is of course one example of the transformed models. We will also shortly consider
the linear model with new (unobserved, to be predicted) observations. This means that in addition to
M , we are dealing with a q ◊ 1 unobservable random vector yú containing new observations. These new
observations are assumed to come from yú = Xú— + Áú , where Xú is a known q ◊ p matrix, and Áú is a
q-dimensional random error vector whose (cross-)covariance matrix with y is known.

As for the notation: r(A), A
≠, A

+, C (A), N (A), and C (A)
‹, denote, respectively, the rank,

a generalized inverse, the (unique) Moore–Penrose inverse, the column space, the null space, and the
orthogonal complement of the column space of the matrix A. By A

‹ we denote any matrix satisfying
C (A

‹
) = C (A)

‹. Furthermore, we will write PA = PC (A) = AA
+

= A(A
Õ
A)

≠
A

Õ to denote the
orthogonal projector onto C (A). The orthogonal projector onto C (A)

‹ is denoted as QA = Ia ≠ PA .

We will shorten our notation as

H = PX , M = In ≠ PX , Mi = In ≠ PXi , i = 1, 2 .

One obvious choice for X
‹ is M.

Next we recall some basic concepts when dealing with the best linear unbiased estimation. In particular
we explore the problems when figuring out for which choice of matrix N œ n◊n an estimator of the type

Xb = X(X
Õ
NX)

≠
X

Õ
Ny

provides a representation for the best linear estimator, BLUE, of X—. Notice that the above representation
can be interpreted to arise from solving b from

X
Õ
NXb = X

Õ
Ny, (1)

supposing that (1) is solvable for b; this happens if and only if X
Õ
Ny œ C (X

Õ
NX). We will go through

various particular choices of N:

• the first and simplest case is N = In ,

• then we take N = V
≠1

, and N = V
+

, or N = V
≠

, i.e., N œ {V
≠},

• and so we slowly approach the most general case which is N = W
≠

= (V + XTX
Õ
)

≠, where W

belongs to a specific class W , say.
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A linear statistic By is said to be a linear unbiased estimator, LUE, for K—, where K œ k◊p, if its
expectation is equal to K—, i.e.,

E(By) = BX— = K— for all — œ p
, i.e., BX = K .

When C (K
Õ
) ™ C (X

Õ
) holds, K— is said to be estimable. The LUE By is the best LUE, BLUE, of

estimable K— if By has the smallest covariance matrix in the Löwner sense among all linear unbiased
estimators of K—:

cov(By) ÆL cov(B#y) for all B# : B#X = K ,

that is, cov(B#y) ≠ cov(By) is nonnegative definite for all B# : B#X = K.

Under the model M , the ordinary least squares estimator, OLSE, for — is the solution minimizing the
quantity Îy ≠ X—Î2 with respect to — yielding to the normal equation X

Õ
X— = X

Õ
y. Thus, if X has full

column rank, the OLSE of — is —̂ = (X
Õ
X)

≠1
X

Õ
y = X

+
y. Moreover, the OLSE of µ = X— is

OLSE(X—) = X(X
Õ
X)

≠
X

Õ
y = XX

+
y = PXy = Hy = µ̂ .

Obviously µ̂ = Hy is a LUE for X—; however, µ̂ is the BLUE for X— only under specific conditions. Now
the well-known simple version of the Gauss–Markov theorem says that under the model MI = {y, X—, In},
the OLSE of X— is the BLUE of X—, or shortly

µ̂(MI) = OLSE(X— | MI) = BLUE(X— | MI) = µ̃(MI) . (2)

Consider now the model M where V is positive definite, and suppose that V
1/2 is the positive definite

square root of V. Premultiplying M by V
≠1/2 yields M# = {V

≠1/2
y, V

≠1/2
X—, In}. In light of (2),

the BLUE of X— under M# equals the OLSE under M# and thus

BLUE(X— | M#) = µ̃(M#) = X(X
Õ
V

≠1
X)

≠
X

Õ
V

≠1
y =: PX;V≠1y,

where PX;V≠1 is the orthogonal projector onto C (X) when the inner product matrix is V
≠1. It appears

that
PX;V≠1y = BLUE(X— | M ) = BLUE(X— | M#) . (3)

The result (3), sometimes referred to as the Aitken-approach, is well known in statistical textbooks; see
Aitken (1935) [1].

It is clear that

min
—

(y ≠ X—)
Õ
V

≠1
(y ≠ X—) = (y ≠ PX;V≠1y)

Õ
V

≠1
(y ≠ PX;V≠1y)

= (y ≠ X—0)
Õ
V

≠1
(y ≠ X—0) ,

where —0 is any solution to the generalized normal equation

X
Õ
V

≠1
X— = X

Õ
V

≠1
y. (4)

Equation (4) is always, i.e., for any y œ n, solvable for — and the general solution can be expressed,
e.g., as

—0 = (X
Õ
V

≠1
X)

≠
X

Õ
V

≠1
y + [Ip ≠ X

Õ
V

≠1
X(X

Õ
V

≠1
X)

+
]t

= (X
Õ
V

≠1
X)

≠
X

Õ
V

≠1
y + (Ip ≠ PXÕ)t ,
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where t œ p is free to vary. Thus

X—0 = X(X
Õ
V

≠1
X)

≠
X

Õ
V

≠1
y = PX;V≠1y.

What about if V is singular? Can we straight away replace V
≠1 with V

+ or even with an arbitrary
generalized inverse V

≠? No, we better be careful: we need further information before such replacement
can be done.

What happens if we try to use

PX;V+y := X(X
Õ
V

+
X)

≠
X

Õ
V

+
y

as a BLUE? First we observe that PX;V+y is a LUE for X— if and only if

X(X
Õ
V

+
X)

≠
X

Õ
V

+
X = X ,

which, by Proposition 1.1 below, holds if and only if C (X
Õ
) ™ C (X

Õ
V

+
) = C (X

Õ
V), which further is

equivalent to each of the following conditions:

C (X
Õ
) = C (X

Õ
V) , r(X) = r(X

Õ
V) , C (X) fl C (V)

‹
= {0} . (5)

Above we have used the rank rule of the matrix product

r(AB) = r(A) ≠ dim C (A
Õ
) fl C (B)

‹
. (6)

From (5) we observe that if C (X) ™ C (V), then PX;V+y is unbiased for X—. The model M =

{y, X—, V}, where C (X) ™ C (V), is often called a weakly singular linear model. We observe that under
a weakly singular linear model the product X(X

Õ
V

+
X)

≠
X

Õ
V

+ is invariant for any choice of (X
Õ
V

+
X)

≠

in view of the following Proposition, cf. [41, Lemma 2.2.4].

Proposition 1.1. For nonnull matrices A and C the following holds:

(a) AB
≠

C = AB
+

C for all B
≠ ≈∆ C (C) ™ C (B) & C (A

Õ
) ™ C (B

Õ
).

(b) AA
≠

C = C for some (and hence for all) A
≠ ≈∆ C (C) ™ C (A).

(c) C
Õ
A

≠
A = C

Õ
for some (and hence for all) A

≠ ≈∆ C (C) ™ C (A
Õ
).

