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The purpose of this paper is to estimate the magnetic field dependent critical current density scaling relation of NbTi used in a
superconducting wire. The estimation problem is set using a finite element method based forward model solving the critical current
of a wire in external magnetic fields. A sensitivity analysis is carried out to reveal the uncertainties in the process. It is shown that
the methods provide accurate predictions of critical currents in a wire, but there are uncertainties related to the zero-field critical
current density of the material.
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I. INTRODUCTION

TYPE II superconductive materials accept simultaneous
presence of magnetic field and supercurrents in the

material. These fields are not independent of each other but
the critical current density scales with respect to magnetic field
and other quantities, such as temperature and strain.

It has been established in the literature that self-field effects
of superconducting cables affect the critical current of the
cable, especially if externally applied magnetic field is low
[1]. This raises some questions about the traditional definition
of critical current density, where the critical current density is
defined as the critical current of a cable divided by the cross
sectional area of the superconductive material. The problem
is well-known, and proposals for taking the self-fields into
account have been reported [2].

This paper introduces and trials a finite element (FE) method
based estimation scheme of critical current density scaling
relations. It should be noted that computational estimations
of critical current density relations have been reported before.
Rostila et al. used Biot-Savart type volume integration meth-
ods and Nelder-Mead algorithm to fit a modified Kim model
to represent the critical current density [3].

We also note the work of Grilli et al. for implementing
similar ideas in commercial FE solvers with a brute-force
inverse approach [4]. It was pointed out that the existing meth-
ods are often based on Nelder-Mead optimization, brute-force
or avoiding explicit optimizations. Zermeño et al. estimated
an unparametrized form of critical current density using a
gradient-free hill climbing algorithm [5]. Both of these papers
contain well-written literature reviews of inverse estimations
of critical current density relations [4],[5].

This paper uses a trust region method applied to an opti-
mization problem providing fast convergence. In this context,
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we do not consider angular dependencies of the critical current
density.

II. PROBLEM

Spencer et al. measured the critical current of a 180-filament
NbTi wire in various externally applied magnetic fields and
various temperatures [6]. A schematic figure of the wire is
presented in Fig. 1. This figure is much like the cross sectional
image of the wire Spencer et al. reported. The diameter of
the wire was reported to be 0.81 mm and the filaments,
surrounded by copper, were 35 µm thick.

Fig. 1. A schematic image of a cross section of an NbTi superconductor.
The wire diameter is 0.81 mm and the filaments are 35 µm thick.

It was reported that the wire carries critical currents, de-
pendent on externally applied magnetic field, as depicted in
Fig. 2 [6]. The problem is to find a critical current density
scaling relation jc(h) for the filaments such that a FE problem
defined on the geometry of Fig. 1 provides a curve imitating
the measurements well.

III. COMPUTATIONAL MODEL

Before inverse estimation may be performed, the forward
model should be discussed. The key ideas of the forward

https://tutcris.tut.fi/portal/en/persons/joonas-vesa(c7791107-71f3-413e-a85e-f8b4b7424509).html
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Fig. 2. Critical current measurements in 4.2 K according to Spencer et al.
[6].

model can be found in the literature, for instance in the works
of Zermeño et al. [7].

As a shortcut, we do not consider twisting of the wire.
Simple translational symmetry is assumed for the conductor.
Furthermore, the filaments are assumed to be fully coupled.
Possible extensions to the model are discussed later in Section
VI.

A. Field problem

We assume that in the cross sections of the wire in critical
state, the current density j is equal to the critical current
density jc(h) in the superconductive materials. A formulation
of a magnetic vector potential equation could be formed
around the Ampère law curl(h) = jc(h) in the superconductive
materials and curl(h) = 0 elsewhere. The critical current
is then obtained by integrating jc(h) over the conductor
cross section. In this paper, we write the problem in terms
of a co-potential formulation for h instead of a potential
formulation for b. In the end, the concrete computations are
the same, except for a scaling of the potential by the vacuum
permeability µ0. The machinery of differential forms is used
[8]. This formalism is an accepted formalism in the field of
computational electromagnetics [9] and has been utilized in
the field of applied superconductivity [10], [11], [12].

