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The main purpose of this paper is to describe a new algorithmic method to imitate 3-D geometries of soft magnetic composite
materials. The method allows constructing various kinds of geometries for experimenting how certain geometric features affect
different electromagnetic properties of the materials. Using the geometry imitations, we demonstrate that in order to explain the
nonlinear static magnetic behaviour of certain composite, it is not necessary to assume contacts between neighbouring particles in
the material. The contacts may instead be replaced by thin gaps.

Index Terms—B-H Curve, Geometry generation, Magnetic contact, Material identification, Soft magnetic composite, Voronoi
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I. INTRODUCTION

SOFT magnetic composite (SMC) materials consist of
small ferromagnetic particles, possibly coated with some

electrical insulation material, compacted and heat treated.
These kinds of materials have some significant advantages, e.g.
isotropic behaviour in macroscopic scale and low eddy current
losses since the conductivity between individual particles is
relatively low [1], [2]. These qualities make the materials
appealing for applications such as inductors and transformers.
Manufacturing rotating electrical machines using SMC materi-
als has also drawn much interest. This is partly due to reduced
eddy currents and isotropic thermal and magnetic behavior.
However, it has been suggested that the greatest benefit of
using SMC materials in electrical machine cores comes from
the manufacturing processes that can be simplified into few
operations [3]. A microscope image of an SMC material is
found in Fig. 1.
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Fig. 1. A cross-section of a Fe-Ni-Mo alloy based SMC material.

The multiscale nature of SMC materials makes them tedious
to model since some electromagnetic phenomena, like eddy
currents, are strongly affected by the particle-size geometry.
There are approaches for examining the particle-size struc-
tures. Cyr et al. proposed a two-dimensional approach based
on meshing a real microscope image [4]. Similar kinds of
approaches have been utilized later again [5]. Cyr’s approach
allows capturing geometric information about the materials.
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However, it was speculated that the assumption of two di-
mensionality might lead to inaccuracies in computational B-
H curves. The study demonstrated that local saturation of
the particles near the particle boundaries end up affecting the
nonlinear effective permeability observed in the macroscopic
scale.

This paper has two goals. The main goal is to introduce
how imitations of soft magnetic composite geometries may be
obtained in 3-D. Belkadi et al. proposed an algorithmic method
to construct SMC material geometries in [6] and [7]. The
algorithm was based on filling a regularly meshed reference
cube by material and insulation regions. Our ideas are similar
to the methods of Belkadi et al. in a general level. How-
ever, we aim at more clear definitions of different geometric
parameters, such as particle contact surface areas and gap
thickness variations, which we think would be very tedious
to define using the methods of Belkadi due to the assumption
of a regularly meshed geometry. Hence, we postulate another
method to generate 3-D imitations of soft magnetic composite
material geometries and to compute appropriate geometric
parameters, like volume fractions, contact surface areas and
gap thicknesses of the material geometries.

As soon as geometries can be obtained, we take one case-
study that studies the nature of contacts between neighbouring
particles in the material. In the literature, a term magnetic con-
tact appears [5]. It was suggested that the linear magnetic per-
meability of an SMC, observed by macroscopic measurements,
is easily underestimated if not considering magnetic contacts.
However, we should be careful with the meaning of a magnetic
contact since as soon as neighbouring particles are unified, the
material becomes conductive. This could contradict the idea
of SMC materials experiencing low conductivities. In [7] this
problem was avoided by introducing magnetically conductive
but electrically insulated regions between particles.

In our study we measure a static B-H curve of an SMC
material. Then we postulate two different sets of geometries;
one with neighbouring particles in contact and the other with
neighbouring particles sharing thin gaps in between instead
of contacts. We establish that the local B-H curves of the
material particles may be estimated for these two sets in such a
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way that the computed effective B-H curves, that are observed
in macroscopic scale, are in agreement with the measured one.
The conclusion will be that the measured static B-H curve
of the material may be explained without assuming contacts
between neighbouring particles in the material. Demostrating
this is the secondary goal of this paper. However, the inverse
approach we use leaves open questions about the choices
we make for the geometries. Uncertainties in the geometries
lead to uncertainties in the estimated local B-H curves of the
material particles. These open questions are briefly discussed
at the end of this paper.

To be able to carry out the desired computations, some
computational technicalities need to be covered shortly. In
the computations we use a nonlinear single valued B-H
curve for the material particles, which we estimate using a
computational model against measurement data. Inverse meth-
ods for nonlinear magnetics have been studied by Sergeant
[8] and Abdallh [9], [10] et al. The methods are based on
expressing the local magnetic nonlinear permeability by some
nonlinear trial function whose parameters are estimated by
solving a least squares minimization problem. Our approach is
similar but instead of using one trial function for the nonlinear
permeability, we express the nonlinear part of the local B-H
relation in a function basis.