Things become a bit trickier when we consider an estimator like

PX;V≠y := X(X
Õ
V

≠
X)

≠
X

Õ
V

≠
y,

where V
≠ is a given generalized inverse of V. Supposing that C (X) ™ C (V) we see that the observed

value of PX;V≠y is invariant for V
≠ if and only if y œ C (V). Do we know that this holds? The answer

is yes in the case of a consistent linear model by which we mean such a model where the observed value
of y belongs to C (X : V):

y œ C (X : V) = C (X) ü C (VM) = C (X) C (MV) , (7)

where “ü” refers to the direct sum and “ ” to the direct sum of orthogonal subspaces. For decompositions
in (7), see [37, Lemma 2.1]. The models we consider are assumed to be consistent in the sense of (7) and
sometimes we use phrase “y belongs to C (X : V) with probability 1, or shortly w.p. 1”. For consistency,
see, e.g., [8].
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There is a related decomposition, see, e.g., [35, Th. 8]: for any conformable matrices A and B we
have

C (A : B) = C (A : QAB) , and thereby P(A:B) = PA + PQAB . (8)
Thus if X = (X1 : X2) and

M = In ≠ P(X1:X2) = In ≠ (PX2 + PM2X1) = M2QM2X1 ,

and by (6),
r(M2X1) = r(X1) ≠ dim C (X1) fl C (X2) .

As for the structure of the paper, in the next section we recall the fundamental BLUE equation
which literally has a fundamental role for our considerations. In Section 3 we go through some
mathematical properties of the so-called W-matrices, i.e., the class W , and in Section 4 we introduce
some representations of the BLUEs. The use of the class W in the partitioned model is explored in
Section 5. Sections 6 and 7 are devoted to particular properties of the perp-operator ‹ and for the linear
su�ciency, respectively. In Section 8 we deal with the equality of the BLUEs under two models and in
the last section we briefly discuss the model with new future observations. This paper is a review paper
containing no essentially new results. However, we believe that our review provides a useful summary of
the its area and thereby increases the insights and appreciation to the presented approach to best linear
unbiased estimation.

2 The Fundamental BLUE Equation
In what follows, we frequently refer to the following Proposition, sometimes called the fundamental BLUE
equation, see, e.g., Drygas [11, p. 55], Rao [38, p. 282], and Baksalary [2].

Proposition 2.1. Consider the linear model M = {y, X—, V}. Then Gy is the BLUE for µ = X— if

and only if G satisfies the equation

G(X : VX
‹

) = (X : 0) . (9)

The corresponding condition for By to be the BLUE of an estimable K— is

B(X : VX
‹

) = (K : 0) . (10)

Proposition 2.1 o�ers an extremely handy tool to check whether a given estimator is a BLUE. Moreover,
it provides a convenient way to introduce various representations for the BLUE. Equation (9) is always
solvable for G while (10) is solvable for B if and only if K— is estimable. The solutions are unique if and
only if C (X : VX

‹
) =

n. As said, one choice for X
‹ is M = In ≠ PX. We can define the set {Pµ|M }

as follows:

G œ {Pµ|M } ≈∆ G(X : VM) = (X : 0) .

If G0 is one particular solution for (9) then the general solution can be expressed as

G0 + E(In ≠ P(X:V)) ,

where E œ n◊n is free to vary.
We see at once that under a weakly singular linear model we have

PX;V+(X : VM) = X(X
Õ
V

+
X)

≠
X

Õ
V

+
(X : VM) = (X : 0) ,

111



Properties of the Matrix V + XTX Õ Haslett, Markiewicz and Puntanen

and it actually appears that

X(X
Õ
V

+
X)

≠
X

Õ
V

+
y = BLUE(X—) ≈∆ C (X) ™ C (V) ;

see [44, Cor. 1.1] and [34, p. 286]. Moreover, if C (X) ™ C (V), then for any V
≠,

PX;V≠y = X(X
Õ
V

≠
X)

≠
X

Õ
V

≠
y = BLUE(X—) ,

and PX;V≠y is invariant for all generalized inverses involved assuming that the model is consistent.
Following Rao (1971) [40, Sec. 4] we can consider a matrix W defined as

W = V + XUU
Õ
X

Õ œ NNDn ,

where NNDn stands for the set of nonnegative definite (symmetric) n ◊ n matrices and U œ p◊s (for
some s) is such that C (W) = C (X : V); then we may denote W œ WØ. A more general class is such
where

W = V + XTX
Õ œ n◊n

,

with T being any p ◊ p matrix such that C (W) = C (X : V). The set of such matrices W will be
denoted as W . Consider then the estimator

PX;W≠y = X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
y, where W œ W .

Now by Proposition 1.1, X
Õ
W

≠
X is invariant for the choice of the generalized inverse of W if and only if

C (X) ™ C (W
Õ
) and C (X) ™ C (W) . (11)

It can be shown that
C (W

Õ
) = C (W) , (12)

and thereby (11) holds, because assumption C (W) = C (X : V) obviously implies C (X) ™ C (W).
Using Proposition 1.1 we can conclude that PX;W≠y is invariant for any choice of generalized inverses
involved supposing that the model is consistent.

We further observe that PX;W≠(X : VM) = (X : 0) can be written as

X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
(X : WM) = (X : 0) , (13)

where the second part PX;W≠WM = 0 holds in light of (11). By Proposition 1.1, the first part of (13),

X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
X = X (14)

holds if and only if C (X
Õ
) ™ C [X

Õ
(W

≠
)

Õ
X], i.e.,

r(X) = r[X
Õ
(W

≠
)

Õ
X] = r(X

Õ
W

≠
X) . (15)

The above equality holds in view of

r(X
Õ
W

≠
X) = r[X

Õ
W

≠
(X : WM)] = r(X

Õ
W

≠
W) = r(X) ,

where we have used the assumption C (X) ™ C (W
Õ
). Thereby, under the model M = {y, X—, V},

X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
y = BLUE(µ | M ) , i.e., PX;W≠ œ {Pµ|M } . (16)
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There is one interesting approach to demonstrate the usefulness of matrix W œ WØ. Namely it is
clear that

G(X : VM) = (X : 0) ≈∆ G(X : WM) = (X : 0) ,

where W = V + XUU
Õ
X

Õ œ WØ . Observing that MW = {y, X—, W} is a weakly singular linear model
we can conclude that

X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
y = BLUE(X— | MW) = BLUE(X— | M ) . (17)

For (17) see also [9, Th. 10.1.3].
After this longish Introduction to Basic Tools and the Fundamental BLUE Equation, we will focus in

more details on the properties of matrix which is of type W and its usage in BLUE-related matters. It
appears to be surprisingly useful and powerful tool when dealing with linear statistical models.

3 Properties of the Class W
For a given linear model M = {y, X—, V}, let the set W of n ◊ n matrices be defined as

W =

Ó
W œ n◊n

: W = V + XTX
Õ
, C (W) = C (X : V)

Ô
. (18)

In (18), T can be any p◊p matrix as long as C (W) = C (X : V) is satisfied. It is clear that we can always
choose T = –

2
In, where – is an arbitrary nonzero scalar. Moreover, V œ W if and only if C (X) ™ C (V).

If there is a need to emphasize that there is a particular model M , say, under consideration we will use
notation W(M ). Sometimes we use the phrases like “A is a W-matrix” indicating that A œ W .

Choosing T in (18) nonnegative definite, i.e., putting T = UU
Õ (for some U), we get the set WØ of

nonnegative definite matrices defined as

WØ =

Ó
W œ NNDn : W = V + XUU

Õ
X

Õ
, C (W) = C (X : V)

Ô
. (19)

In (19), U can be any matrix comprising p rows so that C (W) = C (X : V) is satisfied. Using WØ
instead of W some considerations can become simpler, as can be expected.