Consider the geometry in Fig. 1. Consider a domain Ω
consisting of the superconductive regions Ωs, copper ΩCu, and
air Ωa, whose boundary is relatively far from the boundary of
the wire. Assuming an externally applied field hext, we write
the unknown h as h = hext + ?dϕ. Furthermore, it is assumed
that dhext = 0. The equation for ϕ reads as

d ? dϕ =


jc(‖h‖)Vol, on Ωs,

σcec, on ΩCu,

0, on Ωa,

(1)

where Vol is the volume form, σc is the conductivity operator
of copper and ec is a characteristic electric field of the
superconductor, and most importantly, jc is the critical current
density scaling relation of the superconductive material. We set

ϕ = 0 on ∂Ω. Equation (1) is discretized using the Galerkin
method with nodal scalar basis.

The forward model Ic accepts a scalar hsc as an input, sets
hext = hscdy and solves ϕ from the discretized version of (1).
Then the current density

j =

{
jc(h), on Ωs,

σcec, on ΩCu,
(2)

is computed and integrated over Ωs ∪ ΩCu to obtain the
critical current Ic(hsc) as an output. In the end, Ic is just a
computational model for the measurements depicted in Fig. 2.
In order to obtain any sort of agreement between Ic and the
measurements, the critical current density jc is parametrized
and the parameters estimated in a systematic manner.

B. Parametrization of the scaling relation

To construct a meaningful parametrized scaling relation, we
define several approximating functions f1, ..., fn and express
jc as a linear combination of the functions. We used a
similar approach to express the magnetization of soft magnetic
composite materials [13].

Bottura et al. have used scaling relations of the form Ic ∼
bα(1 − b)β , where b is reduced magnetic flux density and α
and β are fitting parameters [14], [15]. We set

fi(‖h‖) = αi

(
1− ‖h‖

hc2

)qi
,

where αi and qi are fitting parameters and hc2 is the upper
critical field of the material. The numerical value of hc2 ≈
11.4332 T/µ0 in 4.2 K was extrapolated from the upper critical
field values reported by Spencer et al. [6]. We choose four
basis functions with

q1 = 1, q2 = 4, q3 = 16, q4 = 64

and we set

jc(‖h‖, α) =

4∑
i=1

αi

(
1− ‖h‖

hc2

)qi
, (3)

which gives a parameterized family of scaling relations whose
parameters α = [α1, α2, α3, α4] should be estimated.

C. Estimation problem

We denote the measured values of the critical curve in Fig. 2
as (hmeas,i, Ic,meas,i), with i = 1, ..., 9. Using the parameterized
critical current density scaling relation (3) in the FE discretized
version of (1), the forward model Ic(hsc, α) returns the integral
of (2) over the cross section of the wire in Fig. 1. We seek
for parameters α that minimize the error function

e(α) :=

(
9∑
i=1

[Ic,meas,i − Ic(hmeas,i, α)]
2

)1/2

. (4)

The minimization was carried out using the Trust Region
Reflective algorithm implemented in the Scipy optimization
package [16]. The α-values obtained from the minimization
problem are given by

α ≈ [2.49, 3.60, 3.04, 29.2] · 109A/m2. (5)
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(a) Large scale plot
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(b) Small scale plot

Fig. 3. Estimated critical current densities in 4.2 K. The ’engineering’ current
density is computed by dividing the critical currents of the wire by the cross
sectional area of the superconductive filaments.

The estimated jc is depicted in Fig. 3a and b as ’Estimated
jc’. In the figures, there is also an ’Engineering’ jc, which is
defined just by dividing the measured critical currents by the
cross sectional area of the superconducting filaments. We see
that the greatest differences between the ’engineering’ jc and
the estimated jc can be found in the region of low external
magnetic fields.