It should be noted that algorithmic geometry generation has
been studied quite extensively in the field of applied mechanics
[11]. So far such treatment in the field of electromagnetics has
received less attention.

II. GEOMETRIES

In this section we describe the approach we have chosen
for defining SMC-like geometries. All our codes have been
implemented as Python codes.

A. Constructing geometries

Our approach is relatively simple. We begin with a spatial
tessellation, refine the faces of each cell and then shrink the
cells to obtain gaps and/or contacts between the cells. Finally,
a boundary representation of the geometry is formed.

1) Tessellation
We begin with the cube [0, 1]3 and perform a spatial

tessellation for it to obtain a number N of cells. There are
some restrictions for the chosen tessellation. Each cell of the
tessellation is assumed to be a star domain with respect to
the mean value of the cell’s vertices. This is to ensure that
shrinking the cell towards the mean value point does not
occupy space outside the cell. Furthermore, each face of each
cell is assumed to be a star domain with respect to the mean
value of the face’s vertices for the same reasons.

So far only cubical tessellation and Voronoi tessellation
[12], [13] have been implemented, naturally the former be-
ing a special case of the latter. The motivation for cubical
tessellations is simplicity and for Voronoi that the symmetry
assumptions have been relaxed such that irregular geometries
may be obtained. Also, the particle sizes may be randomized.
We acknowledge that Voronoi diagrams are widely used to

(a) Cubical tessellation (b) Voronoi tessellation

Fig. 2. Initially, a tessellation is formed for [0, 1]3.
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Fig. 3. (a) The point p0 is an average of the vertices p1,...,p5. (b) The points
pi,t = pi + t p0−pi

‖p0−pi‖
, with 0 ≤ t < 1.

describe certain polycrystalline structures [14]. Voronoi tes-
sellations are provided by PyVoro package and its backend
Voro++ [15]. Voronoi diagrams may be viewed as a result
of a ball-growth process from nucleation points who fully
determine the diagram. If Voronoi tessellations are used, we
set a positive real number d to denote the minimum distance
between any two nucleation points and select the nucleation
points randomly in the cube [0, 1]3 under this condition. In
Fig. 2 we see examples of both tessellations.

2) Refinement of the cell faces
Let us now consider an individual face of a cell in the

tessellation. In Fig. 3a we see one such face, [p1, ..., p5].
We define the point p0 to be the mean of the vertices

p1, ..., p5. Next, the face is refined by defining multiple con-
tractions of the face [p1, ..., p5] inside one another. In 3b,
the vertices p1, ..., p5 are contracted towards p0 by setting
pi,t = pi + t p0−pi

‖p0−pi‖ using a predefined t with 0 ≤ t < 1. This
defines another line loop, [p1,t, ..., p5,t] inside [p1, ..., p5]. So
far it makes no difference how the vertices p1, ..., p5 circulate,
clockwise or counterclockwise, as long as the notation is
consistent for each face.

Continuing this idea, one face can be further refined by
adding more line loops inside the initial one. Such multiple
refinements are defined by giving a collection of weights
wF = [t0, ..., tk], with ti < tj if i < j and 0 ≤ ti < 1 for
each i = 0, ..., k. As a convention, we require t0 = 0, which
corresponds to the initial face. Hence, a refinement of the face
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Fig. 4. (a) The purple point v0 is an average of the vertices of the initial cell.
(b) The points are moved towards v0 by the formula pi,t = pi + t v0−pi

‖v0−pi‖
,

with 0 ≤ t < 1. In this picture, for the vertices in the solid blue faces t = 0.1
and they have been moved towards v0. For the vertices in the dashed red faces
t = 0 and they stay still.

in Fig. 3a would be a collection [[p1, ..., p5], [p1,t1 , ..., p5,t1 ], ...,
[p1,tk−1

, ..., p5,tk−1
], [p1,tk , ..., p5,tk ]] with each line loop lying

inside of the previous one in the list. For simplicity, in the
schematic figures of this paper, we visualize only refinements
consisting of just the initial line loops and one contracted
loop inside each. However, in general, the refinement process
accepts an arbitrary number of refined line loops.

The refinement process is carried out for every face of every
cell in the tessellation. So far the parameter wF is global in
the sense that it defines refinements for each face similarly.
We leave the possibility of defining and randomizing wF

separately for each face in the tesselation for future work.