Proposition 3.1 collects together some important properties of the class W ; see, e.g., [35, Prop. 12.1].

Proposition 3.1. Let V be an n ◊ n nonnegative definite matrix, let X be an n ◊ p matrix, and define

W as W = V + XTX
Õ
, where T is a p ◊ p matrix. Then the following statements are equivalent:

(a) C (X : V) = C (W) ,

(b) C (X) ™ C (W) ,

(c) r(X : V) = r(W) ,

(d) X
Õ
W

≠
X is invariant for any choice of W

≠
,

(e) C (X
Õ
W

≠
X) is invariant for any choice of W

≠
,

(f) C (X
Õ
W

≠
X) = C (X

Õ
) for any choice of W

≠
,

(g) r(X
Õ
W

≠
X) = r(X) irrespective of the choice of W

≠
,

(h) r(X
Õ
W

≠
X) is invariant with respect to the choice of W

≠
,
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(i) X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
X = X for any choices of W

≠
and (X

Õ
W

≠
X)

≠
.

Moreover, each of these statements is equivalent to

(a’) C (X : V) = C (W
Õ
),

and hence to the statements (b’)–(i’) obtained from (b)–(i), by setting W
Õ

in place of W.

Shortly said, given the model M = {y, X—, V}, W œ W(M ) if and only if any of the conditions
in Proposition 3.1 holds. Observe that the invariance properties in (f)–(i) concern also the choice of
W œ W ; not only its generalized inverse. Actually, we will return to this property in due course.

As references to Proposition 3.1, in addition to [40, Sec. 4], we may mention, e.g., [6, Th. 1], [7,
Th. 2], [5, Th. 2], [14, p. 468], and [35, Sec. 12.3].

Notice that the equivalence of (g) and (h) of Proposition 3.1, is the same as that between (14) and
(15). Moreover, we can conclude that the statement

PX;W≠ œ {Pµ|M } for any choices of W
≠ and (X

Õ
W

≠
X)

≠ (20)

is equivalent to the conditions in Proposition 3.1.
Let’s take a quick look at some some developments of the equivalence of the statements of Proposition

3.1; see, in particular, Baksalary & Mathew (1990) [5, Sec. 3]. Consider the model M = {y, X—, V},
and the following generalized normal equation:

X
Õ
AX— = X

Õ
Ay, (21)

where A is a given n ◊ n matrix. If A is nonnegative definite (and symmetric) then (21) has a solution
for — for every y and the solution minimizes

(y ≠ X—)
Õ
A(y ≠ X—) = Îy ≠ X—Î2

A .

Rao (1971) [40, p. 372] pointed out that we can consider a more general class of matrices A by
allowing A to be any matrix for which — is solvable from (21). Assuming that the model M is
consistent, i.e., y œ C (X : V), we observe that (21) is solvable for any y œ C (X : V) if and only
if X

Õ
A(X : V)t œ C (X

Õ
AX) for all t œ n+p

, i.e.,

C (X
Õ
AV) ™ C (X

Õ
AX) . (22)

Rao [40, Th. 4.2] showed that if (22) holds, then for any solution —0 of (21) the estimator X—0 is the
BLUE of X— if and only if A is of the form

A = (V + XTX
Õ
)

≠
+ J , (23)

and satisfies the equality r(X
Õ
AX) = r(X), with T and J being arbitrary matrices such that

C (X : V) = C (V + XTX
Õ
) = C (V + XT

Õ
X

Õ
) , (24)

and X
Õ
J(X : V) = (0 : 0). Baksalary & Puntanen (1989) [6, Th. 1] proved that the condition (24) may

be simplified because

C (X : V) = C (V + XTX
Õ
) ≈∆ C (X : V) = C (V + XT

Õ
X

Õ
) ,
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c.f. (12), and that, under (24) the condition r(X
Õ
AX) = r(X) is redundant since for every A of the form

(23):
C (X : V) = C (V + XTX

Õ
) =∆ r(X

Õ
AX) = r(X) . (25)

Baksalary et al. [7, Th. 2], showed that the implication (25) may be reversed, in the sense that if

r[X
Õ
(V + XTX

Õ
)

≠
X] = r(X) for every (V + XTX

Õ
)

≠ (26)

then C [X
Õ
(V + XTX

Õ
)

≠
X] = C (X : V); this confirms the equivalence of (f) and (g) in Proposition 3.1.

Moreover, they raised the question whether it is possible to relax the condition (26) by requiring only that

r[X
Õ
(V + XTX

Õ
)

≠
X] is invariant for every (V + XTX

Õ
)

≠
. (27)

Baksalary & Mathew [5, Th. 2] showed that the answer is positive to this question; thus (g) and (d) in
Proposition 3.1 are equivalent.

4 Representations of the BLUE
In this section we present an important matrix decomposition in Proposition 4.1 and some its consequences.
Before it, however, a few words about the matrix M(MVM)

≠
M which we denote as

Ṁ = M(MVM)
≠

M .

The matrix Ṁ is not necessarily unique for any (MVM)
≠; it is unique if and only if r(X : V) = n.

However, we always have

M(MVM)
+

M = (MVM)
+

M = M(MVM)
+

= (MVM)
+

.

In particular, for a positive definite V we have, for any (MVM)
≠,

M(MVM)
≠

M = V
≠1/2

PV1/2MV
≠1/2

= V
≠1/2

(In ≠ P(V1/2M)‹)V
≠1/2

= V
≠1 ≠ V

≠1
X(X

Õ
V

≠1
X)

≠
X

Õ
V

≠1
,

where we have used the obvious fact C (V
1/2

M)
‹

= C (V
≠1/2

X).

Proposition 4.1. Consider the linear model M = {y, X—, V}. Let T be any p ◊ p matrix such that

the matrix W = V + XTX
Õ

satisfies the condition C (W) = C (X : V), i.e., W œ W(M ), and denote

Ṁ = M(MVM)
≠

M. Then

(a) PWM(MVM)
≠

MPW = W
+ ≠ W

+
X(X

Õ
W

≠
X)

≠
X

Õ
W

+
,

(b) PWM(MVM)
≠

MPW = (MVM)
+

= PWṀPW ,

(c) PX;W+ = X(X
Õ
W

≠
X)

≠
X

Õ
W

+
= PW ≠ VM(MVM)

≠
MPW ,

(d) PX;W+ œ {Pµ|M } .

For the proof of (a), see [35, Prop. 15.2] and [22, Cor. 2.2]. Some related considerations (in full rank
case) appear also in [28, pp. 415–416] and [26, pp. 323–324].

We observe that in light of (8) we have

PW = PX + PMV = H + PMVM ,

115



Properties of the Matrix V + XTX Õ Haslett, Markiewicz and Puntanen

which implies (b) of Proposition 4.1. Premultiplying (a) by W and using C (X) ™ C (W
Õ
) = C (W) gives

X(X
Õ
W

≠
X)

≠
X

Õ
W

+
= PW ≠ VM(MVM)

≠
MPW

= (In ≠ VṀ)PW . (28)

From (28) we immediately confirm that X(X
Õ
W

≠
X)

≠
X

Õ
W

+ is invariant with respect to the choice of
W œ W as was pointed out in the context of Proposition 3.1.

Premultiplying (28) by H = PX gives further expressions:

PX;W+ = X(X
Õ
W

≠
X)

≠
X

Õ
W

+

= PW ≠ VM(MVM)
≠

MPW

= PW ≠ V(MVM)
+

= H ≠ HVM(MVM)
≠

MPW

= H ≠ HVM(MVM)
+

M . (29)

It is worth emphasizing that in (28) and (29) we use the Moore–Penrose inverse A
+, wherever it is marked

while the notation A
≠ means that we can use any generalized inverse.

