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A B S T R A C T   

In this article, we compare 3-D finite element models of a soft magnetic composite (SMC) material to 2-D models, 
obtained by slicing some 2-D intersections of the 3-D geometries, in terms of magnetization curves and losses. A 
3-D nonlinear static model, providing computational B-H curves, is compared to two 2-D models, one with the 
magnetic field parallel to the 2-D plane, and the other with the magnetic field perpendicular to the 2-D plane. We 
find that the 2-D models provide largely inconsistent results with the 3-D model. A 3-D time-harmonic model, 
providing computational effective permeabilities and losses, is compared to two 2-D models, one with the 
magnetic field parallel to the 2-D plane, and the other with the magnetic field perpendicular to the 2-D plane. We 
find that the 2-D models provide largely inconsistent results with the 3-D model, with an exception of the 
computational losses of the 2-D model, with the magnetic field perpendicular to the plane, almost agreeing with 
the computational losses provided by the 3-D model. However, the computational permeabilities do not match in 
these two models. This article proposes to be very critical before publishing 2-D models of SMC materials without 
a proper justification by symmetry.   

1. Introduction 

Soft magnetic composite (SMC) materials consist of ferromagnetic 
particles coated with an insulation, compressed and heat treated. Due to 
the special structure the materials have, eddy current losses are reduced. 
SMCs may be tailored so that the electromagnetic behaviour of the 
material is isotropic in the macroscale [1]. In Fig. 1a, we see a micro
scope image of an SMC material. 

Various models of SMC materials have been presented in the past. 
Many of the models are based on meshing a 2-D geometry and 
computing the desired electromagnetic quantities using some finite 
element (FE) formulation [2–11]. Some of the cited articles do not 
claim the 2-D models to represent any existing material, but are test 
benches for the methods. However, the question about the applica
bility of 2-D models of SMC materials has been raised in the literature, 
since usually there is no symmetry that justifies such computations 
[4,8]. 

The question if 2-D and 3-D models provide consistent results for 
nonlinear B-H curves has been addressed in the literature [12]. How
ever, a comprehensive comparison of 2-D and 3-D models is still missing. 
In this article, we give evidence that 2-D models of SMC materials are 
mostly inconsistent with 3-D models. The methods used are based on our 

approach of generating 3-D imitations of SMC materials [13–15]. In 
Fig. 1b we see one such geometry. 

2. Measurements 

Our sample is an MPP toroid C055106A2 by Magnetics Inc. [16]. We 
used a two-coil setup to measure the magnetic flux density (B) and field 
strength (H) waveforms in the material. A large-signal measurement 
with a 50-Hz excitation was carried out. The hysteresis loop obtained 
has been visualized in Fig. 4. Hysteresis seems to be very negligible. 

A small-signal dynamical frequency sweep with a frequency range of 
1 kHz – 20 kHz was carried out while keeping the peak flux density at 
0.05 T. The waveforms of B and H were sinusoidal. The measured 
dynamical effective permeability is visualized in Fig. 8 and the measured 
losses are visualized in Fig. 9. The dynamical measurement is essentially 
the same as in our previous article [15]. 

3. Geometries 

We define two sets of randomized geometries. First, we define 3-D 
geometries, and then we define 2-D geometries as sliced intersections 
of 3-D geometries. 
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3.1. 3-D geometries 

Based on the parameters shown in Table 1, we place a number N of 
points randomly into the cube [0,1]3 under the condition that the points 
must be at least a distance d away from one another. A Voronoi tessel
lation is calculated based on the randomly placed points. The cell faces 
are refined based on the data in the vector wF, and the cell faces are 
moved inside the cells according to the data in the vector wC to form 
gaps between the particles. A total of 200 geometries were generated. 
One such geometry is visualized in Fig. 1b. A detailed description of the 
geometries has been presented earlier in [13]. 