3) Shrinking the particles
Fig. 4a illustrates one cell for which the face refinement,

demonstrated in Fig. 3, has already been carried out. The solid
blue lines in 4a describe the initial cell and the dashed red lines
describe the contracted faces. The purple point v0 is the mean
of the vertices in the solid blue initial cell.

In Fig. 4b, the vertices in the solid blue faces are moved
towards the point v0 by the relation pi,t = pi + t v0−pi

‖v0−pi‖ ,
with a predefined t under the condition 0 ≤ t < 1. The same
procedure is repeated for the vertices in the dashed red faces
also but with a different coefficient t.

Again, there might be any number k of layers given in
the face refinement procedure, defined by wF . Hence, we
define a collection of coefficients wC = [t0, ..., tk], which
corresponds to the coefficients wF given in the previous
section; the vertices of each contracted line loop, described
by the coefficients wF , are moved towards the mean v0 by a
corresponding weight in wC . Setting some coefficients in wC

positive but less than one, one obtains gaps between particles
and letting some coefficients equal to zero, leaves contacts
between neighboring particles.

One generalization could be defined. In our setting, every
particle is contracted by the same coefficients wC . The pos-
sibility of defining and randomizing wC individually for each
particle remains for future work.

(a) Particle boundary (b) Cube boundary

Fig. 5. (a) Particle boundary is a chain of counter-clockwisely oriented
surfaces. (b) Cube boundary is a chain of counter-clockwisely oriented planes
that are such parts of particle boundaries that are lying on the boundary of
the cube [0, 1]3 and the the darker grey planes in the picture that are counter-
clockwisely oriented planes with corresponding holes.

4) Constructing boundary representations
No computationally heavy geometric boolean operations

such as unions and intersections of particles have to be
considered when constructing a representation for the whole
domain. This is a consequence of the particles and their
faces being star domains in the initial tessellation as well
as the definitions of the face refinement procedure and par-
ticle shrinking procedure. It follows that no particle occupies
another particle’s volume or volume outside the box [0, 1]3.
Instead, the geometry is expressed as formal linear combina-
tions of geometric entities for which algebraic operations are
well-defined. Such an approach serves two purposes. Firstly,
it allows constructing the gap regions in a straight-forward
manner using the information about the bounding box and the
particles inside. Secondly, the approach produces a suitable
structure for the geometry to be converted into a format
required by an external meshing program.

First, we construct representations of the particles and their
boundaries. In Fig. 5a we see one particle. Each plane in the
boundary of the particle is considered as a counter-clockwisely
ordered tuple of vertices. For instance, in Fig. 3b, one would be
[p4, p3, p3,t, p4,t]. A particle is a tuple of planes who enclose
the volume of the particle. In order to define the boundary
of a particle, we have to express multiple oriented geometric
entities at once. To do so, we use chains, formal linear
combinations of geometric entities with integer coefficients.
We define a boundary operator ∂ that returns for a particle a
chain of its boundary planes with unit coefficients. Negative
coefficients denote opposite orientations.

Next, we construct a representation for the gap region. In
Fig. 5b we see the boundary of the bounding box which was
earlier denoted as [0, 1]3. This boundary is a chain of oriented
planes in a similar manner than the boundaries of the particles
are. Let us denote the boundary of the bounding box as b. If
the particles are denoted as p1, ..., pN , the boundary of the gap
regions g, denoted by ∂g, is given by

∂g = b−
N∑
i=1

∂pi, (1)
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where ∂pi stands for the boundary of the particle pi. We define
the gap g as a tuple of its boundary planes.

The whole space D is described by a formal linear combi-
nation

D = g +

N∑
i=1

pi. (2)

Defining boundary operators of different orders, and applying
these boundary operators recursively beginning from D, we
find all the lower dimensional entities such as planes and lines
whose representatives are chosen on the run. This structure
of entities of different dimensions and boundary operators
between them is then converted into a Gmsh geo-file for
meshing purposes [16]. In Fig. 6 we see the finished meshed
geometries that are based on the tessellations in Fig. 2.

(a) Based on cubical tessellation (b) Based on Voronoi tessellation

Fig. 6. Selecting particle number N = 27, face contraction coefficients
wF = [0, 0.4] and particle contraction coefficients wC = [0.1, 0] we
get these meshed geometries. For visual reasons, the gap elements are left
transparent. (a) A meshed periodical geometry with approximately 125000
elements and 16000 vertices. (b) A meshed irregular geometry. With Voronoi
tessellations, an additional coefficient d = 0.15 was set to ensure minimum
distance of 0.15 between any two distinct nucleation points. The mesh consists
of approximately 150000 elements and 19000 vertices.