As we have already in (16) observed we have under M

PX;W≠y = X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
y = BLUE(X—) = µ̃ .

Notice that X(X
Õ
W

≠
X)

≠
X

Õ is invariant with respect to the choice of generalized inverses involved and

PX;W+ = X(X
Õ
W

+
X)

+
X

Õ
W

+
= X(X

Õ
W

≠
X)

≠
X

Õ
W

+

for any choice of W
≠ and (X

Õ
W

≠
X)

≠.
From (29) we can conclude that under the consistent model M , i.e., assuming that y œ C (W) =

C (X : V),

µ̃ = X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
y = y ≠ VM(MVM)

≠
My = Hy ≠ HVM(MVM)

≠
My,

and
y ≠ µ̃ = VM(MVM)

≠
My = Á̃ = BLUE’s residual. (30)

The covariance matrix of the µ̃ = BLUE(X—) can be expressed as

cov(µ̃) = HVH ≠ HVM(MVM)
≠

MVH

= cov(Hy) ≠ HVM(MVM)
≠

MVH ,

as well as cov(µ̃) = V ≠ VM(MVM)
≠

MV. Notice that

cov(µ̂ ≠ µ̃) = cov(µ̂) ≠ cov(µ̃) = HVM(MVM)
≠

MVH .

Postmultiplying (28) by W yields

X(X
Õ
W

≠
X)

≠
X

Õ
= W ≠ VM(MVM)

≠
MV

and thereby the BLUE’s covariance matrix has a representation

cov(µ̃) = X(X
Õ
W

≠
X)

≠
X

Õ ≠ XTX
Õ
. (31)

The form (31) was first expressed, using T = –
2
In, by Rao (1971) [40, p. 382] and Rao & Mitra (1971)

[41, p. 289]. Rao [40, p. 384–385] pointed out the use of W œ W with condition C (W
Õ
) = C (X : V),

which, as stated earlier, is actually not needed. For further references regarding the cov(µ̃), see, e.g., [7]
and [22, 23].
Remark 1. The referee of our paper interestingly commented as follows:
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For singular models where we use the matrix W to get representations for the BLUE of
µ = X—, the covariance matrix is a somewhat lengthy matrix expression, not as elegant as
the expression given above for a nonsingular V. For singular models, are there some choices
of W that gives some elegant simplifications for the covariance matrix of the BLUE of µ?

Indeed, for a positive definite V we can choose W = V and thus (31) gives the well-known formula
cov(µ̃) = X(X

Õ
V

≠1
X)

≠
X

Õ
. Similarly, for a weakly singular linear model, i.e., when C (X) ™ C (V), we

can again choose W = V and obtain

cov(µ̃) = X(X
Õ
V

≠
X)

≠
X

Õ
.

But for the question of further choices of W yielding elegant simplifications we are afraid that we must
raise our hands and postpone it for further research. However, as pointed out by Rao (1978) [36], missing
the role of the matrix T in (31) can yield wrong results. Rao points out that the choice of T = –

2
Ip has

some advantages, like even if V is singular, the matrix W = V + –
2
XX

Õ may be positive definite.
There is a related curious problem: suppose W is defined as

W = V + XUU
Õ
X

Õ
= (V

1/2
: XU)(V

1/2
: XU)

Õ
,

so that C (W) = C (X : V). What is the choice for U making W
≠ to be also a generalized inverse of

V, i.e.,
V(V + XUU

Õ
X

Õ
)

≠
V = V.

Groß [12] showed that one such choice is U = X
+

(In ≠ PV). For related discussion, see also [32].

The ordinary, unweighted sum of squares of errors SSE is defined as

SSE(I) = min
—

Îy ≠ X—Î2
= y

Õ
My ,

while the weighted SSE, when V is positive definite, is

SSE(V) = min
—

Îy ≠ X—Î2
V≠1 = Îy ≠ PX;V≠1yÎ2

V≠1

= y
Õ
[V

≠1 ≠ V
≠1

X(X
Õ
V

≠1
X)

≠
X

Õ
V

≠1
]y

= y
Õ
M(MVM)

≠
My = y

Õ
Ṁy .

In the general case, the weighted SSE can be defined as

SSE(W) = (y ≠ µ̃)
Õ
W

≠
(y ≠ µ̃) ,

where W œ W. Then, recalling that by (30), the BLUE’s residual is Á̃ = y ≠ µ̃ = VṀy, we observe
the following:

SSE(W) = Á̃Õ
W

≠Á̃ = Á̃Õ
V

≠Á̃ = y
Õ
Ṁy

= y
Õ
[W

≠ ≠ W
≠

X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
]y.

It can be further shown that under M = {y, X—, ‡
2
V}, SSE(W) provides an unbiased estimator of ‡

2:

E(y
Õ
Ṁy/f) = ‡

2
, where f = r(VM) .
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Remark 2. Baksalary et al. (1990) [7, Th. 3] considered the model M = {y, X—, V} and proved that
if W = V + XTX

Õ œ W(M ) then the equality

W = VB(B
Õ
VB)

≠
B

Õ
V + X(X

Õ
W

≠
X)

≠
X

Õ (32)

holds for a matrix B if and only if

C (VW
≠

X) ™ C (B)
‹ and C (VM) ™ C (VB) . (33)

It is clear that the choice of B = M satisfies (33) and thereby also (32) holds for B = M. Postmultiplying
(32) by W

+ in that situation gives (c) of Proposition 4.1.

Remark 3. Wang & Liski (1998) [43, p. 45] introduce an interesting matrix inequality by con-
sidering estimator Ay which is unbiased for BX— under M = {y, X—, V}, i.e., AX = BX. Let
W = V + XUU

Õ
X

Õ œ WØ(M ). Then BPX;W+y = BLUE(BX—) and for any A and B satisfying
AX = BX,

cov(BPX;W+y) ÆL cov(Ay) ,

i.e.,
B

Ë
X(X

Õ
W

≠
X)

≠
X

Õ ≠ XUU
Õ
X

Õ
È
B

Õ ÆL AVA
Õ
,

which is further equivalent to
B

Ë
X(X

Õ
W

≠
X)

≠
X

Õ
È
B

Õ ÆL AWA
Õ
. (34)

Equality appears in (34) if and only if Ay is the BLUE(BX—) which by Proposition 2.1 happens if and
only if C (VA

Õ
) ™ C (X).

Another interesting application of the WØ-matrix is given by [27] who considered the upper bound for

” = trace[cov(µ̂ | M ) ≠ cov(µ̃ | M )] = trace[HVM(MVM)
≠

MVH] ,

where M = {y, X—, V}. Without going into more details we may only mention that they based their
proof by noting that

” = trace[cov(µ̂ | MW) ≠ cov(µ̃ | MW)] ,

where MW = {y, X—, W}, with W = V + –
2
XX

Õ œ WØ(M ) and could generalize the result of Rao
(1985) [39] given for a positive definite V.

5 Partitioned Linear Model
Consider then the estimation of µ1 = X1—1 under the partitioned model M12 = {y, X1—1 + X2—2, V}
assuming that µ1 is estimable which is well known to hold if and only if

C (X1) fl C (X2) = {0} , i.e., r(M2X1) = r(X1) .

