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Permeability Estimations of SMC Material Particles

Joonas Vesa! and Paavo Rasilo!
Unit of Electrical Engineering, Tampere University, Tampere, 33720 Finland

In this study we estimate the locally defined permeability of the magnetizing particles in a soft magnetic composite (SMC)
material whose effective permeability, observed by macrosopic measurements, is known. This procedure is repeated for a wide range
of geometries whose electrical insulation layer thicknesses between the magnetizing particles are altered. It is shown that even if
the effective permeability of the material is known by some measurement, the permeabilities of the individual particles cannot be
immediately determined but remain heavily dependent on the thicknesses of the insulation films. This dependency is quantified.
It is shown that when using periodic geometries to imitate SMC materials, one also has to use higher local permeabilities for the
magnetizing particles or thinner insulations between the particles compared to the situation where randomized structures are used,
in order to obtain the effective permeability determined by measurements.

Index Terms—B-H Curve, Geometry generation, Magnetic contact, Material identification, Soft magnetic composite, Voronoi

tessellation.

I. INTRODUCTION

OFT magnetic composite (SMC) materials consist of

ferromagnetic particles, possibly mixed with an electrical
insulation material, compressed and annealed. SMC materials
are advantageous in terms of isotropy and low eddy current
losses [1], [2].

Modeling of SMC materials is not straightforward, since
they are multiscale by nature. The individual ferromagnetic
particles in the materials are small, often some tens of mi-
crometers in diameter, and eddy current losses are affected
by the geometry of this scale. On the other hand, the particle
scale geometry of the material cannot be entirely included
into a computational model, since computational resources are
limited. In Fig. [Th, we see a microscope image of an SMC
material.

Various different computational studies of SMC materials
exist. Prof. Igarashi et al. have quite some experience of
such studies [3], [4], [5], [6], [7Z]. Waki et al. carried out
a comparative study of predicting effective permeabilities of
materials with arbitrary inclusions on 2-D cells [3]. The study
included a nonlinear consideration. Ito ef al. considered SMC
materials with periodic symmetry consisting of homogeneous
magnetic bricks [4]. Sato et al. proposed methods for com-
puting hysteresis and eddy current losses in SMC materials
[S)]. Tto et al. considered the meaning of magnetic contacts in
terms of understanding the numerical values of the effective
permeabilities of SMC materials [6]. Maruo et al. performed
an analysis of SMC materials based on the discrete element
method [7]. The paper is considered particularly interesting,
since it included a mechanical simulation of random packing
of round grains.

It is also worth mentioning the work done in VTT [§] and
the papers of Belkadi et al. related to automatic geometry
generation [9], [LO]. Their papers along with the works of
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Prof. Igarashi et al. have been the primary inspiration for our
studies.

We have focused on SMC geometry generation and es-
timation methods in 3-D. In our previous publication, our
approach of constructing geometries was presented [11]. In
Fig.[Ip, we see one such geometry imitation. Various different

(a) Microscope image

(b) Generated geometry

Fig. 1. (a) A microscope image of a Fe-Ni-Mo alloy SMC [11] [12]. (b) A
generated imitation of an SMC material geometry.

features of the geometries, such as the volume fraction of
the magnetizing particles and insulation thicknesses between
individual particles, can be controlled. It was established that a
measurement of a nonlinear effective B-H curve of an SMC
material could be repeated computationally very accurately
regardless of whether neighbouring magnetizing particles are
in mechanical contact or sharing thin insulation layers in
between. The key difference in these two cases was that
the estimated locally defined B-H curves had significant
differences in the unsaturated region. We could loosely say that
if low external magnetic field was applied, the permeability of
the particles turned out to be sensitive to the contact vs. thin
insulation -property of the geometry. It was speculated that
there exists a wide range of geometries and corresponding
locally defined magnetizing characteristics, such that they pro-
vide computational results consistent with the measurements.

This paper is going to give evidence that such an asser-
tion holds. Since the differences were the most drastic in
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the unsaturated region, in this paper we concentrate on the
low-field characteristics of the material. Moreover, we are
going to quantify the dependency between the locally defined
permeability of the magnetizing particles and the thickness of
the insulation layers between the particles in the material while
keeping the effective permeability of the material consistent
with measurements. For the nonlinear analysis, the reader is
directed to the original results [11].