We note that at first, the generated geometries are such that the 
neighbouring particles are in contact with each other. This is not 
desired, since the idea of SMC materials is to provide insulations be
tween the particles. Hence, the contact surfaces are treated later in the 
computational methods as thin insulations by doubling the degrees of 
freedom of the contact surfaces and connecting the doubled degrees of 
freedom by thin prism elements in 3-D. 

3.2. 2-D geometries 

A total of 200 3-D geometries were generated based on the same 
parameters, shown in Table 1, and from each, one cross-sectional slice 
was extracted. An image of one such 2-D geometry can be found in 
Fig. 2. Similarly to the 3-D geometries, the insulations of the 2-D ge
ometries are modeled by doubling the degrees of freedom of the contact 
regions in the FE mesh and connecting the degrees of freedom by thin 
rectangular elements. 

4. Nonlinear models 

In this section, we compare three problems that use the same 
nonlinear material model. We compare a magnetostatic 3-D problem 
with two magnetostatic 2-D problems, one with the field parallel to the 
plane and the other with the field perpendicular to the plane. 

4.1. Magnetostatic 3-D problem 

Consider a 3-D geometry, for instance the one depicted in Fig. 1b. 
The geometry is much like the simplified drawing in Fig. 3. The cube is 
scaled so that its side length is l = 5⋅85 μm = 425 μm. The scaling is 
taken from Fig. 1a, where the diameter of one particle is approximately 

85 μm. Since there are 53 = 125 particles in one cube, the side is scaled 
to 5⋅85 μm = 425 μm. The magnetizing particles, denoted by Ωc, are 
meshed with tetrahedra. The thick parts of the empty regions Ωnc are 
meshed with tetrahedra as well, and the thin insulations, denoted by the 
dashed lines in Fig. 3, are modeled with 42.5 nm thick prisms. The 
thickness of the insulations cannot be reliably measured from the mi
croscope image presented in Fig. 1a, but according to Vesa et al., this 
thickness provides consistent results with measured losses and measured 
permeabilities [15]. 

In the domain Ω = Ωc ∪ Ωnc it holds that 

∇⋅B(∇φ) = 0 (1)  

for a magnetic scalar potential φ. The relation B(⋅) is just a multiplica
tion by the vacuum permeability μ0 in Ωnc and a nonlinear relation in Ωc. 
The nonlinear part is given by an isotropic extension of the scalar rela
tion, the ‘Estimated local’ curve, depicted in Fig. 4a. The curve was 
found by performing an estimation, described in [13]. 

Eq. (1) is discretized by the Galerkin method using a first order nodal 
scalar basis. On Γ1, we set φ = 0, and on Γ2, we set φ = Heff l, which 
corresponds to the magnetomotive force between Γ2 and Γ1. The 
quantity Heff is called an effective magnetic field strength. An effective 
magnetic flux density is given by 

Beff =
1

Vol

∫

Ω
B⋅e1, (2)  

where the unit vector e1 is perpendicular to Γ1 and Γ2. 
The effective B-H curves of the 200 3-D models were computed and 

the computational results are depicted in Fig. 4a as ‘Computed, 3-D’. The 
agreement between the computed curves and the measured curve is 
excellent since the localized B-H relation, denoted as ‘Estimated local’, 
for the magnetizing particles has been estimated by fitting one of the 
computational curves against the measurement data. A visualization of a 
computational B field can be found in Fig. 5a. 

Fig. 1. (a) A microscope image of a Fe-Ni-Mo alloy SMC [16]. (b) A generated 
imitation of an SMC material geometry. 

Table 1 
Geometry template  

N 53 = 125  
d 0.45/5  

wF  [0,0.4] 
wC  [0.1,0]  

Fig. 2. A 2-D cross section of a 3-D geometry.  