Let us denote the small models as Mi = {y, Xi—i, V}, i = 1, 2. Corresponding to (19), Wi œ WØ(Mi)

if there exists a matrix Li such that

Wi = V + XiLiL
Õ
iX

Õ
i , C (Wi) = C (Xi : V) , i = 1, 2 . (35)

Premultiplying M12 by M2 = In ≠ PX2 yields the reduced model

M12·2 = {M2y, M2X1—1, M2VM2} ,
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which is a special case of the transformed model T = {Fy, FX—, FVF
Õ} , where F œ f◊n

. In view
of the Frisch–Waugh–Lovell theorem, see, e.g., [13, Sec. 6], the BLUEs of ◊1 = M2X1—1 under M12
and M12·2 coincide. It is noteworthy that ◊1 is estimable under M12 as well as under M12·2. An explicit
expression for the BLUE of ◊1 under M12·2 can be obtained from

BLUE(◊1 | M12·2) = BLUE(◊1 | M12) = PM2X1;W≠
rm

M2y,

where
PM2X1;W≠

rm
= M2X1(X

Õ
1M2W

≠
rmM2X1)

≠
X

Õ
1M2W

≠
rm œ {P◊1|M12·2} ,

and Wrm is an arbitrary W-matrix in M12·2, i.e., Wrm œ W(M12·2). Notice that

PM2X1;W≠
rm

M2 œ {P◊1|M12} .

Clearly any matrix of the form M2(V + X1K1K
Õ
1X

Õ
1)M2 satisfying

C [M2(V : X1K1)] = C [M2(V : X1)] = C (M2W1) , (36)

is a WØ-matrix in M12·2. Putting K1 = L1 as in (35) we can choose

Wrm = M2W1M2 œ WØ(M12·2) .

Thus the BLUE of ◊1 = M2X1—1 under M12·2 can be expressed as

BLUE(◊1 | M12·2) = M2X1(X
Õ
1Ṁ2X1)

≠
X

Õ
1Ṁ2y, (37)

where
Ṁ2 = M2(M2W1M2)

≠
M2 .

Notice that by Proposition 4.1 the matrix

PM2X1;W+
rm

= M2X1(X
Õ
1M2W

≠
rmM2X1)

≠
X

Õ
1M2W

+
rm

belonging to {P◊1|M12·2} is unique with respect to the choice of generalized inverses indicated by “≠” as well
as with the choice of Wrm œ WØ(M12·2). It is easy to confirm that C (X

Õ
1M2) = C (X

Õ
1Ṁ2X1) = C (X

Õ
1)

where the last iquality holds if µ1 is estimable in M12.
It is clear that for estimable µ1 we have

BLUE(µ1 | M12·2) = BLUE(µ1 | M12) = X1(X
Õ
1Ṁ2X1)

≠
X

Õ
1Ṁ2y. (38)

Notice that by (36) M2VM2 œ WØ(M12·2) if and only if C (M2X1) ™ C (M2V), i.e.,

C (X1) ™ C (X2 : V) .

Thus, for example for a positive definite V and full-rank X we have

—̃1(M12) = (X
Õ
1Ṁ2V X1)

≠1
X

Õ
1Ṁ2V y, cov[—̃1(M12)] = (X

Õ
1Ṁ2V X1)

≠1
,

where
Ṁ2V = M2(M2VM2)

≠
M2 = V

≠1 ≠ V
≠1

X2(X
Õ
2V

≠1
X2)

≠1
X

Õ
2V

≠1
.

Consider now the following choice for W¸ œ WØ(M12) (with obvious partitioning)

W¸ = V + XUU
Õ
X

Õ
= V + X

A
U1
U2

B

(U
Õ
1 : U

Õ
2)X

Õ
,
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where U = (U
Õ
1 : U

Õ
2)

Õ has the property

C (W¸) = C (V : X1U1 + X2U2) = C (V : X1 : X2) . (39)

Premultiplying (39) with M2 gives

C (M2W¸) = C [M2(V : X1U1)] = C (M2W1) .

The nonnegative definiteness of W¸ means that C (M2W¸) = C (M2W¸M2) and so we have proved the
following:

W œ WØ(M12) =∆ M2WM2 œ WØ(M12·2) . (40)

Thus the BLUE(◊1 | M12) has a representation PM2X1;W≠
¸

M2y, where

PM2X1;W≠
¸

= M2X1(X
Õ
1M2W

≠
¸ M2X1)

≠
X

Õ
1M2W

≠
¸ œ {P◊1|M12·2}

so that

BLUE(◊1 | M12) = M2X1(X
Õ
1Ṁ2W X1)

≠
X

Õ
1Ṁ2W y,

BLUE(µ1 | M12) = X1(X
Õ
1Ṁ2W X1)

≠
X

Õ
1Ṁ2W y,

where
Ṁ2W = M2(M2W¸M2)

≠
M2 and W¸ œ WØ(M12) .

Denoting
PM2X1;W+

¸
= M2X1(X

Õ
1M2W

≠
¸ M2X1)

≠
X

Õ
1M2W

+
¸ œ {P◊1|M12·2} ,

we observe by Proposition 4.1 that

PM2X1;W+
¸

= PM2X1;W+
rm

,

BLUE(◊1 | M12) = PM2X1;W≠
¸

M2y = PM2X1;W≠
rm

M2y .

Now we can wonder whether (40) holds for any W œ W(M12) so that W is not necessarily symmetric
nor nonnegative definite. So, let Wt be of the form Wt = V + XTX

Õ
, where

C (Wt) = C (V + XTX
Õ
) = C (X : V) . (41)

To have (40) holding for any Wt œ W(M12) we should have

C (M2WtM2) = C [M2(X : V)] . (42)

By (41) we observe that

C (M2WtM2) ™ C (M2Wt) = C [M2(X : V)] , (43)

so that (42) holds if and only if
C (M2WtM2) = C (M2Wt) . (44)

In other words, the implication

W œ W(M12) =∆ M2WM2 œ W(M12·2) (45)

holds if and only if (44) holds; this happens, e.g., if W is nonnegative definite.
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One alternative expression for the BLUE of µ1 can be obtained by premultiplying the fundamental
BLUE-equation

X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
(X1 : X2 : VM) = (X1 : X2 : 0) , where W œ W ,

by M2 yielding

(M2X1 : 0)(X
Õ
W

≠
X)

≠
X

Õ
W

≠
(X1 : X2 : VM) = (M2X1 : 0 : 0) . (46)

Because r(M2X1) = r(X1), we can, by the rank cancellation rule of Marsaglia & Styan (1974) [31],
cancel M2 in (46) and thus an alternative expression for (38) is

µ̃1(M12) = (X1 : 0)(X
Õ
W

≠
X)

≠
X

Õ
W

≠
y.

Let us figure out what is the covariance matrix of the BLUE of estimable µ1 = X1—1 under M12
when

µ̃1(M12) = X1(X
Õ
1Ṁ2W X1)

≠
X

Õ
1Ṁ2W y =: Ay.

Notice that cov(µ̃1 | M12) is obviously unique and hence invariant for the choice of representation of
the BLUE of µ1. Choosing W = V + XUU

Õ
X

Õ œ WØ(M12), where U = (U
Õ
1 : U

Õ
2)

Õ, we get (after
straightforward calculation)

cov(µ̃1 | M12) = AVA
Õ
= A(W ≠ XUU

Õ
X

Õ
)A

Õ

= X1(X
Õ
1Ṁ2W X1)

≠
X

Õ
1 ≠ X1U1U

Õ
1X

Õ
1 ,

where, in light of part (e) of Proposition 6.1 in Section 6, X
Õ
1Ṁ2W X1 can be written as

X
Õ
1Ṁ2W X1 = X

Õ
1
Ë
W

+ ≠ W
+

X2(X
Õ
2W

+
X2)

≠
X

Õ
2W

+
È
X1 .