Gmsh admits some freedom for mesh density definitions.
At the moment, we have defined a finer mesh density close
to the particle edges. Our approach of defining geometries
independently of meshes allows such optimizations.

5) Scaling
A scaling parameter is passed to the geo-file so that the

volume of the meshed particle array can be set arbitrarily.

B. Geometric features

In this section we focus on introducing how to measure
different geometric characteristics of the generated geometries.

1) Volumes and contact surfaces
We consider the total volume of the particles inside the

box [0, 1]3 as the volume fraction VF of the geometry. This
definition is independent of the later scaling of the geometry.

To measure contact surfaces between particles, let us con-
sider again Fig. 4. Contracted cell (b) is contained inside cell
(a). However, since the dashed red surfaces do not move, they
form contacts between neighbouring particles. Contact surface
fraction is defined by Sb/Sa, where Sb is the sum of the
surface areas of the dashed red surfaces in 4b and Sa is the
sum of the surface areas of the solid blue surfaces in 4a.

Next, we extend the definition of contact surface fraction to
N particles with arbitrarily many face refinements. Define Sa

to be the sum of all areas of the particle boundary surfaces
in the geometry before the cells are shrinked by the process
described in the subsection II-A3. Define Sb to be the sum of
the areas of all the particle boundary surfaces of the geometry
that do not move during the shrinking process. We denote the
contact surface fraction Sb/Sa as SF . The quantity SF is scale
independent.

2) Gap thickness characterization
The next task is to quantify the gaps between neighbouring

particles. One thing we wish to measure is how the gap
thickness varies over the geometry.

Let us consider one surface element of a particle after the re-
finement process of the particle faces but before the shrinking
of the particles. One such surface element is [p4, p3, p3,t, p4,t]
in Fig. 3b. In Fig. 7 the same element is denoted by the
darker purple surface found on the surface with the unit normal
n2. During the shrinking process, the surface is transformed
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q
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Fig. 7. A pair (A, li) is obtained by setting A = (n1 · n2)Aq/k, where
Aq is the area of the surface with unit normal n1 and li is the orthogonal
distance between qi and the plane with unit normal n2.

into q := [q4, q3, q3,t, q4,t]. Denote Aq as the area of the
surface q and denote k as the number of vertices of the
same surface and li as the orthogonal distance between qi
and the surface with unit normal n2. We define a pair (A, li),
where A is a contribution of a projected surface area, given
by A = (n1 ·n2)Aq/k. Intuitively, the pair can be interpreted
such that an area of A can be found approximately from a
distance li from the boundary of the initial tessellation. The
coefficient 1/k allows summing A in a meaningful way over
the vertex index i, resulting in the projection of Aq .

Let us now generalize the idea of measuring gaps into the
case of arbitrary number of particles with arbitrarily refined
faces and arbitrary shrinking of the particles. Similar kinds
of pairs (As, ls,v) may be defined for every vertex of every
plane surface of each particle of the geometry, with s denoting
a surface and v denoting a vertex in the surface s. In Fig. 7
one possible pair of indices would be s = [q4, q3, q3,t, q4,t]
and v = q4,t. We define

Lavg =

∑
s,v Asls,v∑
s,v As

(3)

to represent an area-weighted average of gap thickness por-
tions. This does not define mean gap thickness between
neighbouring particles, since we considered only the distances
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between the faces of shrinked cells and the initial cells. How-
ever, this measure is quite enough to distinguish geometries
with different gap shapes from each other. Further, we set

Davg =

∑
s,v As|ls,v − Lavg|∑

s,v As
(4)

to represent the absolute deviation of the weighted distances.

III. COMPUTATIONAL METHODS

The primary objective of this paper, to automatically pro-
duce three dimensional imitations of soft magnetic compos-
ite geometries, has been introduced. Before we can study
magnetic contacts and thin gaps, we must introduce some
computational methods. This section contains technical details
that are used in the computational study.

A. Formulation

The formulation is similar to [17] but in 3-D. Let us assume
that a domain is given and necessary constitutive relations are
defined in the domain.