Fig. 3. A simplification of the geometries.  
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4.2. Magnetostatic 2-D problem, field parallel to the plane 

Consider the geometry in Fig. 2. We assume the magnetic field to 
traverse from the left edge to the right edge of the geometry on the 
plane. The Eqs. (1) and (2), as well as the constitutive model and the 
boundary conditions used in the 3-D model in Section 4.1 are still valid 
in 2-D (but not justified by any symmetry). The thin insulations, 
depicted in Fig. 3, are modeled with thin quadrangles in the 2-D case. 
The thicknesses of the quadrangles, however, are not all 42.5 nm as in 
the 3-D case. Instead, if a 3-D insulation is sliced with a plane, the sliced 
insulation in the 2-D geometry will be 42.5/sin(cos− 1(n1⋅n2)) nm, where 
n1 and n2 are the unit normals of the 3-D insulation and the plane that is 
slicing it. 

Computing the effective B-H curves, we find the results depicted in 
Fig. 4b. We see that the computed B-H curves do not agree with the 
measured one and thus with the computational curves obtained by the 3- 
D model in the unsaturated region. There are various reasons for this. 
First, as Cyr et al. speculate, the missing 3-D flux paths could contribute 
to the lower initial permeability [4]. On the other hand, the insulations 
in the sliced 2-D geometries tend to be thicker than in the 3-D model, 
which could contribute to the lower initial permeability, as demon
strated by Vesa et al. [14]. Thirdly, the shapes of the insulations may 
also contribute to the unsaturated parts of the computational B-H curves, 
as suggested by Vesa et al. [17]. Since there is no symmetry that justifies 
the 2-D model, the results are expected. We note that a similar result was 
obtained by Sato et al. [12], in which the comparison was not carried out 
using 2-D slices of the 3-D geometries but a separately defined 2-D 
model. 

The computational curves more or less agree with the measured one 
in the saturated region. This is due to the agreements of the volume fill 
fractions of the magnetizing matter in the 2-D slices and in the 3-D ge
ometries. A visualization of a computational B field can be found in 
Fig. 5b. 

4.3. Magnetostatic 2-D problem, field perpendicular to the plane 

Let us now assume that in the 200 sliced 2-D geometries, much like 
the one depicted in Fig. 2, the magnetic field passes the plane perpen
dicularly. A uniform Heff is defined on the plane and scaled into B using 
the material relation μ0 in Ωnc and the nonlinear B-H relation, ‘Estimated 
local’, depicted in Fig. 4a in Ωc. Finally, the effective Beff is computed by 
averaging the B-field over the plane. 

In Fig. 4c, we see a comparison between the measured B-H curve and 
the computed 200 curves with the field perpendicular to the plane. We 
see that the computed B-H curves overshoot in the unsaturated region. 
The trend is easily explained by considering the 3-D extrusion of the 2-D 
geometry, depicted in Fig. 2, and considering the magnetic field 
traversing in the direction of the extrusion. There are no insulations to 
be passed, and hence the effective permeability is expected to be higher 
than in the 3-D case. We conclude that the 2-D model in this case is 
inconsistent with the 3-D model. This behavior is expected, since the 2-D 
model is not justified by any symmetry. On the other hand, the saturated 
parts of the computational curves, depicted in Fig. 4c, more or less agree 
with the measured one and hence with the curves obtained by the 3-D 
model, depicted in Fig. 4a. This is due to the volume fill fractions of 
the 2-D geometries being close to the volume fill fraction of the 3-D 
geometries. 

4.4. Magnetostatic 3-D and 2-D problems in periodic setting 

Let us now repeat the problems, described in Sections 4.1–4.3, but 
this time using periodic geometries. Fig. 6 visualizes a periodic geometry 
and its cross sectional slice. We assume that the edges of the geometries 
are scaled again to l = 425 μm, where l is given as in Fig. 3. The particles 
are insulated by 42.5 nm insulations once again. The formulations given 
in Sections 4.1–4.3 are applied, and the same localized B-H curve, 

Fig. 4. Nonlinear static B-H curves. A comparison of 3-D and 2-D models.  

Fig. 5. B-fields of a nonlinear 3-D model and a nonlinear 2-D model with the 
field parallel to the plane. The H-excitation was 3.7 kA/m in both cases. 
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depicted in Fig. 4a, is used for the particles. 
Fig. 7 depicts the computed B-H curves for each case: the 3-D model, 

the 2-D model with the field parallel to the plane, and the 2-D model 
with the field perpendicular to the plane. The measured curve is also 
visualized once again. 