Furthermore, in Fig. 3, we see an additional critical current
density, called ’Estimated jc, rel. error’. This curve was
obtained using the error function

e2(α) :=

(
9∑
i=1

[
Ic,meas,i − Ic(hmeas,i, α)

Ic,meas,i

]2)1/2

(6)

instead of (4). Since the discrepancy between ’Estimated jc,
rel. error’ and ’Estimated jc’ in Fig. 3 is small at least
above 500 kA/m, we conclude that the estimation of the
critical current density is not overly dependent on the chosen
error function. The sensitivity of the zero-field critical current
density is discussed further in Section V.

In Fig. 3, there are also crosses marking an ’Engineering jc,
peak field’. These datapoints are just the engineering critical

current density points plotted against peak field corrected
magnetic fields proposed by Garber et al. [2]. The peak field
correction is given by

Hp = Hext +
I

πD
, (7)

where Hext is the magnitude of the externally applied field,
I is the net current through the wire and D is the wire
diameter. It seems that the peak field corrected engineering
current densities agree better with the estimated results than
without the correction. In this case, the peak field corrected
results are not defined below∼500 kA/m. Hence, extrapolation
or other methods are needed in order to provide well-defined
critical current density relations for finite element simulations.
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Fig. 4. Critical current measurements in 4.2 K according to Spencer et al.
[6], and computed curves. The computational curves are obtained by applying
the estimated critical current density relations in Fig. 3 to the forward model
in Section III-A.

Using the estimated jc, the critical current was computed
and the results are depicted in Fig. 4. The curves ’Com-
puted’ and ’Computed, rel.’ refer to the computational curves
obtained by using the corresponding local critical current
densities in Fig. 3 in the forward model. The error, given by
(4), of the ’Computed’ curve was 29.4 A, which is considered
a reasonable fit. However, a good fit in the sense of (4) does not
imply reliability of the estimated jc. It may occur that portions
of the estimated jc are sensitive to measurement errors. Section
V is dedicated to analyzing the sensitivity of the estimated jc
with respect to measurement errors. This gives the reader a
more thorough access to assess the reliability of the results.

In Fig. 5, we see a field solution with a local current
density and a magnetic self-field strength visualized. The wire
in the figure is carrying a critical current of 129 A in an
external magnetic field of 8 T. The solution corresponds to
the rightmost ’Computed’ point in Fig. 4.

The critical current of 129 A corresponds to a self-field
roughly of the order of 50 kA/m on the boundary of the 0.81
mm wire. From Fig. 5, we conclude that the field solutions
are in balance.
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Fig. 5. This figure displays the local current density and the magnetic self-
field strength in a situation where the wire is in critical state, carrying 129
A in an external field of 8 T. This situation corresponds to the rightmost
’Computed’ point in Fig. 4.

IV. REMARKS ON CONVERGENCE

In the spirit of Rostila et al. [3], we briefly discuss the
computational burden of the estimation process as well as the
convergence of the minimization.

The FE discretized version of (1) in the geometry of Fig.
1 contains 5362 unknown nodal values for ϕ. The number of
elements is 10860. Solving the Ic curve once requires solving 9
nonlinear static problems using the Newton’s method, one for
each measured magnetic field. To express the overall compu-
tational burden of the process, we repeated the estimation pro-
cess once again but this time using the computational values
(hmeas,i, Ic(hmeas,i, α)), with α as in (5), as a ’measurement’.
In principle, using these values in the estimation problem as
’measurements’, the coefficients of the critical current density
scaling relation should converge to α and the error e should
converge to zero. Initial guess of α ≈ [1, 1, 1, 1] · 109 A/m2

was chosen for the optimization algorithm. This guess is a
reasonable but honest guess in the sense that it is of the correct
order of magnitude but still relatively far from the estimated
value of (5).
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Fig. 6. Visualization of the convergence of the minimization of (4) in a
practical situation. Each blue point represents one forward model evaluation.