Remark 4. We can generalise the considerations in (41)–(45) for the transformed model T =

{Fy, FX—, FVF
Õ}, where F œ f◊n. Then the set of W-matrices is defined as

W(T ) =

Ó
W : W = F(V + XNX

Õ
)F

Õ
, C (W) = C [F(X : V)]

Ô
.

Choosing Wt = V + XTX
Õ œ W(M ) we have

C (FWtF
Õ
) ™ C (FWt) = C [F(X : V)] . (47)

If we want that FWtF
Õ œ W(T ), we need to have the equality in (47), which happens if and only if

r(FWtF
Õ
) = r(FWt). Thus one representation for the BLUE of FX— under T is

FX[X
Õ
F

Õ
(FWtF

Õ
)

≠
FX]

≠
X

Õ
F

Õ
(FWtF

Õ
)

≠
Fy ,

where Wt œ W(M ) and r(FWtF
Õ
) = r(FWt) as pointed out by [24, p. 287].

Remark 5. To simplify the considerations in the partitioned model M12 we could consider the subclass
W#(M12) of WØ(M12) defined so that W œ W#(M12) if Wi = V + XiLiL

Õ
iX

Õ
i , C (Wi) = C (Xi :

V) , i = 1, 2, and

W = V + X1L1L
Õ
1X

Õ
1 + X2L2L

Õ
2X

Õ
2 .

121



Properties of the Matrix V + XTX Õ Haslett, Markiewicz and Puntanen

The benefit in using W#(M12) instead of WØ(M12) is that some calculations become simpler. For
example, if W œ W#(M12), then

M2WM2 = M2W1M2 œ W(M12·2) ,

Ṁ2 = M2(M2W1M2)
.
M2 = M2(M2WM2)

.
M2 = Ṁ2W ,

while W œ WØ(M12) implies

M2WM2 œ W(M12·2) and M2W1M2 œ W(M12·2)

but the equality M2WM2 = M2W1M2 does not necessarily hold.

6 Some Properties of the ‹
It is interesting to take a further look at the ‹-operation and its usefulness in linear models. Let’s begin
by citing [35, Sec. 5.13].

Proposition 6.1. Consider the model M = {y, X—, V} and let W œ W(M ). Then

C (VX
‹

) = C (W
≠

X : In ≠ W
≠

W)
‹

, (48)

where W
≠

is an arbitrary (but fixed) generalized inverse of W. The column space C (VX
‹

) can be

expressed also as

C (VX
‹

) = C
Ë
(W

≠
)

Õ
X : In ≠ (W

≠
)

Õ
W

Õ
È‹

.

Moreover, let V be possibly singular and assume that C (X) ™ C (V). Then

C (VX
‹

) = C (V
≠

X : In ≠ V
≠

V)
‹ ™ C (V

≠
X)

‹
,

where the inclusion becomes equality if and only if V is positive definite.

It is of particular interest to note that the perp symbol ‹ falls down, so to say, very “nicely” when V

is positive definite:
C (VX

‹
)

‹
= C (V

≠1
X) ,

but when V is singular we have to use a much more complicated rule (48).
Markiewicz & Puntanen [29] reviewed various features of the perp-operation, and proved, e.g., the

following: If W œ W , then

C (VX
‹

) = C (W
≠

X)
‹ ≈∆ C (X : V) =

n
.

For the following Proposition 6.2, see [35, Sec. 5.13] and [30, Lemma 4]. In this lemma the notation
A

1/2 stands for the nonnegative definite square root of a nonnegative definite matrix A. Similarly A
+1/2

denotes the Moore–Penrose inverse of A
1/2 so that PA = A

1/2
A

+1/2
= A

+1/2
A

1/2.

Proposition 6.2. Let W œ WØ(M12) and Ṁ2W = M2(M2WM2)
≠

M2. Then:

(a) C (VM)
‹

= C (WM)
‹

= C (W
+

X : QW), where QW = In ≠ PW,

(b) C (W
1/2

M2)
‹

= C (W
+1/2

X2 : QW) ,

(c) C (W
1/2

M2) = C (W
+1/2

X2 : QW)
‹

= C (W
+1/2

X2)
‹ fl C (W) ,
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(d) PW1/2M2 = PW ≠ PW+1/2X2 = PC (W+1/2X2)‹flC (W) ,

(e) PWṀ2W PW = W
+ ≠ W

+
X2(X

Õ
2W

+
X2)

≠
X

Õ
2W

+
,

(f) WṀ2W X1 = [In ≠ X2(X
Õ
2W

+
X2)

≠
X

Õ
2W

+
]X1 .

Proof. Claim (a) follows from Proposition 6.1. Let us take a look, in more details as [30, Sec. 2], at the
other statements of Proposition 6.2. We observe that (W

1/2
M2)

Õ
(W

+1/2
X2 : QW) = 0 so that

C (W
+1/2

X2 : QW) ™ C (W
1/2

M2)
‹

. (49)

We further have

r(W
+1/2

X2 : QW) = r(W
+1/2

X2) + r(QW)

= r(X2) + n ≠ r(W) ,

r(W
1/2

M2)
‹

= n ≠ r(W
1/2

M2)

= n ≠ [r(W
1/2

) ≠ dim C (W
1/2

) fl C (X2)]

= n ≠ r(W) + r(X2) ,

which confirms the equality in (49), i.e., claim (b) which is obviously equivalent to (c). Part (d) follows
from (c):

PW1/2M2 = In ≠ P(W+1/2X2:QW) = In ≠ (QW + PW+1/2X2)

= PW ≠ PW+1/2X2 = PC (W+1/2X2)‹flC (W) .

In view of (d) we have

PWṀ2W PW = PWM2(M2WM2)
≠

M2PW

= W
+1/2

PW1/2M2W
+1/2

= W
+1/2

(PW ≠ PW+1/2X2)W
+1/2

= W
+ ≠ W

+
X2(X

Õ
2W

+
X2)

≠
X

Õ
2W

+
,

and hence

WṀ2W X1 = W[W
+ ≠ W

+
X2(X

Õ
2W

+
X2)

≠
X

Õ
2W

+
]X1

= [In ≠ X2(X
Õ
2W

+
X2)

≠
X

Õ
2W

+
]X1 .

which completes the proof.

Remark 6. Markiewicz & Puntanen [30, p. 11] mention that in claim (f) of Proposition 6.2 the matrix
W can be replaced with W1 to obtain

W1Ṁ2X1 = [In ≠ X2(X
Õ
2W

+
1 X2)

≠
X

Õ
2W

+
1 ]X1 , (51)

where Ṁ2 = M2(M2W1M2)
≠

M2. However, (51) does not hold in general; it holds, for example, if
C (X2) ™ C (W1).