We notice that the 3-D model provides results consistent with the 
measurements. This is because the localized permeability was estimated 
against the measurement using one randomized 3-D geometry, and in 
this case, the results with the periodic 3-D geometry seem to agree well 
with the results using the randomized geometries. Both 2-D models 
provide higher saturation than the 3-D model. This is due to the volume 
fill fraction of the sliced 2-D geometry being higher than the volume fill 
of the original 3-D geometry. The computational curve, obtained by the 
2-D model with the field perpendicular to the plane, provides initial 
permeability and the unsaturated part of the B-H curve higher than the 
3-D model. This trend is consistent with the former results obtained 
using the randomized geometries, and the result may be explained by 
the magnetic field not passing any insulations if the 2-D geometry is 
extruded in the direction of the magnetic field. 

However, in this case the computational B-H curve obtained by the 2- 
D model with the magnetic field parallel to the plane also provides 
higher initial permeability and higher unsaturated part of the effective 
B-H curve than the 3-D model. This result may be understood in two 
ways. First, if the 2-D geometry, depicted in Fig. 6b, is extruded in the 
direction perpendicular to the plane, there will be a higher fraction of 
the particle surfaces sharing the 42.5 nm ‘thin insulation’ than in the 3-D 
case, depicted in Fig. 6a. Second, the higher volume fill fraction of the 2- 
D model may play a role at least in the region close to saturation. 

We conclude that the results obtained using the 2-D models are 
largely inconsistent with the 3-D model. The result is understandable, 
since there is no symmetry justifying either of the 2-D models. Period
icity does not free us from these issues. 

5. Dynamical models 

In this section, we compare three problems with the same material 
models consisting of a complex permeability and a resistivity. We 
compare a dynamical 3-D problem in the frequency domain with two 
dynamical 2-D problems in the frequency domain. 

5.1. Dynamical 3-D problem 

Consider the 200 3-D geometries, much like the one depicted in 
Fig. 1b and in the schematic Fig. 3. We use a time-harmonic T − φ 
formulation. The equations in the conductive magnetizing particles Ωc, 
are given by 

∇×
(

ρ∇× T
)

= − jωμ
r
μ0

(
T − ∇φ

)
,

∇⋅μ
r
μ0

(
T − ∇φ

)
= 0,

(3)  

where the underlinings represent complex valued quantities. We set T =

0 in Ωnc and in ∂Ωc. The material parameters ρ and μr are estimated such 
that computations and measurements, that are presented later, agree 
[15]. The resistivity ρ ≈ 1.085⋅10− 7 Ωm. The complex relative perme
ability μr ≈ 306.17/− 0.012, where the angle is in radians. Furthermore, 
in Ωnc, 

∇⋅
(

μ0∇φ
)
= 0. (4) 

For φ, we define boundary conditions on Γ1 and Γ2. First, φ = 0 on 
Γ1. Second, φ = Heff l, which imposes sinusoidally pulsating magneto
motive forces of Heff l for paths connecting the regions Γ1 and Γ2, pro
vided that the paths do not enter inside the conductive particles. The Heff 

is a chosen excitation, which will be discussed later. 
The Eqs. (3) and (4) are discretized with the Galerkin method using a 

nodal scalar basis for φ and an edge basis for T. The vector potential T is 
gauged in a spanning tree in Ωc. From the field solutions, the effective B- 
field is computed by 

Beff =
1

Vol

∫

Ω
B⋅e1. (5) 

Due to linearity, we may easily set the magnitude of Beff to the 
measured value 0.05 T (peak), that was held constant throughout the 
frequency sweep measurement. We set the excitation first to Heff = 1 (A/ 
m), and then we scale the finite element solution accordingly, such that 
the magnitude of Beff is 0.05 T. 