II. MEASUREMENTS

As a sample, we use a Magnetics Inc. C055106A2 MPP
core, which is a Fe-Ni-Mo alloy based SMC. The cross-
sectional image in Fig. [Th is taken from this material. In
the datasheet the relative permeability was reported to be
et = 200 [12]. To measure the effective B — H loop,
a two-coil measurement setup was utilized. The current of
the primary coil was measured over one period of 50 Hz
continuous excitation. The voltage of the open secondary coil
was measured over one period as well. The magnetic field
strength was solved from the primary current and the magnetic
flux density was calculated from the integral of the secondary
voltage.

The measurements are depicted in Fig. [2] and an additional
line, representing a linear approximation with permeability
wreif = 200, is plotted. Hysteresis is low. Hence, we say that
the material experiences relative permeability of pi e = 200
at least if the magnetic flux density is less than 0.3 T in
magnitude.
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Fig. 2. Effective B — H curve of the material in Fig. [Th.

III. PROBLEM DEFINITION

In order to express the problem in an intuitive manner and
to provide a test bench for a finite element (FE) model, we
state the problem first as a very much simplified problem in 1-
D. Treating such a problem is easy. Then, we extend the same
problem into 3-D and use the existing methods of geometry
generation in order to study it in the context of SMC materials.

A. Simplified example

As depicted in Fig. 3] we consider a 1-D bar of length I
containing magnetizing linear matter, with relative permeabil-
ity u;, and non-magnetic material of length xl, with x as a
dimensionless parameter describing the insulation thickness.
The bar is magnetized along its length. Since the normal

l xl

S

H=-1B Hy=1B

Hr o Ho

Fig. 3. Simplified 1-D problem.

component of the magnetic flux density B is continuous, it is
constant all over the bar. Effective magnetic field strength H is
defined as the total magnetomotive force over the bar, divided
by (1 4+ z)l. Hence, inserting the constitutive equations in
Fig.[3|into H = m (IH; + xlH>) and performing obvious
manipulations yields

14+z

1
ks

B = poH, )

= Hreff

where ¢ 1S an effective relative permeability. Solving for
Ly, glves

2)

Hreff

The quantity p e is @ measurement value. In our case, as in
Fig. 2 we set pirer = 200. What is left in (2), is a relation
between the locally defined permeability u, and the ’insula-
tion thickness factor’ z. Consistency with the measurement
requires choosing x and p, such that the relation holds. We
notice that it must hold that xz < a1 OF the effective
permeability p . cannot be met whatever positive value g,
gets. In Fig. |4] a portion of the graph of the relation is
depicted. The FE model points in the Fig. will be discussed
later.
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The central problem we investigate in this paper is to find
a wide range of 3-D imitations of SMC geometries with
various insulation thicknesses that together with corresponding
locally defined permeabilities u, yield effective permeabilities
for the material strictly consistent with the measurement. It is
expected that the insulation thickness vs. permeability relations
will have the same overall shape as in Fig. {4

Another problem we study in order to assess the relia-
bility of the results, is the sensitivity of the locally defined
’estimated’ permeability u.. Let us first consider again the
simplified problem. Let us define a relative error of .. We set

pr(x + Ax) — ()

() .
The quantity Az is a dimensionless number representing a
small *'measurement error’ of x meaning that the permeability
estimation is simulated in a situation where the insulation
thickness has been addressed in an inaccurate manner. This
kind of misaddressing of a distributed gap in an SMC material
is quite an obvious issue since the material geometries are very
random and stochastic by nature.

e(x, Az) = 3)
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Fig. 5. Error (ED of ur, depicted in Fig. E computed using various errors

of the insulation thickness factor x. Note that  and Ax are dimensionless
numbers and hence, both z and Az can be expressed as percents, as fractions
of one hundred. The quantity Az still represents absolute error of x even
though expressed in percents.

In Fig. B} we have depicted the error (3) with several
different absolute errors in the insulation thickness factor z.
We notice that the relative error e increases rapidly as the
factor x increases. The FE model points in the figure are
discussed later.

The secondary problem in this paper is to study how the
randomization of the SMC geometries yields uncertainty to
the locally defined ’estimated’ p,. It is expected that in a
similar fashion as in Fig. [5} the uncertainty of s, raises as
the insulation thicknesses in the geometries increase. We also
study how increasing the particle number in the geometry cell
decreases the uncertainty.

B. 3-D problem

Using the methods described in our previous work, ge-
ometries may be generated by defining suitable parameters.