For completeness we state the following related result, due to [41, p. 140].
Proposition 6.3. Consider the linear model M = {y, X—, V} and denote W = V + XTX

Õ
, where

C (W) = C (X : V), and let W
≠

be an arbitrary generalized inverse of W. Then

C (W
≠

X) ü C (X)
‹

=
n
, C (W

≠
X)

‹ ü C (X) =
n
,

C [(W
≠

)
Õ
X] ü C (X)

‹
=

n
, C [(W

≠
)

Õ
X]

‹ ü C (X) =
n
.
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7 Linear Su�ciency
A linear statistic Fy, where F œ f◊n, is called linearly su�cient for X— under the model M =

{y, X—, V}, if there exists a matrix A œ n◊f such that AFy is the BLUE for X—. Correspondingly,
Fy is linearly su�cient for estimable K—, where K œ k◊p, if there exists a matrix A œ k◊f such that
AFy is the BLUE for K—.

The concept of linear su�ciency was essentially introduced in early 1980s by Baksalary & Kala [4, 3]
and by Drygas [10]. [4] talked about “linear transformations preserving best linear unbiased estimators”
and Drygas [10] introduced the term “linear su�ciency”.

By definition, Fy is linearly su�cient for estimable K— if and only if the equation

AF(X : VM) = (K : 0)

has a solution for A, which happens if and only if

C

A
K

Õ

0

B

™ C

A
X

Õ
F

Õ

MVF
Õ

B

.

Sometimes we may use the notation Fy œ S(K—) to indicate that Fy is linearly su�cient for K—.
Moreover, we can denote, symbolically,

S(K—) = {Fy : AF(X : VM) = (K : 0) for some A œ k◊f} .

For the proofs of parts (a) and (b) of Proposition 7.1, see [4], and for (c), [3].

Proposition 7.1. The statistic Fy is linearly su�cient for X— under the linear model M = {y, X—, V}
if and only if any of the following equivalent statements holds:

(a) C (X) ™ C (WF
Õ
), where W œ WØ ,

(b) r(X : VF
Õ
) = r(WF

Õ
), where W œ WØ .

Moreover, Fy is linearly su�cient for estimable K— under M if and only if

(c) C [X(X
Õ
W

≠
X)

≠
K

Õ
] ™ C (WF

Õ
), where W œ WØ .

The crucial connection between the concept of linear su�ciency and the transformed model T =

{Fy, FX—, FVF
Õ} was was proved by Baksalary & Kala [4, 3]: if K— is estimable under M and T ,

then
Fy œ S(K—) ≈∆ BLUE(K— | M ) = BLUE(K— | T ) w.p. 1.

Thus we do not lose anything essential if we estimate K— under the transformed model T instead of M .
The next proposition characterizes when Fy is linearly su�cient for µ1.

Proposition 7.2. Let µ1 = X1—1 be estimable under M12 and let W œ WØ. Then Fy is linearly

su�cient for µ1 under M12 if and only if any of the following equivalent conditions holds:

(a) C (WṀ2W X1) ™ C (WF
Õ
) , where Ṁ2W = M2(M2WM2)

≠
M2 .

(b) C
Ó
[In ≠ X2(X

Õ
2W

+
X2)

≠
X

Õ
2W

+
]X1

Ô
™ C (WF

Õ
) .
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Let us prove Proposition 7.2 along the lines of [24, Sec. 3]. For a di�erent proof, see [21, Th. 2].
One expression for the BLUE of µ1 = X1—1, obtainable from M12·2, is

Ay := X1(X
Õ
1Ṁ2W X1)

≠
X

Õ
1Ṁ2W y,

where Ṁ2W = M2(M2WM2)
≠

M2 and W œ WØ(M12). On the other hand, the BLUE of µ1 can be
written also as

By := (X1 : 0)(X
Õ
W

≠
X)

≠
X

Õ
W

≠
y = K(X

Õ
W

≠
X)

≠
X

Õ
W

≠
y,

where K = (X1 : 0) œ n◊p and W œ WØ(M12). By the consistency of the model M12 we have
Ay = By with probability 1, i.e., AW = BW, which can be transposed to give

WṀ2W X1(X
Õ
1Ṁ2W X1)

≠
X

Õ
1 = X(X

Õ
W

≠
X)

≠
K

Õ
.

In light of part (c) of Proposition 7.1, the claim (a) is confirmed by showing that

C [WṀ2X1(X
Õ
1Ṁ2W X1)

≠
X

Õ
1] = C (WṀ2W X1) ,

i.e., r

Ë
WṀ2W X1(X

Õ
1Ṁ2W X1)

≠
X

Õ
1
È

= r(WṀ2W X1), which follows from

r(WṀ2W X1) Ø r

Ë
WṀ2W X1(X

Õ
1Ṁ2W X1)

≠
X

Õ
1
È

Ø r

Ë
WṀ2W X1(X

Õ
1Ṁ2X1)

≠
X

Õ
1Ṁ2W X1

È

= r(WṀ2W X1) .

The claim (b) follows from part (f) of Proposition 6.2.
Remark 7. It is of interest to consider some particular properties related to the linear su�ciency condition
(c) of Proposition 7.1:

Fy œ S(X—) ≈∆ C (X) ™ C (WF
Õ
) , where W œ WØ(M ). (52)

The matrix W in (52) belongs to the set W of (symmetric) nonnegative definite matrices. One could
wonder whether the column space C (WF

Õ
) is unique once F is given, i.e., does it remain invariant for

any choice of W œ WØ? Kala et al. [24, Ex. 1] provide a counterexample showing that this is not the
case. Kala et al. [24, Sec. 4] also studied whether the column space C (WF

Õ
) is invariant for any choice

of W œ W(M ) if Fy œ S(X—). The answer is positive, and moreover,

C (WF
Õ
) = C (X) ü C (MVF

Õ
) = C (W

Õ
F

Õ
) .

Kala et al. [24, Th. 4] were also wondering whether in (52) the set WØ can be replaced with the
more general set W . Interestingly, the answer is positive. As far as we know, in all linear su�ciency
considerations appearing in literature, it is assumed that W is nonnegative definite. However, this is not
necessary, and W can also be nonsymmetric. It may be mentioned, in passing, that the proof is parallel
to that of [4, p. 914] who utilize the fact that By is a BLUE of X— if and only if

BW = X(X
Õ
W

≠
X)

≠
X

Õ
, where W œ WØ . (53)

It is easy to confirm that in (53) the set WØ can be replaced with W . Namely we know that B œ {Pµ|M }
if and only if

B = X(X
Õ
W

≠
X)

≠
X

Õ
W

≠
+ EQW (54)

for some E œ n◊n. Postmultiplying (54) by W and using X
Õ
W

≠
W = X

Õ gives (53). On the other
hand, if B satisfies (53) then B is necessarily of the form (54) for some E and thereby B œ {Pµ|M }.
Remark 8. Baksalary & Kala (1981) [4, p. 914] write the following (in our notation):

125



Properties of the Matrix V + XTX Õ Haslett, Markiewicz and Puntanen

(a) “If the condition C (X) ™ C (WF
Õ
), where W œ WØ(M ), is satisfied, then each BLUE of X— in

the transformed model T is also a BLUE of X— in the original model M , and vice versa.”

It is the phrase vice versa that may cause some confusion as stated by [25, Sec. 4]. Let us discuss the
meaning of the vice versa part along the lines of [16, Sec. 11.6].

Suppose that ÷ = K— is estimable under the transformed model T (and thereby also under M ).
Then CFy is the BLUE for K— under T if and only if C belongs to the set {P÷|T } which is defined as

C œ {P÷|T } ≈∆ C(FX : FVF
Õ
QFX) = (K : 0) .

where QFX = If ≠ PFX. The set of products CF, where C œ {P÷|T }, will be denoted as {P÷|T F}. It
means that each matrix D œ {P÷|T F} applied to y provides the BLUE for K— under the transformed
model T , i.e.,

D œ {P÷|T F} ≈∆ D = CF, where C œ {P÷|T }.