From the field solutions, we may compute the loss density arising 
from current densities in resistive media from 

wed = Re
{

1
Vol

1
f

∫

Ωc

1
2

J⋅ρJ
}

, (6)  

and the loss density arising from the changes in the magnetic field from 

why = Re
{

1
Vol

∫

Ωc

H⋅πjB
}

. (7) 

We acknowledge the derivation by Ren et al. of a similar kind of loss 
formula [10]. It is expected that classical eddy current losses appear in 
(6) and hysteresis losses appear in (7). There is also a third loss mech
anism, excess losses, explained in depth by Bertotti [18]. Since the terms 
(6) and (7) are the only terms, according to the Poynting theorem, 
contributing to losses in a magnetodynamical formulation, the excess 
losses can be found in these terms, provided that the material parame
ters have been properly identified. 

Performing a computational frequency sweep for each of the 200 3-D 
geometries, we obtain the magnitudes of the dynamical relative per
meabilities, depicted in Fig. 8 as ‘3-D’. The agreement with the mea
surements is good, since the material parameters of the computational 

Fig. 6. Periodic geometries. (a) 3-D, (b) A 2-D slice of the 3-D geometry.  

Fig. 7. A comparison of 3-D and 2-D models using periodic geometries. 
Nonlinear static B–H curves. 
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model were solved from an estimation problem. The measured and the 
computed losses are depicted in Fig. 9a. The losses agree due to the 
estimated nature of the material parameters. An eddy current field is 
visualized in Fig. 10. 

5.2. Dynamical 2-D problem with the magnetic field parallel to the plane 

Consider the 200 2-D geometries, much like the one depicted in 
Fig. 2, and in the schematic Fig. 3. The formulation, described in Section 
5.1, is well-defined in 2-D, assuming that the eddy currents flow 
perpendicularly to the plane, but constrained in the sense that the net 
current in each particle is zero. We use the same material parameters as 
in the 3-D case in Section 5.1. 

In Fig. 8, we see the computed magnitudes of the permeabilities, ‘2- 
D, par.’, that agree neither with the 3-D results nor the measurements. 
The permeabilities are significantly lower. This is consistent with the 
nonlinear results showing lower permeabilities in the 2-D case. The 
reasons for such results were discussed in Section 4.2. 

In Fig. 9b, we see the computed losses, ‘2-D, par.’, and their mean, 
‘Mean, 2-D, par.’. The losses are significantly higher than in the 3-D case 
and in the measurements. To thoroughly explain the reasons for such 
results is a cumbersome task, but we must remember that the 2-D model 
assumes a translational symmetry in the direction perpendicular to the 
plane, and hence, the eddy currents flow without constraints in the 
geometry. Furthermore, the magnetic H-excitation is larger than in the 
3-D case, since the amplitudes of B are matched to the measured value 

Fig. 9. Energy loss densities over one period of excitation. A comparison of 3-D 
and 2-D models. 

Fig. 8. Magnitudes of dynamical relative permeabilities. A comparison of 3-D 
and 2-D models. 

Fig. 10. A quarter-cycle capture of an eddy current field in 0.05 T 5 
kHz excitation. 

Fig. 11. A quarter-cycle capture of an eddy current field in 0.05 T 5 kHz 
excitation. (a) Magnetic field parallel to the plane. (b) Magnetic field perpen
dicular to the plane. 
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0.05 T. For these reasons, it is not surprising that the losses overshoot. 
We conclude that the 2-D model with the magnetic field parallel to 

the plane and the eddy currents perpendicular to the plane is inconsis
tent with the 3-D model both permeability-wise and in terms of losses. It 
is no surprise, since no symmetry justifies such 2-D model. An eddy 
current field is visualized in Fig. 11a. 