If the reader feels uncomfortable reading the following con-
siderations, we advice reading the definition of the geometry
generation [11]]. In a nutshell, the geometries are generated
inside the cubical cell [0, 1]3. Then the following parameters
are given. First, a number N is given, determining the number
of particles in the cell. In Fig. Eb, the number is 216. Second,
a floating point number d is given. A randomized process
places N points inside the cube [0,1]% under the restriction
that each point has to be at least the distance d away from
each other. Then, a Voronoi tessellation for the cell [0,1]3
is computed from these points. Finally, two vectors, wg and
wc are given, wp defining how the cell faces are refined and
we determining how the refined faces are contracted inside
each cell to form gaps between the particles. Finally, the
geometry, or the computational mesh defined on it, is scaled
appropriately.

Let us generate two sets of geometries. As a starting point
we use the parameters that were used previously [I1]. The

TABLE 1
GEOMETRY TEMPLATE I

TABLE II
GEOMETRY TEMPLATE II

parameters for the first set of geometries are given in Table L.
The geometries have 27 particles and a volume fraction Vg =
0.9. In addition, the particles have a contact surface fraction of
Sk = 0.36, which means that 36 % of their surface area is in
contact with neighbouring particles. Two hundred geometries
were generated using randomized voronoi tessellations. One
such geometry is depicted on the left-hand side of Fig. [f]

Fig. 6.
and it contains 3° particles. Its mesh contains about 30 000 nodes in 230
000 elements. The geometry on the right is generated using the parameters in
Table I and it contains 62 particles. Its mesh contains about 240 000 nodes
in 1 900 000 elements.

Geomerty on the left is generated using the parameters in Table I

Another set of two hundred randomized geometries was
generated based on the parameters in Table II. The key
difference between the geometries based on Tables I and II is
the number of particles inside the cell. The first set contains 33
particles inside each geometry and the second set contains 63
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particles inside each geometry. One sample of the geometries
with 63 particles is depicted on the right-hand side of Fig. @

In this study we estimate the locally defined permeabilities
of the particles of the generated geometries such that com-
putations of effective permeabilities yield the measured value
teeff = 200. The aim is to carry out similar computations to
the depicted ones in Figs d]and [5]but in a more realistic setting.
Electrical insulation layers are introduced in the model using
degenerate prisms with adjustable thicknesses between the
particles. Details of the computational model will be discussed
next.

IV. COMPUTATIONAL METHODS

Let us consider a geometry, for instance the right one in Fig.
[6] Tt is much like the simplified schematic image in Fig.[7} The

== - = - =

Fig. 7. A schematic of the geometries.
geometry would be meshed with tetrahedra. In the schematic
Fig. [/} the grey areas represent the magnetizing particles and
the white areas are insulation. The bold black lines, denoted by
the number 1 in the figure, represent thin insulations between
the particles. The thin insulations on the boundary of the whole
domain are placed such that for each two opposite faces of the
boundary only one has thin insulations and not the other.
These thin insulations are not meshed in 3-D using an
automated mesh generator but degenerate prisms are used.
Abenius et al. described the use of degenerate prisms in
the setting of edge basis [13]. We use an approach similar
to these ideas but with a practical simplification. Instead of
operating in the prisms using 2-D basis functions, we embed
the information about small thicknesses of the prisms into the
change of coordinates mappings of the degenerate prisms.

z
[Zae

Fig. 8. Change of coordinates from a reference prism to a degenerate prism.

In Fig. [§] we see a change of coordinates mapping 7 from a
reference prism to a degenerate prism. The mapping is given

by
3

n: (u,v,w) — Z N;(u, v)x" + twn, ())
i=1

where N7, Ny and N3 are the nodal shape functions of the
triangle 1 — 2 — 3 in the reference plane uv, x' are the
coordinates of the ¢th node of the degenerate prism, ¢ is the
desired thickness of the degenerate prism and n is the unit
normal vector of the degenerate prism. Adjusting ¢, one can
adjust the insulation thicknesses of the material. Effectively
the prisms are just right-angled prisms and the concrete
computations of the FE method may be performed on the
reference prism.

We denote the whole domain inside the dashed square
in Fig. [7] by €, the magnetizing regions by €, white
empty regions by (2. and thin insulation regions, modeled
by degenerate prisms, by €24. We set the FE problem on the
domain ) := Q, U ()4 ignoring (2. In addition, a condition
B - n = 0 is set on the layers between {2, and €, denoted
by the number 2 in Fig. [/} This assumption relies on two
facts. First, the permeability ratio between {2, and (). is at
least 200. It means that the magnetic field tends to traverse
through the magnetizing particles avoiding non-magnetizing
regions. Second, the thicknesses of the empty regions €2, are
substantially higher than the thickness of the thin insulations
Q4. Hence, the magnetic field tends to pass from one particle
to another via the thin insulation regions and not the thick
empty regions.