In Fig. 6, we see the convergence of the method in terms

of the error function (4) as a function of forward model eval-
uations. For a problem with a four dimensional unknown, five
forward model evaluations are carried out per each iteration.
It took 12 iterations, total 60 objective function evaluations,
to achieve an error of e ≈ 3.7 · 10−6 A/m2. We conclude
that the estimation method converges well with a reasonable
computational burden.

V. SENSITIVITY TO MEASUREMENT ERRORS

In the spirit of Rostila et al. [3], we analyze the sensitivity
of the estimated jc curve with respect to errors in the measured
Ic,meas values. In order to define measurement errors, we
have to define ’exact’ values of Ic where to compare the
distorted values. We again define the computational values of
Ic(hmeas,i, α), with α as in (5), to be ’exact’ and denote them
by Iexact,i. Of course, this is merely a definition.

A. Systematic measurement errors

We assume that the values Iexact,i are exposed to systematic
errors. We used expressions of the form (1 + p)Iexact,i with

p = ±0.001,±0.01,±0.03,±0.06,±0.1

as measurements in the objective function (4). Then by using
the Trust Region Reflective algorithm, we estimated the pa-
rameters αp with p as an index denoting the chosen systematic
error.

We choose the expression∫ hc2

0
jc(h, α)dh−

∫ hc2

0
jc(h, α

p)dh∫ hc2

0
jc(h, α)dh

(8)

to denote the error between the ’exact’ jc and estimated ones.
Since the expression of jc (3) is very easy to integrate, we
find an easy form of (8) given by∑

i

(
αi

qi+1

)
−
∑
i

(
αp

i

qi+1

)
∑
i

(
αi

qi+1

) , (9)

where the numbers qi denote the exponents defined in (3).
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Fig. 7. Errors of estimated jc in situations where simulated systematic errors
of various orders are added to the measured Ic. The errors are quantified by
the integral (8).
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In Fig. 7, we see the errors in the estimated jc, given by (9),
with respect to the chosen systematic errors in Ic. The errors
are depicted separately for positive and negative systematic
errors. In the graph, we see that the integral error of jc is of
the same order as the systematic errors in measured Ic values
but slightly higher.
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Fig. 8. Errors of the estimated α-parameters in situations where simulated
systematic errors of varoius orders are added to the measured Ic. Errors in
the zero-field critical current density jc are visualized as well.

Let us emphasize more the effect of systematic errors in
Ic to the estimated parameters α of jc. In Figs 8a and 8b,
the individual errors of the estimated α-values are depicted
for positive and negative measurement errors respectively. The
errors of the α-values are defined by

α− αp

α
,

where α are the values of (5) and αp are the estimated
ones with the presence of simulated measurement errors. Both
figures, 8a and 8b, have the same trend in general. For the
values αp1, αp2 and αp3, it seems that one percent of error in
the measured Ic leads to one percent of error. However, the
value αp4 is more sensitive to measurement errors. One percent
of measurement error in this case leads to 7-9% errors.

This αp4 is the coefficient of the term in (3) with the
highest exponent. In Figs 8a and 8b, we see that the error
of α4 is closely related to the error of the zero-field critical
current density jc,0 =

∑
i αi, which is also quite sensitive to

measurement errors.
We conclude that the integral error (8) gives relative errors

of jc of the same order as the relative errors of measured
Ic. However, the curve jc can be more sensitive to errors,
especially in the range of very low external magnetic fields.