Denote the domain with Ω. Assuming no eddy currents are
present, the magnetic field H has a scalar potential. However,
assuming a known excitation field Hex under the condition
∇×Hex = ∇×H = 0, we notice that H−Hex has a potential.
Hence H = Hex + ∇ϕ, where Hex is a known field and ϕ
is an unknown scalar potential. Introducing the Gauss law for
magnetism, the equation for the scalar potential becomes

∇ ·B(Hex +∇ϕ) = 0, in Ω, (5)

where B = B(H) is the constitutive relation.
We solve the equation for ϕ approximately by using the

Galerkin finite element method with nodal scalar basis func-
tions. We define Bavg and Havg as B and H -fields averaged
over Ω respectively. Setting

ϕ = 0, on ∂Ω,

it follows that∇ϕ averages to zero and Havg is just the average
of the excitation field Hex. Furthermore we choose Hex to
be constant over Ω. The matter of interest is the nonlinear
relation Bavg-Havg, that is comparable to macroscale field
measurements [17]. From now on, we denote ‖Bavg‖-‖Havg‖
as Bavg-Havg.

B. Local constitutive model

Let us now relax the assumption of having explicitly defined
the constitutive models. To define constitutive relations for the
magnetizing particles, we use an inverse approach. We define
the local constitutive model as a single-valued B-H relation
so that its parameters may easily be estimated. Later, we use
the computational formulation and optimize the parameters of
the constitutive model such that measured Bmeas-Hmeas curves
and computed Bavg-Havg curves are in agreement.

We are going to define a scalar relation Bsc = Bsc(‖H‖)
and extend it by isotropy by setting

B(H) = Bsc(‖H‖)
H

‖H‖
(6)

and B = 0 if H = 0. The question is how to define such
scalar relation that has some extra freedom as parameters to
be estimated.

To introduce an arbitrary number of degrees of freedom for
the scalar relation without losing an intuitive interpretation of
the parameters to be estimated, we proceed as follows. We
write the scalar material relation as

Bsc = µ0Hsc + Jsc, (7)

where the scalar magnetic polarization Jsc is written in a
suitable basis.

Consider increasing functions fi, with i = 1, ..., n, such
that fi(0) = 0 and limx→∞ fi(x) = 1. Let Jsc =

∑n
i=1 αifi.

Setting constraints αi ≥ 0, we find that Jsc is increasing,
Jsc(0) = 0, and the saturation of Jsc is given by Jsc,sat =∑n

i=1 αi. Our relation (7) reads as

Bsc(Hsc, α) = µ0Hsc +

n∑
i=1

αifi(Hsc). (8)

This is just a collection of single valued material relations
determined by the nonnegative coefficients α = [α1, ..., αn].
Different kinds of choices could be made for the functions
fi. We choose very easy expressions for the functions fi by
setting

fi(Hsc) =

−
(

Hsc
Hsat,i

)2
+ 2 Hsc

Hsat,i
, 0 ≤ Hsc < Hsat,i

1, Hsat,i ≤ Hsc,

where Hsat,i is just the value of magnetic field strength where
the corresponding function fi saturates. We chose four basis
functions of this form demonstrated in Fig. 8.
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Fig. 8. Basis functions f1, ..., f4 are defined by choosing appropriate
saturation points Hsat,i for each function. The saturation points are chosen
heuristically by experimenting with different values.

Our α-dependent constitutive model for the magnetizing
regions reads as B = B(H, α) and for the gap regions we
set B = B(H, 0).

C. Measurements

To choose the coefficients α, we perform an estima-
tion against a measured Bmeas-Hmeas curve. Magnetics Inc.
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C055106A2 MPP core [18] was chosen for a case-study. The
microscope image in Fig. 1 was taken from such a toroid. In
Fig. 9 we see a schematic image of the toroid in question.

57.2

35.6

14.0

Fig. 9. Dimensions of the sample. The measures are expressed in millimetres.
Red cross section is A = 144 mm2. The corners were round in the original
sample. The winding number of the primary coil was N1 = 200 and for the
secondary coil N2 = 50. For simplicity, the length of the blue line may be
approximated by l = 146 mm. Measurement frequency was 50 Hz.

A two-coil measurement setup was used. The primary
winding was excited by sinusoidal 50 Hz voltage excitation
while measuring the primary current I(t) and the open-circuit
secondary voltage V (t). The magnetic flux through a cross
section of the toroid, demonstrated by the red plane in Fig. 9,
is given by

Φ(t) = − 1

N2

∫ t

0

V (τ)dτ,

where N2 is the number of turns in the secondary winding,
V (0) is assumed to be zero and V (t) increasing around t = 0.
We define Bmeas by Bmeas = Φ/A, where A is represented
by the area of the red plane in Fig. 9. Furthermore we set
Hmeas = N1I/l, where N1 is the number of turns in the
primary winding and l is represented by the length of the
blue curve in Fig. 9.