In the domain €2 it holds that

V- (Hex + Vi) =0, 4)

where ¢ is a scalar potential to be solved, p = pg in Qq,
= pepto in 2, where p, is an input value to the model and
H., is a constant excitation field in the direction of one of
the coordinate basis vectors. Let us choose a unit excitation
He = Hexer with Hyy = 1 A/m and set ¢ = 0 on I,
with I' as in Fig. 7| The model accepts p, as an input, solves
(3) in Q by Galerkin FE method with nodal scalar basis for
(. Now the magnetic field is given by H = Hey + V¢ and
B = jt (Hey + V). As in the works of Niyonzima et al., the
effective fields (B) and (H) are obtained by averaging B and
H over the domain €, respectively [14]]. Since (V) = 0 due
to the chosen Dirichlet condition, ¢ = 0 on I', the average of
H = H + Vo is just a unit (H) = (Hexe1) = Hexer. On
the other hand, the average of B is

1
_— B
] / av. ©

where the integration is reduced to 2, since B is assumed
to be low in (2, due to the high permeability ratio between
the magnetizing and empty regions. The effective permeability
Hreff 1S given by

(B) - e1 = pueripio (H) - €1). (7

The forward model F' takes the locally defined p. as an
input and returns the effective pi.. We solve for p, from
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F(pr) = 200 using the modified Powell method implemented
in the Scipy root package [15].

As a simplified trial case for validating the computational
model, we choose the simple geometry in Fig. [0] The ge-

Q d

/
/1

O

—1—
Fig. 9. Simplified geometry for validating the computational model.

ometry was meshed into 8958 tetrahedra with 1562 nodes,
and degenerate prisms were defined on 4. Various insulation
thicknesses were chosen, and relative permeabilities p, were
estimated for the magnetizing regions {2, assuming the effec-
tive relative permeability to be 200. The results were plotted
into Fig. @] as "FE model” with the insulation thickness factor
x in the plots set directly as the insulation thickness ¢ in
the FE model. In the error plot in Fig. 5] the finite element
computations were compared with the analytical solution (2).
There is no discrepancy between the analytical and the FE
solution.

V. COMPUTATIONAL RESULTS

Let us begin by analyzing the two hundred SMC geometries
with 27 particles, one of which is depicted on the left-hand
side of Fig. [} Permeability estimations were carried out for
the two hundred geometries with various different insulation
thicknesses ¢ described in Section [[V] Each estimation pre-
sented in the following considerations converged and effective
relative permeability of 200 was met by an absolute tolerance
of 1076,

The estimated relative permeabilities p, are depicted in Fig.
with red dots and a label ’Randomized, N = 3%’. The
meaning of the number 32 is that there are 33 = 27 particles
in each geometry. The plot is made against a scaled insulation
thickness, denoted by 3t. The idea here is that if the particles in
the geometry were arranged to a periodic 3 x 3 x 3-array, there
would be three insulation layers for the magnetic field to pass
and the quantity 3¢ describes the total amount of insulation
that the field must pass in order to travel from one face of the
geometry to the opposite. The insulation thickness is expressed
as a percentage of the total width of the geometry.

The reader is warned about some red dots soaring out of
the scale of the plot in the region of insulation thickness 3t >
0.16%. This can be seen from the light red patch containing
all the red dots, labeled as ’Patch of randomized, N = 33°.
The patch diverges and crosses the relative permeability 5000
before the 0.16% thickness. However, due to high deviation
in the estimated permeabilities in this region, the results with
insulation thicknesses this high are already unusable. In Fig.
[TOp is also depicted the mean of the estimated local relative
permeabilities for each insulation thickness labeled as "Mean
of randomized, N = 3°’.
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(b) Deviation of estimated permeabilities

Fig. 10. Estimation results using the geometries with 27 particles.

Fig. [[0b demonstrates how each estimated permeability 1,
deviates from the mean, depicted in Fig. [T0. For a fixed
insulation thickness, denote the mean by (i mean and one of the
two hundred estimated permeabilities as p,; with ¢ denoting
the geometry. The deviation from mean is defined by

Hr i Hr,mean ) (8)
,Ufr,mean

The deviations are depicted as red dots in Fig. [T0p, labeled as
"Randomized, N = 3%, and the patch, *Patch of randomized,
N = 3% contains all the results. In Fig. , there is
also a 10% band, depicted by the dashed horizontal lines.
If maximum 10% discrepancy is accepted for the estimated
permeabilities from the mean of the estimated permeabili-
ties, the computations with insulation thickness only up to
approximately 3t = 0.06% would be acceptable. This is not
a particularly good result and later in this paper, we seek for
an enhancement by considering geometries with substantially
more particles.