Consider the multipliers of the response vector y when playing with the BLUEs under M and under
T ; these sets are {P÷|M } and {P÷|T F}, respectively. Assume further that Fy is linearly su�cient for ÷.
Then the inclusion {P÷|T F} ™ {P÷|M } is straightforward but corresponding equality is more problematic.
The following solution was given by [16, Prop. 11.17].

Proposition 7.3. Let ÷ = K— be estimable under T , W œ WØ(M ) and assume that Fy œ S(÷).

Then {P÷|M } = {P÷|T F} holds if and only if

QW = QWPFÕ , i.e., C (W)
‹ ™ C (F

Õ
) . (55)

In other words, under the linear su�ciency and condition (55), each representation of the BLUE of K—
under M is a representation of the BLUE under T and vice versa.

8 Equality of the BLUEs Under Two Models
Let us consider two linear models, A = {y, X—, Va} and B = {y, X—, Vb}, having di�erent covariance
matrices. Let Wa œ WØ(A ) so that for some U

Wa = Va + XUU
Õ
X

Õ
, where C (Wa) = C (X : Va) .

Then one representation for the BLUE of X— under A is

PX;W+
a
y = X(X

Õ
W

+
a X)

≠
X

Õ
W

+
a y.

We can now ask whether PX;W+
a
y continues to be BLUE under B. This happens if and only if

X(X
Õ
W

+
a X)

≠
X

Õ
W

+
a (X : VbM) = (X : 0) ,

which is obviously equivalent to X
Õ
W

+
a VbM = 0 . Further equivalent conditions are given in Proposition

8.1 below which appears in Mitra & Moore (1973) [33, Th. 2.1, Th. 2.2, Note 1]. Some parts they did
not prove in details, giving only hints. For a complete proof, see [18, Th. 1].

Proposition 8.1. Using the earlier notation, PX;W+
a
y is the BLUE for X— also under B if and only if

any of the following equivalent conditions holds:

(a) X
Õ
W

+
a VbM = 0 , (b) C (VbM) ™ C (W

+
a X)

‹
=: C (Z),
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(c) Vb = XRX
Õ
+ ZSZ

Õ
for some R and S, and Z œ {(W

+
a X)

‹},

(d) PX;W+
a
Vb is symmetric,

(e) C (W
+
a X) is spanned by a set of r proper eigenvectors of Vb with respect to Wa; r = r(X) ,

(f) C (X) is spanned by a set of r eigenvectors of VbW
+
a .

In Proposition 8.1 we utilize the concept of proper eigenvectors following Rao & Mitra (1971) [41,
Sec. 6.3]; see also [34], and [42]. To have a brief look at these concepts, let A and B be two symmetric
n ◊ n matrices of which B is nonnegative definite. Let ⁄ œ be a scalar and u a vector such that

Au = ⁄Bu, Bu ”= 0 .

Rao & Mitra [41, Sec. 6.3] call ⁄ a proper eigenvalue and u a proper eigenvector of A with respect to B,
or shortly, (⁄, u) is a proper eigenpair for (A, B). If B is singular, there may exist a vector u ”= 0 such
that Au = Bu = 0, in which case

(A ≠ ⁄B)u = 0

is satisfied with arbitrary ⁄. Such a vector u œ n is called an improper eigenvector of A with respect to
B. The space of improper eigenvectors is precisely N (A) fl N (B) = C (A : B)

‹
.

What about if we request that every representation of BLUE of µ = X— under A continues to be
BLUE under B, or shortly

{BLUE(µ | A )} ™ {BLUE(µ | B)} , i.e., {Pµ|A } ™ {Pµ|B} . (56)

As an arbitrary member of {Pµ|A } can be expressed as

X(X
Õ
W

+
a X)

≠
X

Õ
W

+
a + EQWa , where E œ n◊n is free to vary,

we conclude that (56) holds if and only if

[X(X
Õ
W

+
a X)

≠
X

Õ
W

+
a + EQWa ](X : VbM) = (X : 0) . (57)

It is straightforward to conclude that (57) holds for any E if and only if

C (VbM) ™ C (VaM) .

For the conditions like (56) see, e.g., [33] and [15].

9 Further Remarks
In this paper we have reviewed the properties of matrix W belonging to the class

W(M ) =

Ó
W œ n◊n

: W = V + XTX
Õ
, C (W) = C (X : V)

Ô
,

where T can be any p ◊ p matrix as long as C (W) = C (X : V) is satisfied and M = {y, X—, V}.
Corresponding considerations can be done in other models, like linear model with new observations, which
we will denote as Mú. The mixed linear model is a special case of of the model with new observations.
In this article we skip the mixed model but will briefly go through the linear model with new observations.
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We can extend the model M = {y, X—, V} by considering a q ◊ 1 random vector yú, which is an
unobservable random vector containing new future observations. These new observations are assumed to
be generated from

yú = Xú— + Áú = µú + Áú ,

where Xú is a known q ◊ p matrix, — œ p is the same vector of fixed but unknown parameters as in
M , and Áú is a q-dimensional random error vector with E(Áú) = 0. The covariance matrix of yú and the
cross-covariance matrix between y and yú are assumed to be known and thus we have

E

A
y

yú

B

=

A
µ
µú

B

=

A
X

Xú

B

— , cov

A
y

yú

B

=

A
V V12

V21 V22

B

.

This setup can be denoted shortly as

Mú =

IA
y

yú

B

,

A
X

Xú

B

—,

A
V V12

V21 V22

BJ

.

Our aim is to predict the unobservable yú on the basis of the observable y.
The random vector Ay is a linear unbiased predictor (LUP) of yú if E(yú ≠ Ay) = 0 for all — œ p

.

Such a matrix A œ q◊n exists if and only if C (X
Õ
ú) ™ C (X

Õ
), i.e., Xú— is estimable under M and then

we say that yú is predictable under Mú. Now a LUP Ay is the best linear unbiased predictor, BLUP,
for yú, if the covariance matrix of the prediction error, subject to the unbiasedness of the prediction, is
minimized:

cov(yú ≠ Ay) ÆL cov(yú ≠ A#y) for all A# : A#X = Xú .

It appears that the linear predictor Ay is the BLUP for yú if and only if A œ q◊n satisfies the the
so-called fundamental BLUP equation

A(X : VX
‹

) = (Xú : V21X
‹

) . (58)

For (58), see, e.g., [9, p. 294], and [20, p. 1015]. Corresponding to (58), By is the BLUP(Áú) whenever

B(X : VX
‹

) = (0 : V21X
‹

) .

Now the BLUP(yú) under Mú, see, e.g., [17, Sec. 2] and [19, Sec. 4], can be written for example as

BLUP(yú) = BLUE(µú) + BLUP(Áú)

= XúBy + V21V
≠

(In ≠ G)y

= XúBy + V21W
≠

(In ≠ G)y

= XúBy + V21M(MVM)
≠

My,

where B = (X
Õ
W

≠
X)

≠
X

Õ
W

≠ and G = XB = PX;W≠ and W œ W(M ). In particular, if V is positive
definite and r(X) = p, we obtain

BLUP(yú) = Xú—̃ + V21V
≠1

(y ≠ X—̃)

= Xú—̃ + V21M(MVM)
≠

My,

where —̃ = (X
Õ
V

≠1
X)

≠1
X

Õ
V

≠1
y.
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