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Abstract. In this paper we describe an algorithmic method to imitate geometries of soft magnetic composites. We use micro-
scope images to determine some of the most important geometric characteristics of the material and optimize the algorithm
such that the measured and simulated characteristics are in agreement. We compute the static magnetization curves using the
geometries obtained from the images and the algorithm comparing the results. The aim is to produce realistic geometries to be
used in homogenization schemes as well as to study the effects of magnetic contacts in general.
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1. Introduction

Soft magnetic composite (SMC) materials consist of small ferromagnetic particles coated with some
electrical insulation material, compacted and heat treated. Some materials are sintered. These kind of
materials have some significant advantages, e.g. isotropic behaviour in macroscopic scale and low eddy
current losses since the conductivity between individual particles is relatively low [1]. These qualities
make the materials appealing for applications such as high frequency inductors and transformers as well
as rotating machines. Compared to the macroscopic dimensions, the particles are very small, usually
some tens of micrometers. A microscope image of an SMC material is found in Figure 1a.

The multiscale nature of SMC materials makes them somewhat tedious to model since some electro-
magnetic phenomena, like eddy currents, are strongly affected by the particle-size geometry. There are
approaches for examining the particle-size structures. Cyr et al. proposed a two-dimensional approach
based on meshing a real microscope image [2]. The method has been adopted recently again in [3]. Cyr’s
approach allows capturing a lot of information about the materials but an excessive amount of imaging
is required. Belkadi et al. proposed an algorithmic method in [4] and [5]. The algorithm was based on
filling a regularly meshed reference cube which is somewhat restrictive for the geometries.

Our study aims to combine the advantages of these approaches. We intend to generate SMC geome-
tries by postulating an algorithm and to fit its parameters such that the generated geometries mimic some
of the geometric characteristics obtained from the microscope images. We compute the static magneti-
zation curves using the geometries obtained from the microscope images and the algorithm comparing
the results. It should be noted that multiscale methods and algorithmic geometry generation have been
studied quite extensively in the field of applied mechanics [6] but the electromagnetic properties of such
materials have so far recieved less attention.
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2. Methods

In this section we describe two methods to produce geometries for the comparison in Section 4. We
use a FeNiMo alloy toroid with saturation flux density of 0.9 T and relative permeability of 240 in the
linear magnetization range as an example. It should be noted that this study does not aim to model a
specific material. Instead we make a comparison between two methods.

2.1. Image based approach

The material sample was cut, molded into a support, grinded and polished [2]. Microscope images
were taken using an optical microscope. In Figure 1a we see a microscope image of the material.

(a) A microscope image (b) A two-color version

Fig. 1. SMC geometries, FeNiMo alloy, width 280 um

We assume that the sample consists of two distinct materials. Using an edge detection algorithm we
turn the microscope image into a two-color picture (Figure 1b). We chose to take a threshold of the color
intensities and we suspect that the same method is used in [3]. Every pixel is then subdivided into two
triangles for finite element computations.

From Figure 1b we compute the volume fraction 7 ~ 0.899. Highlighting magnetic contacts between
individual particles by hand with a distinctive color and computing the overall length of the colored lines,
we find the relative contact length of [, ~ 1.95 with respect to the width of the image. We also computed
the relative mean area of the particles A, =~ 0.019 with respect to the area of Figure 1b. We expect
the method to lose a lot of information about the gaps and hence 1 and [ should be considered as quite
artificial. We reason this by stating that the choice of the color threshold strongly dictates these values.

2.2. Algorithm based approach

Instead of filling a pre-defined mesh like in [4,5], we describe the geometry independent of a mesh
which may be optimized afterwards for computational purposes. Nevertheless we intend to keep the
consideration simple. The ideas presented here are strongly inspired by Voronoi tessellations, which
may be interpreted as a result of a ball-growth process from predefined nucleation points [7]. These
methods are widely acknowledged and utilized very recently for instance in the study of polycrystalline
and nanocrystalline structures [8]. In our setting the algorithm should be flexible enough to leave some
room for optimization of the geometric characteristics and hence we decided not to use bare Voronoi
diagrams. An example of a more flexible tessellation method is the Johnson-Mehl process [9,10] and we
more or less follow these ideas.
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Next we describe the algorithm briefly in suitable steps that may be implemented as collections of
routines. While reading the descriptions, it is worth to keep in mind the big picture. At first we execute
initiation and refinement. Here randomly placed nucleation points are added, triangles defined around
them and the triangle/polygon boundaries refined by adding additional boundary points. Then the growth
and refinement processess are repeated until the overall area of the particles does not significantly change.
This way the polygons grow to fill more area but they do not overlap other polygons. Then contacts are
imposed by inserting randomly placed hexagons on the boundaries of the polygons. Finally cropping and
scaling is carried out. Finished geometry is then meshed for computational purposes. In the following
some parameters of the algorithm are left undefined. We will discuss them later.