5.3. Dynamical 2-D problem with the magnetic field perpendicular to the 
plane 

We consider again the 200 2-D geometries, much like the one 
depicted in Fig. 2 and in the schematic Fig. 3, but this time we assume 
that the magnetic field crosses the plane perpendicularly and the eddy 
currents circulate in each particle parallel to the plane. An H-formula
tion reads as 

∇× ρ∇× H = − jωμ
r
μ0H, (8)  

where the material parameters are chosen to be the same as in the 3-D 
case in Section 5.1. The Eq. (8) was discretized with the Galerkin 
method using a nodal scalar (or a perpendicular edge if one wishes) basis 
for the magnetic field strength. A Dirichlet condition H = Heffe3 was set 
in the nonconducting regions Ωnc and in ∂Ωc, where e3 represents a unit 
vector, normal to the 2-D plane. The eddy currents are given by the curl 
of the magnetic field strength, and the B field is obtained by a multi
plication of the H field by the permeability. An effective B field is given 
by 

Beff =
1

Vol

∫

Ω
B⋅e3, (9)  

which is just the average of the B field over the surface of the domain. 
The magnetic H-excitation, determined by Heff , was set to 1 (A/m), and 
due to the linearity of the problem, the FE-solution was scaled so that the 
magnitude of Beff was matched with the measured 0.05 T. The formulas 
(6) and (7) for the loss densities are valid. 

In Fig. 8, we see the computed magnitudes of the dynamical per
meabilities, ‘2-D, perp.’. We notice that the permeabilities are signifi
cantly higher than in the 3-D case and in the measurements. The results 
are consistent with the nonlinear results, discussed in Section 4.3, and 
may be explained by the lacking of insulations to be passed by the 
magnetic field. 

In Fig. 9c, we see the computed losses, ‘2-D, perp.’, as well as their 
mean, ‘Mean, 2-D, perp.’. The losses seem to almost agree with the 
measurements and thus with the results obtained from the 3-D model. 
This may be understood by the eddy currents being constrained inside 
the properly scaled particles mostly contributing to the losses. The un
derestimation of the losses may be due to the sliced particles having 
smaller radii than the original 3-D particles. Even though this result is 
somewhat positive, we must note that since the effective permeabilities 
of these 2-D models are significantly higher than the effective perme
abilities of the 3-D models, the magnetic H-excitation is lower in the 2-D 
case than in the 3-D case in order to match the desired magnitude 0.05 T 
of Beff . Hence, the 2-D model is still inconsistent with the 3-D model even 
though the losses are close to agreeing. An eddy current field is visual
ized in Fig. 11b. 

5.4. Magnetodynamic 3-D and 2-D problems in periodic setting 

We repeat all three of the dynamical models, presented in Sections 
5.1–5.3, but this time using the periodic geometries shown in Fig. 6. All 
the material parameters were chosen to be the same as in the 3-D model, 
presented in Section 5.1. 

In Fig. 12a, we see a comparison of the computed and measured 
magnitudes of the relative effective permeabilities. The 3-D case pro
vides the best match with the measurements since the material param
eters used are of estimated nature. However, in the 2-D cases the 

permeabilities are higher. This is consistent with the nonlinear results 
discussed in Section 4.4. 

In Fig. 12b, we see a comparison of losses obtained using the 3-D and 
2-D models. Consistently with the results using the randomized 3-D 
geometries in Section 5.1, the periodic 3-D model provides losses that 
agree well with the measurements. This is again due to the estimated 
nature of the material parameters. The losses obtained by the 2-D model 
with the magnetic field parallel to the plane and the eddy currents 
perpendicular to the plane are significantly higher than in the 3-D case 
and thus the measurements. The results may be understood by the 
reasoning that was given in Section 5.2 for the corresponding models 
using the randomized 2-D geometries. The model using the periodic 2-D 
geometry with the field perpendicular to the plane and the eddy currents 
parallel to the plane seems to agree with the 3-D model. The result is still 
not consistent with the 3-D model, since the effective permeability in the 
2-D case is significantly higher than in the 3-D case. We conclude that 
the 2-D models in the periodic setting are largely inconsistent with the 3- 
D model. This result is not a surprise, since there is no symmetry justi
fying the 2-D assumption. 