B. Random measurement errors

In the spirit of Rostila et al. [3], let us now consider random
measurement errors. In the previous section, the ’exact’ values
of Iexact,i were altered in a systematic fashion, but this time
we simulate random errors. Consider randomized numbers ri,j
with index j = 1, ..., 100 and the index i corresponding to
the index of Iexact,i. The numbers ri,j are taken from a uni-
form distribution of [−0.1, 0.1], [−1, 1], [−4, 4], [−10, 10] or
[−40, 40] to define error tolerances. We set Ij, i = Iexact,i+ri,j .
This means that the ’exact’ values of Ic are altered randomly
by adding uniformly distributed random components to each
value. Minimizations of the objective function e, with Ij, i as
measurement data, were carried out for each of the five sets
of one hundred randomized collections of data. The integral
errors of (8) were computed and maximum values were chosen
from both negative and positive errors. In Fig. 9, the maximum
values of the integral error (8) are depicted.
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Fig. 9. Visualization of the positive and negative maxima of the integral
errors (8) of jc in situations where simulated randomized errors are added to
Ic. The sample size of each simulation was 100.

Before we make any conclusions, let us consider the sen-
sitivities of individual α-values. For each set of one hundred
samples of the five error tolerances, we may take the maximum
errors of the estimated α-values both for positive and negative
errors comparing to the ’exact’ values given by (5). The
maximum positive and negative errors are depicted in Figs
10a and 10b, respectively.

It seems that the order of uncertainty of the integral error
of jc and the order of uncertainty of α1 and α2 more or
less agree. The order of the uncertainties of α3, α4 and jc,0,
however, are notably larger. Again, the coefficients α3 and
α4 correspond to the higher exponent terms in (3). Take for
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Fig. 10. Visualization of the maximum errors of the estimated α-parameters
in situations where simulated randomized errors are added to Ic.

instance the highest error tolerance of 40 A in Ic. The integral
error of jc yields less than 20% of error in jc, whereas the
estimated zero-field critical current density jc,0 has uncertainty
of the order 90%. We conclude that also in the case of random
errors, the uncertainty of the low-field critical current density
is significantly higher than the uncertainty of the integral error
of jc.

To visualize the uncertainties further, in Figs 11a and 11b
are depicted all of the estimated jc curves with two error
tolerances in simulated Ic measurements: 10 A and 40 A,
respectively. In the figures, we can see that most of the
uncertainties in the estimated jc curves can be found in the
low-field region below ∼500 kA/m. We note that even though
the maximum errors in the individual α-values, depicted in
Figs 10a and 10b, are relatively high, the shapes of the jc
curves in the high-field region above ∼500 kA/m are not
greatly affected.

C. Rough estimate of random errors

To decide how uncertain the estimated jc, given by the
parameters α in (5) is, we assume that all the errors are due to
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Fig. 11. Visualizations of the estimated jc curves in situations where
randomized errors are added to the measured Ic-values.

random measurement errors. The final cost of the estimation
problem was 29.4 A and the largest individual difference
between measured and computed current was 21.6 A.

The first rough estimate for the uncertainty of the current
measurements would be to assume that each of the nine current
measurements is vulnerable to at least 9.8 A of random errors.
This is due to the cost function (4) not being able to provide
29.4 A error if each nine measurements were within less than
9.8 A tolerance.

On the other hand, for each estimation of random errors
in the previous section, we also computed the final costs e,
defined by (4). Selecting the maximum and mean costs of
each dataset, we find the cost vs. Ic error tolerance curves of
Fig. 12. In the figure, there is also a line representing the final
cost of the original estimation problem, 29.4 A. Only samples
with error tolerance of Ic greater than ∼14 A provided final
costs more than 29.4 A. Furthermore, the mean error reaches
29.4 A with error tolerances as high as ∼ 50 A.

These considerations suggest that the uncertainty of the
estimated jc should be found somewhere from the far right
end of the Figs 9, 10a and 10b. In terms of maximum integral
error of the estimated jc, the uncertainty could be as high as
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Fig. 12. The dependency between the error tolerances of the simulated
random errors of Ic and the maximum and the mean values of the final
costs (4) in forward simulations of critical current are visualized. As the cost
function (4) yields a well-defined error, the tolerance of random errors in the
measured Ic may be roughly estimated. The horizontal line corresponds to
the error of 29.4 A of the original estimation.

some tens of percents. On the other hand, for the estimated
zero-field critical current density, the uncertainty could be as
high as a factor of two of the estimated value.