In Fig. 10 we see the measured hysteresis loop. Consistently
with the product catalog advertising these type of cores having
low hysteresis losses [19], the measured loop shows negligible
hysteresis. The loop is thus approximated by a single valued
relation. We chose 35 measurement points from the positive
part of the curve by choosing regular grids for both H and B
axis and solving the corresponding intersections with the mea-
sured loop. These points are used later in the computations.
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Fig. 10. Measured hysteresis loop and chosen Bmeas-Hmeas -samples.

D. Computational estimation

We use the scalar constitutive relation (8) with the chosen
basis functions in Fig. 8 in the constitutive equation (6). We
are denoting (Hmeas,i,Bmeas,i) with i=1, . . . , n as the sampled
measurements in Fig. 10. We express the excitation field
in the formulation (5) in terms of the measurements as
Hex,i = Hmeas,ie1 with i denoting the i:th measurement sam-
ple. Using the Galerkin finite element method to compute the
potential and averaging B over the domain, we find a relation
Bavg(Hmeas,i, α) that relates the averaged computational Bavg
to the measured Hmeas values. We wish to find such α that
‖Bavg(Hmeas,i, α)‖ is close to Bmeas,i.

A cost function and constraints are defined by

r
(
α) :=

n∑
i=1

(
Bmeas,i − ‖Bavg(Hmeas,i, α)‖

)2

,

αj ≥ 0, j = 1, ..., 4.

(9)

We estimate the parameters α by finding a solution to the
constrained minimization problem (9). Selecting an appropri-
ate tolerance for the minimization problem, the agreement
between the measured Bmeas-Hmeas and computed Bavg-Havg
is good, provided that the optimization converges. The op-
timizations are carried out using the Trust Region Reflective
algorithm implemented in the Scipy optimization least squares
package [20].

We set some terminology for the following computational
study. There are three distinct B-H curves considered. Firstly,
the curve Bmeas-Hmeas is called the measured B-H curve.
Secondly, referring to the equation (8), the curve Bsc(Hsc, α)-
Hsc is called the estimated local B-H curve. The curve
depends on the parameter α, which is found by minimizing (9).
Thirdly, the curve Bavg-Havg is called the computed effective
B-H curve, which depends on the estimated local curve.

IV. COMPUTATIONAL EXAMPLE

Let us now use the methods in one simple computational
study. The aim of this study is to demonstrate that contacts of
neighbouring particles in the material may be replaced by thin
gaps without having to compromise the agreement between
measured and computed effective B-H curves.

A. Choosing geometry parameters and the constitutive
model

Using Voronoi tessellations and random nucleation points
for the particles, we generate geometries with particle number
N = 27, volume fraction VF = 0.9 and contact surface
fraction SF = 0.36. Do these parameters correspond to
the actual case-study material in Fig. 1? In this section, we
discuss these chosen parameters as well as the local magnetic
constitutive model of the particles.

Particle number N has to do with a choice of the represen-
tative cell of the material. A justification for N is given later
by demonstrating that the results are similar if choosing much
larger N instead of 27.

The volume fraction VF may be approximated in two ways.
One way is to turn the image in Fig. 1 into a two-color image.
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Volume fraction is then determined by the fraction of the color
representing the material. This was done for the material in
Fig. 1 and VF ≈ 0.899 was found. However, this method is
quite questionable, since any volume fraction may be obtained
by choosing how the image is processed. Another approach is
to compare the density 8 g/cm3 given in the catalog [19] to
the weighted mean of the densities of the constituents in the
81% nickel, 17% iron and 2% molybdenum alloy. This way
we find a volume fraction VF ≈ 0.91. However, in this case it
would be necessary to assume that the specific volumes of the
constituents are preserved in the material. An approximation
of VF = 0.9 is chosen.

Finally, we choose the properties of the contact regions.
We consider two cases; one with contacts in between the
neighbouring particles and another with the contacts being
replaced by thin gaps.

B. Geometries with contacts

As a reference, a contact surface fraction of SF = 0.36 is
chosen. To justify this could be a cumbersome task since the
material becomes also conducting, which is contrary to the
idea of SMCs. A practical point of view for such a choice
can still be given; the contact surface fraction is chosen in
a way that estimation of the local magnetic relation may be
carried out such that the measured and computed effective B-
H curves agree accurately. This of course does not validate
SF . It is merely a choice.