Comparing the results depicted in Figs [TOh and [I0p to the
results in Figs ] and [5] respectively, we see that the results
have the same overall trends. When the insulation thicknesses
and estimated relative permeabilities increase, the deviation in
the estimated relative permeabilities rises.
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Fig. 11.

The geomerty on the upper left is generated using the parameters
in Table T and it contains 33 particles. Its mesh contains about 23 000 nodes
in 175 000 elements. The geomerty on the lower left is generated using the
parameters in Table I and it contains 32 particles. Its mesh contains about
105 000 nodes in 737 000 elements. The geometry on the right is generated
using the parameters in Table IT and it contains 62 particles. Its mesh contains
about 174 000 nodes in 1 370 000 elements.

In Fig. @h, there are two additional lines, labeled as
"Periodic, N = 3%’ and ’Periodic, N = 33, dense’. These
results are obtained by repeating the computations for the
upper left and lower left geometry in Fig. [TI] respectively.
The geometries are the same but the mesh density is different.
The geometries are obtained by the same parameters defined in
Table I, but the underlying tessellation consists of a periodic
array of cubes. What we see in Fig. [TOh is that the results
obtained using the two different meshes of periodic geometry
are independent of mesh. According to the considerations
in Section [[TI-A] the deviation of the results is expected to
increase when the relative permeability of the magnetizing
particles and the insulation thicknesses are large. It seems that
the mesh has very little effect in this deviation. This suggests
that the results are reliable in terms of discretization errors.

Let us now repeat the computations using geometries with
63 = 216 particles. Figs and contain analogous results
to the Figs [I0p and [IOp. This time the randomized geometries
are much like the one sample on the right-hand side of Fig. [f]
and the periodic geometry is depicted on the right-hand side of
Fig. [T} We see that the overall trend of the results in Fig. [12]
are consistent with the results in Fig. but there is far less
deviation. In this case, less than 10% deviation is achieved
with insulation thicknesses up to 0.13 % of the original
width of the geometry. If even thicker insulations were to be
considered, we would expect increasing the particle number in
the representative cell further to decrease the deviation even
more.

For comparison, in Fig. @Ia there is a curve ’Periodic,
N = 3%, which was depicted earlier in Fig. I@ This curve
is very close to the curve ’Periodic, N = 63’, obtained using
a periodic geometry with 216 particles. We conclude that in
the periodic case, the results are independent of the number
of particles contained in the inclusion.

In Fig. [I2h it is obvious that the periodic geometries
yield estimated permeabilities far higher than the randomized
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Fig. 12. Estimation results using the geometries with 216 particles.

geometries. This trend is visible also in the results in Fig.
[TOp but not as obviously. The explanation for such a result
is simple. Consider the randomized geometry on the left-hand
side of Fig. [6] It is possible to pass from the left face of
the whole geometry to the right face of the geometry by
passing just two particles and two insulations. Considering the
cubical geometry on the left-hand side of Fig. [T1] it is only
possible to travel from the left face of the whole geometry
to the right face of the geometry by passing three particles
and three insulations. Hence, in the periodic case, there are
more insulation layers to be passed. If the effective relative
permeability is fixed to the measured value 200, either the
locally defined permeability must be higher or the insulation
layers must be thinner in the periodic case.

VI. CONCLUDING REMARKS

In this paper we studied the dependency between the
insulation layer thicknesses of an SMC material and the locally
defined permeability of the magnetizing particles. The effec-
tive permeability of the material was kept strictly consistent
with a measured value. The study was conducted using an
automatic SMC geometry generation tool with control over the
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volume fraction, particle number and insulation thicknesses of
the geometry.

It was demonstrated that a measurement of the effective
permeability of an SMC material does not determine the
permeability of the material particles and the thicknesses of the
electrical insulations between the particles uniquely. Instead,
it was shown that these quantities are dependent of each
other and this dependency was quantified. With randomized
structures, the uncertainties in the estimated permeabilities
increased as the insulation thicknesses increased. This uncer-
tainty was reduced by increasing the number of particles in
the inclusions.

It was shown that using periodic geometries, either the
relative permeabilities of the particles must be higher or the
electrical insulations thinner compared to the corresponding
quantities in randomized geometries in order to achieve the
same effective permeability. This is a consequence of the pe-
riodic geometries suffering from a larger amount of insulations
to be passed by the magnetic field.
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