VI. CONCLUSION AND DISCUSSION

In this paper, the critical current density of NbTi was
estimated from critical current measurements using a finite
element method based estimation scheme. The method turned
out to be of adequate computational burden. Even though the
computational and measured critical currents may be matched
accurately, sensitivity analysis of simulated systematic and
random errors in current measurements revealed that the
estimated zero-field critical current density, in particular, is
very sensitive to critical current measurement errors.

As an extension, this study calls for the use of a more
advanced forward model with the possibility to control the
degree of twisting of the cable and the degree of couplings
between the filaments in the presence of an externally applied
magnetic field. The motivation is simple. If the self-field
distribution in the wire is heavily affected by helicoidal shape
of the filaments, the forward model is unable to capture such
effects.

An approach for modeling twisted conductors in 2-D taking
into account self-field effects has been reported [10], [11],
[12]. The model exploits helicoidal symmetry. Straightforward
generalization of the approach taking into account a uniform
external magnetic field is not possible due to the requirements
by the chosen symmetry, and the desired generalization re-
mains as an open question. If self-fields suffice, this approach
could very well be utilized for our purposes in the future.

Models with sliced 2-D geometries have been proposed,
and in this case, both the twisting of the wire and externally
applied fields may be included in the computations [17]. The
degree of coupling between the filaments, however, is not an
intrinsic property of the model.

An extension to 3-D taking into account external fields,
twisting of the wire and the couplings between the filaments is
also possible, of course with additional computational burden.
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Pellikka, ”Manifolds in electromagnetism and superconductor modelling:
Using their properties to model critical current of twisted conductors in
self-field with 2-D model”, Cryogenics, vol. 53, pp. 135-141, Jan. 2013.

[11] A. Stenvall, M. Siahrang, F. Grilli, and F. Sirois, ”Computation of self-
field hysteresis losses in conductors with helicoidal structure using a 2D
finite element method”, Superconductor Science and Technology, vol. 26,
no. 4, Apr. 2013, Art. no. 045011.

[12] A. Stenvall, F. Grilli and M. Lyly, ”Current-Penetration Patterns in
Twisted Superconductors in Self-Field”, IEEE Transactions on Applied
Superconductivity, vol. 23, no. 3, Jun. 2013, Art. no. 8200105.

[13] J. Vesa and P. Rasilo, ”Producing 3-D Imitations of Soft Magnetic
Composite Material Geometries”, IEEE Transactions on Magnetics, vol.
55, no. 10, pp. 1-10, Oct. 2019.

[14] L. Bottura, ”A Practical Fit for the Critical SurEace of NbTi”, IEEE
Transactions on Applied Superconductivity, vol. 10, no. 1, pp. 1054-1057,
March 2000.

[15] L. Bottura, ”JC (B;T ;ε) Parameterization for the ITER Nb3Sn Produc-
tion”, IEEE Transactions on Applied Superconductivity, vol. 19, no. 3,
pp. 1521-1524, Jun. 2009.

[16] Scipy scipy.optimize.least squares documentation, Cited in Apr.
2020, https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
least squares.html#scipy.optimize.least squares.

[17] V. Lahtinen and A. Stenvall, ”Toward Two-Dimensional Simulations of
Hysteresis Losses in Partially Coupled Superconducting Wires”, IEEE
Transactions on Applied Superconductivity, vol. 24, no. 3, Sep. 2013,
Art. no. 8200205.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares

	Introduction
	Problem
	Computational model
	Field problem
	Parametrization of the scaling relation
	Estimation problem

	Remarks on convergence
	Sensitivity to measurement errors
	Systematic measurement errors
	Random measurement errors
	Rough estimate of random errors

	Conclusion and Discussion
	References