Initiation. We choose a bounding square [0, 1] x [0, 1]. In Figure 2a the bounding box is represented
by the dashed square. Then points {c1, ¢, ..., ¢y} are injected randomly into the box such that
the condition d(c;, ¢;) > dp is met for every ¢ # j, where d(-, ) is the euclidean distance and d,,
is some predefined constant. We also require that no point is closer than dj, to the bounding box.
Next equilateral triangles are defined around the points. For instance around the point ¢; we set
the points by, ba, b such that d(ci,b;) = d,/3 for i = 1,2, 3 and denote the triangle (polygon) as
p1 = (b1, by, bg) with a nucleation point c¢;. The triangles do not overlap each other and are fully
contained inside the bounding box.

(a) Imitating the particles (b) Imitating contacts

Fig. 2. Algorithmic geometry generation

Growth. Consider the polygon p; (with a nucleation point c;) and its boundary point by . The point by
is moved to the location by + (dbz,min — dgap) (ba — c1)/d(b2, c1), where dg,p is some predefined
positive constant and dp, min is computed as follows. First we compute the distance dp, pointe =
ming, ¢, d(ba, b;). In Figure 2a this minimum distance is denoted by an arrow between points by
and by. We also compute the minimum distance between b, and the bounding box. We denote
this distance as dy, pox- We set dp, min = min{dp, point, @b, box }- This process is repeated for every
boundary point of each polygon.

Refinement. Consider the polygon p3, which has been enlarged such that the blue points b7, bg and bg
have been moved. Now we add the purple points. We loop through the points b7, bg and bg and
compute the distance between neighbouring points. Consider the point b7. We compute the distance
d(b7,bs). Let k = floor {d(b7, bs)/dreso }» Where dieso is some predefined positive constant. We add
k new equally spaced points in the straight line between b7 and bg. We repeat the process for each
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polygon. This assures that no neighboring points in a polygon are further away from each other
than dyeso.

Imposing contacts. Choosing some number Npex of hexagons, we randomly choose Npex polygon
boundary points b; with a condition d(b;, b;) > dpex using some suitable positive dhex. Consider b,
in Figure 2b as one of the randomly chosen points. We consider the point b, + (dp, min/2) (ba —
c3)/d(bg, c3), as the *centerpoint’ of the blue hexagon with line lengths (or ’radius’) of rpex. Here
we assume that the polygon boundaries are refined enough such that d, mi, more or less corre-
sponds to the gap width. The hexagons are added into the collection of polygons.

Cropping and scaling. We define another square S = [1/2,1—1/2] x [I/2,1 —1/2], whose edge length
is1 —1,if 0 <[ < 1. The geometry is defined as the set union of the polygons and hexagons
intersected with S. The geometry is then scaled approppriately.

Next we choose suitable parameters for the algorithm. Our first naive approach is to generate geome-
tries with constant gap sizes, imposing desired contact lengths and volume fraction.

We set N = 200 as the initial number of particles. We set d, = 0.034 for the minimum distance
between the particle nucleation points. This affects the variation of the particle sizes. We decided to crop
the generated geometries such that the final geometry has approximately the same particle mean area
Am ~ 0.019 as the microscope image if the geometries are scaled to equal sizes. This was achieved by
defining the cropping square to have an edge length of 0.427, whereas the original bounding square edge
length was 1.0.

We optimized the particle gap size related distance dg,, with linear regression. We generated sample
geometries, computed their volume fractions and optimized dg,;, to give the desired mean volume frac-
tion n ~ 0.899 obtained from the microscope image. To ensure adequate smoothness of the particle
boundaries we set dreso = dgap.

For the contacts we set the number of contacts NVex = 220 and dpex = 0.046, which is the minimum
distance between two distinct hexagons to assure the contacts are distributed all over the domain. We
optimized the contact lengths by linear regression. We generated sample geometries, computed the con-
tact lengths with different hexagon radii rpex and found that rnex = 0.0229 gives [ =~ 1.95 as the mean
contact length. In Figure 4a we can see an algorithmically generated geometry with constant gap width.

3. Computational methods

Let us first discuss a magnetostatic nonlinear two-dimensional finite element formulation. We write
B = %i — % Jj, where A is a (z-component of a vector-) potential. Requiring Ampere’s law and express-

ing the potential as a linear combination of finite element basis functions {¢; }/¥ ;, we find the discretized

residual vector
ZN Opi. Op; Opr, O
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where @ is a tuple of the nodal values and H is a constitutive relation H = H(B). Since we intend to
utilize a nonlinear constitutive relation, we chose to use the Newton-Raphson scheme to solve 7(&) = 0.