Chosen parameters N , VF and SF may be approximately
obtained by setting the algorithm parameters, for instance
N = 27, d = 0.15, wF = [0, 0.4], and wC = [0.1, 0].
Here N is the number of particles in the reference cell, d
denotes the minimum distance between the randomly placed
N nucleation points, wF defines how the cell faces are refined,
and wC defines how the cells are contracted. The parameters
were further explained in Section II. Two hundred sample
geometries were generated, and we call them geometries with
contacts.

The next task is to estimate the local B-H relation for the
particles. This procedure is carried out once, and then the
same relation is used for all the other computations. Using one
geometry, we perform an estimation of the local relation using
the methods described in Section III-D. The optimization prob-
lem (9) yields parameters α = [1.1 · 10−13, 0.64, 0.36, 0.031]
for the chosen values of Hsat = [2, 5, 9, 35] kA

m to be used in
the scalar constitutive model (8). The constitutive model with
the chosen parameters Hsat and estimated values of α define
the estimated local curve in Figure 11a. Using this estimated
local B-H curve in the constitutive equiation (6), substituting
to the formulation (5), solving the fields in the two hundred
domains and averaging over the domains we find the two
hundred curves, called computed, 200 samples, contacts, in
Figure 11a. We call these curves the computed effective Bavg-
Havg curves. In the figures, the measurement samples are the
same as in Fig. 10. In Fig. 11b we see the unsaturated region
of the solutions given in Fig. 11a.

The agreement between the measured and the computed
effective curves is considered good, since a cost less than
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Fig. 11. Computational results for samples with magnetic contacts as well
as the measured Bmeas-Hmeas -curve and the estimated local B-H -curve.

5·10−4 T2 of the cost function (9) was found by the estimation
scheme of the local B-H curve. We also see that the two
hundred computations yield consistent Bavg-Havg even though
the underlying initial Voronoi tessellation is randomized. There
are major differences between the estimated local curve and
the computed effective curves. This is due to the presence
of gap regions in the domain. Since the measurements were
carried out for the whole composite material, they are not
useful in discussing whether the estimated local curve is
meaningful or not. We will discuss this matter later in this
paper by comparing the estimated local curve to another one
obtained by using another type of geometry.

In Fig. 11a and 11b there is also an additional curve,
obtained by a geometry with particle number N = 729.
This represents a computation of Bavg-Havg curve using the
same local B-H relation as for the two hundred samples but
with a geometry of 729 particles instead of 27. However,
the parameters VF and SF are the same as well as the
algorithm parameters wF and wC . Since the curve agrees
with the computations by the two hundred sample geometries,
we conclude that in this case it is enough to carry out
computations using just 27 particles instead of 729. In Fig.
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Fig. 12. A comparison between a geometry of 729 particles and 27 particles.
The mesh of the geometry with 729 particles contains approximately 465 000
vertices and 2 700 000 elements.

12 we see images of the geometries of 729 particles and 27
particles.

C. Geometries with thin gaps

Let us now define another set of algorithm parameters, given
by N = 27, d = 0.15, wF = [0, 0.4], and wC = [0.1, 0.001].
Again, N is the number of particles in the reference cell, d
denotes the minimum distance between randomly selected nu-
cleation points, wF defines how the cell faces are refined and
wC defines how the cells are contracted. The parameters were
further explained in Section II. We generated two hundred
such samples using randomized initial Voronoi tessellations,
and we shall call them geometries with thin gaps.

The only difference between the geometries in this and in
the previous section is the latter parameter of wC . In this
case the value is not zero but a small positive number. It
means that in this case the contact surface fraction SF = 0,
all the particles are insulated and the contacts are replaced
by thin gaps. The gap thickness characterization (3) yields
an approximate distance Lavg ≈ 1.6 · 10−4 for the regions
that correspond to the contact regions in the previous section.
Assuming this represents a half of the gap thickness of the non-
scaled geometry and a scaling factor of 100 µm : 1, we find
an approximate gap thickness of 32 nm. The volume fraction
VF is approximately the same 0.9.

As in the previous section, using one geometry, we per-
formed an estimation of the local B-H relation using the
methods described in Section III-D. The optimization problem
(9) yields parameters α = [0.23, 0.7, 0.05, 0.041] for the
chosen values of Hsat = [2, 5, 9, 35] kA

m to be used in the scalar
constitutive model (8). The constitutive model with the chosen
parameters Hsat and estimated values of α define the estimated
local curve in Figure 13a. Using this estimated local B-H
curve in the formulation, solving the fields in the two hundred
domains and averaging over the domains we find the computed
effective B-H curves, called computed 200 samples, thin gaps,
in Fig. 13a. In the figures, the measurement samples are just
the same as in Fig. 10. A scaled version of the unsaturated
region of the curves is found in Fig. 13b.
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Fig. 13. Computational results for samples with thin gaps as well as the
measured Bmeas-Hmeas -curve and the estimated local B-H -curve.