5.5. Magnetodynamic 3-D and 2-D problems with rotating excitations 

Next, we compare the losses provided by a 3-D and a 2-D model with 
rotating magnetic fields. A 3-D formulation is suitable for such prob
lems. However, only such 2-D formulation is available, in which the 

Fig. 12. A comparison of 3-D and 2-D models using periodic geometries. (a) 
Magnitudes of dynamical relative permeabilities. (b) Energy loss densities over 
one period of excitation. 
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magnetic field is rotating on the plane. 
The formulations are again T − φ, as described in (3) and (4), and the 

losses are computed from (6) and (7). But this time the magnetic field is 
decomposed as H = T − ∇φ + Hs, where T = 0 on ∂Ωc, in Ωnc and in the 
gauge tree of Ωc, and φ = 0 on ∂Ω. The field Hs is spatially constant and 
it is chosen so that an averaged magnetic flux density, as described in 
(5), corresponds to two sinusoidally pulsating 0.05 T flux densities in the 
directions of the basis vectors e1 and e2 with a π/2 phase difference. 

For simplicity, the computations are carried out using just periodic 
3⋅3⋅3- and 3⋅3-particle arrays, much like the 5⋅5⋅5- and 5⋅5-particle ar
rays depicted in Fig. 6. Fig. 13 visualizes the computed losses in the two 
cases: 2-D and 3-D. The results are showing large discrepancies. The 
losses obtained by the 2-D model are higher. Similar tendency was 
described and discussed in Sections 5.2 and 5.4. We conclude that 
similarly to the case of the magnetic field pulsating in one direction, the 
use of 2-D models with rotating fields is questionable due to the results 
being inconsistent with the 3-D model. This is not surprising, since no 
symmetry justifies the 2-D model. 

6. Concluding remarks 

In this article, we compared a 3-D model of an SMC material in a 
nonlinear static setting with two 2-D models. The 2-D geometries were 
cross-sectional slices of 3-D geometries. One of the 2-D models assumed 
that the magnetic field is parallel to the plane, and the other one of the 2- 
D models assumed that the magnetic field is perpendicular to the plane. 
It was found that in the unsaturated region the 2-D model with the 
magnetic field parallel to the plane underestimated the B-H curve. On 
the other hand, the 2-D model that assumed the magnetic field to be 
perpendicular to the plane overestimated the unsaturated part of the B-H 
curve. Reasons for such results were discussed. Considering periodic 
geometries, we found out that the result of one of the 2-D models 
overestimating the unsaturated part of the B-H curve and the other 
underestimating, is not a general tendency. However, consistency be
tween the 2-D models and the 3-D model was not found. We conclude 
that the use of nonlinear static 2-D models of SMC materials is ques
tionable if there is no symmetry in the geometry justifying such an 
assumption. 

We also compared a 3-D model of an SMC material in a dynamical 
setting in frequency domain with two 2-D models. The 2-D geometries 
were cross-sectional slices of 3-D geometries. One of the 2-D models 
assumed that the magnetic field is parallel to the plane, and the eddy 
currents are perpendicular to the plane. The other of the 2-D models 
assumed vice versa. The results for the computed dynamical effective 
permeabilities showed similar results to the nonlinear setting, the 2-D 
models being inconsistent with the 3-D model. On the other hand, a 
comparison of the losses showed that the 2-D model that assumed the 

magnetic field to be parallel to the plane and the eddy currents 
perpendicular to the plane overestimated losses. Reasons for such a 
result were discussed. In terms of losses, the results were similar if the 
magnetic field was rotating instead of pulsating in one direction. The 2- 
D model that assumed the magnetic field to be perpendicular to the 
plane and the eddy currents parallel to the plane provided almost 
consistent losses with the 3-D model, but these losses were slightly 
smaller. The 2-D model was still inconsistent with the 3-D model in 
terms of permeability. The same tendency for losses was present when 
using periodic geometries. 

The proposal of this article is to be very critical towards 2-D models 
of SMC materials if there is no symmetry in the 3-D geometry that jus
tifies the 2-D model. Periodicity is not such a justification. 
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