Communications in Statistics-Theory and Methods, 41: 2405-2418, 2012

Copyright © Taylor & Francis Group, LLC ISSN: 0361-0926 print/1532-415X online DOI: 10.1080/03610926.2011.594541

Comparing the BLUEs Under Two Linear Models

JAN HAUKE¹, AUGUSTYN MARKIEWICZ², AND SIMO PUNTANEN³

¹Institute of Socio-Economic Geography and Spatial Planning, Adam Mickiewicz University, Poznań, Poland ²Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland ³School of Information Sciences, University of Tampere, Tampere, Finland

In this article, we consider two linear models, $\mathcal{M}_1 = \{y, X\beta, V_1\}$ and $\mathcal{M}_2 = \{y, X\beta, V_2\}$, which differ only in their covariance matrices. Our main focus lies on the difference of the best linear unbiased estimators, BLUEs, of $X\beta$ under these models. The corresponding problems between the models $\{y, X\beta, I_n\}$ and $\{y, X\beta, V\}$, i.e., between the OLSE (ordinary least squares estimator) and BLUE, are pretty well studied. Our purpose is to review the corresponding considerations between the BLUEs of $X\beta$ under \mathcal{M}_1 and \mathcal{M}_2 . This article is an expository one presenting also new results.

Keywords BLUE; Gauss–Markov model; Linear sufficiency; Löwner ordering; OLSE; Orthogonal projector.

Mathematics Subject Classification 15A42; 62J05; 62H12; 62H20.

1. Introduction

In this article, we consider the general linear model

$$y = X\beta + \varepsilon$$
, or in short $\mathcal{M} = \{y, X\beta, V\}$,

where **X** is a known $n \times p$ model matrix, the vector **y** is an observable *n*-dimensional random vector, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown parameters, and $\boldsymbol{\varepsilon}$ is an unobservable vector of random errors with expectation $E(\boldsymbol{\varepsilon}) = \mathbf{0}$, and covariance matrix $cov(\boldsymbol{\varepsilon}) = \mathbf{V}$. The non negative definite (possibly singular) matrix **V** is known.

As regards the notation, we will use the symbols A', A^- , A^+ , $\mathcal{C}(A)$, $\mathcal{C}(A)^{\perp}$, and $\mathcal{N}(A)$ to denote, respectively, the transpose, a generalized inverse, the Moore–Penrose inverse, the column space, the orthogonal complement of the column space, and the

Received November 26, 2010; Accepted June 2, 2011 Address correspondence to Simo Puntanen, School of Information Sciences, FI-33014 University of Tampere, Tampere, Finland; E-mail: sjp@uta.fi