A cost less than 5 · 10−4 T2 of the cost function (9) was
found again and hence, the agreement between the measured
and the computed curves is considered good. The two hundred
computations yield consistent Bavg-Havg. Again, there are
major differences between the estimated local curve and the
computed effective curves due to the presence of gap regions in
the domain. The meaning of the local B-H curve is discussed
later.

In Fig. 13a and 13b there is, again, an additional curve,
obtained by a geometry with particle number N = 729 but the
same parameters VF , SF , wF and wC as with the geometries
with 27 particles. Since the curve agrees with the computations
by the two hundred sample geometries, we say that also in
this case it is enough to carry out computations using just 27
particles instead of 729.

D. Differences in the local magnetic relation

In the two previous sections we saw that the measured
Bmeas-Hmeas relation may be repeated computationally using
either the geometries with particles in contact or the geome-
tries with particles sharing thin gaps in between instead of
contacts. But in order to do so, we carried out estimations of
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the local B-H relations of the particles once for both sets of
geometries. Let us now compare the two estimated local B-H
curves that were defined in Sections IV-B and IV-C.

In Fig. 14a we see a comparison of the two estimated local
B-H curves, one of which was used in the computations
using the geometries with contacts and the other using the
geometries with thin gaps. In Fig. 14b the same results are
visualized in a different scale to emphasize the differences.
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Fig. 14. Estimated local B-H -curves for the two sets of geometries.

We see that the major differences in the estimated curves
are in the unsaturated region of the curves framed in Fig 14a.
In the case of geometries with contacts, we find the linear
relative permeability of the estimated local B-H relation by
differentiating (8). It yields µr ≈ 270. On the other hand,
for the geometries with thin gaps, the estimated curve yields a
linear relative permeability of µr ≈ 420. Both of the values are
low compared to the values mentioned in [2] with sintered iron
composites having relative permeabilities of several thousands
and nickel dominated even tens of thousands.

We suspect that it is possible to find many more geometries
that provide an agreement between measured and computed
effective B-H curves observed in the macroscopic scale but
with clear differences in the local linear permeabilities. To pre-
fer one geometry over others, more measurement data needs

to be gathered especially about the gaps between neighbouring
particles in the material or the local magnetic behaviour of the
material particles. This will be the focus in our further studies.

V. CONCLUSION

In this paper, we described a fairly simple method to
construct 3-D geometries that imitate soft magnetic composite
materials. The codes were written as python scripts that
produce Gmsh geo-files that can later be used for meshing
purposes. We conclude that automatic geometry generation is
an efficient way of producing geometries by just choosing
a few parameters. Also, the geometries can be randomized
at least in terms of particle sizes. This approach allows
experimentations on how different geometric parameters of the
materials, such as volume fractions, contact surfaces and gap
thickness variations, affect the electromagnetic properties of
SMC materials. We acknowledge that even though the codes
for automatized geometry generation reduce the manual labour
of a researcher, computationally the problems can be very
large.

In the second part of the paper, we considered two different
sets of geometries. We generated two hundred geometries with
equal particle number, volume fraction and contact surface
fraction. It turned out that it was possible to estimate the
local B-H curve of the material particles in such a way
that the computed effective B-H curve of the case-study
composite material and measurements were in agreement.
Then we considered another set of two hundred geometries but
this time contacts had been replaced by thin gaps. It turned
out that through the same procedure of estimating the local
B-H curve of the material particles it was possible to repeat
computations of effective B-H curves that agreed well with
the measurements. The conclusion is that in order to explain
the static magnetization properties of an SMC material, it is
not necessary to assume contacts in between neighbouring
particles. Instead the contacts may be replaced by thin gaps,
and yet the measurements can be explained.

It was established that there were clear differences in the
unsaturated parts of the estimated local B-H curves of the
material particles between the two sets of geometries. This
suggests that there are unknown features in the produced
geometries. To decide what kind of geometry imitation should
be preferred over others, more measurements have to be
brought in. Our future work concentrates on finding more
information about the gaps and contacts in the case-study
material by supplementary measurements.

In the future, the methods will be used in magnetodynamic
simulations. Since SMC material geometries may be generated
and meshed efficiently, the methods provide a way to study
electromagnetic behaviour of such materials in realistic situa-
tions such as with rotating magnetic fields and nonsinusoidal
excitations. This remains for future work.
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