Let us now consider the constitutive relation. In anhysteretic and isotropic setting we assume that
H(B) = Hy (||BJ|) % for an approppriate scalar function Hy., which we define by Hy. = B_!. For
simplicity we use the modified Langevin function for magnetization and hence
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where My, characterizes the saturation magnetization and a the shape of the magnetization curve [11].
The inverse is computed numerically. In Figure 3a we see black particles and white gaps. This is again
the microscope image turned into a two-color image. We use the relation H = H(B) for the elements in
the black regions and just inverse vacuum permeability for the whites.
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(a) Description of the domain (b) Solution for Byg = 0.4 T

Fig. 3. Setting the computational problem

Let us now consider boundary conditions. In Figure 3a we see a description of the domain 2 and its
boundary. We do not set A at the blue boundary sections but the homogeneous Neumann condition is
statisfied. For the bottom red boundary we set a Dirichlet condition A = 0. We also set for the upper
red boundary A = Bjy,lo, where By, stands for average magnetic flux density and lq the height of the
domain. These conditions impose an average flux density of B,y, in the xz-direction through the modeling
domain.

Let us briefly discuss a simplistic homogenization method. We defined B,y and related it to the finite
element problem. We denote Hyye = % fc H - dl, where wq is the width of € and C' is a curve from
the left blue boundary to the right in Figure 3a. Due to Ampere’s law, the absence of currents through the
domain and the boundary conditions, the integral is not dependent on the curve C'. By Fubini’s theorem
Hayo = ﬁ fQ H,dS. We use the latter one for averaging purposes since the Ampere’s law is only
statisfied in a weak sense. Our interest is now to compare the magnetization curves (Byyg, Hayg) obtained
from the problems set by the image based approach and our algorithm based one.

4. Optimization of the algorithm and comparisons

We first estimated the constitutive model parameters pgMgy ~ 1 T and a ~ 39 A/m using the image
based method. We set these parameters such that the linear relative permeability of (Bavg, Havg)image
was approximately 240 and the effective saturation was 0.9 T. These figures correspond to our example
material.

We generated two hundred samples with the algorithm. Since the geometric characteristics like volume
fraction are set in a statistical sense, we set an additional restriction and allowed only 0.22% error in the
volume fraction neglecting others. In Figure 4a we see an example of algorithmically generated geometry.
It has some overall similarities with Figure 1b. For comparison we computed the magnetization curves
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Fig. 4. Comparison of magnetization curves, algorithm with constant gap widths

twice: first using the image of Figure 1b and then with the same image rotated 90 degrees. In Figure 4b
we see a comparison between the magnetization curves obtained using the image based geometries and
algorithm based geometries. The algorithm related blue area represents 99% confidence limits.

We see that there is an agreement between the curves in the linear region around the origin and at satu-
ration level but not in between. The agreement in the saturation region is due to the fixing of the volume
fraction, since in saturated material in our setting the flux lines are parallel to the x-axis independently
of the geometry and the volume fraction becomes a dominant factor in the magnetization. Even though
there is an agreement in the linear region, as soon as the contacts saturate, the magnetization is weaker
than in the image based case.

Our next attempt is to add some variation to the gap widths to achieve higher overall magnetization
below the saturated regions. This may be done by correcting a couple of parameters in the algorithm.
Our idea is to set a relatively high dg,, and before imposing contacts, we grow the particles once more
by a magnitude proportional to dgap. We first set the magnitude of the final enlargement as 0.48d,,,. This
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Fig. 5. Comparison of magnetization curves, algorithm with variable gap widths

is a heuristically chosen value. Then we found dg,p = 0.021 by generating samples, computing volume
fractions and setting dg,, such that n ~ 0.899 is met in statistical sense. To ensure some additional
smoothness to the particles, we also set dreso = 0.2dg,p. In Figure 5a we can see an image of such
geometry. The appearance of this geometry is significantly different from Figure 4a.

We generated two hundred samples tolerating maximum 0.22% error in the volume fraction. In Figure
5b the blue area represents 99% confidence of the averaged magnetization obtained by using the algo-
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rithmically generated geometries. The agreement between the algorithm based and image based magne-
tization curves is significantly better than in the case of constant gap widths. We note that the additional
contacts between particles were added similarly in both cases.

5. Concluding remarks

We described a method to imitate powder-like soft magnetic composite geometries algorithmically.
We used two-dimensional geometries obtained from microscope images as a reference. From the images
we measured some geometric characteristics like the volume fraction, magnetic contact lengths and the
mean of particle areas. We then tuned our algorithm such that these parameters were in agreement. As a
comparison we meshed the microscope images and generated geometries into finite element geometries
and computed static magnetization curves using a very simplistic computational homogenization.

We found that fixing just the mean of particle sizes, the volume fraction and magnetic contact lengths
between the material particles was not enough to capture the shape of the magnetization curves. As
soon as the contacts saturated, the magnetization was weaker than in the image based simulations. The
magnetization properties of powder-like composites are heavily dependent not only on contacts and the
volume fraction of the material but also on the overall variations of the gaps. We also argued that the
image based method is vulnerable to losing gap size information.

Our algorithm turned out to be flexible enough to allow variations in the gaps and we were able to
accurately reproduce the shape of the magnetization curve obtained by the image based method. We con-
sider the results as promising and continue to work on repeating the computations in three dimensions.
Our future work focuses also on experimental validation of the local and global magnetization curves.
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