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In the numerical analysis of electrical machines, accurate computation of the electromagnetic torque is desired. Maxwell stress 

tensor method and Coulomb’s method are the most commonly used methods for computing torque numerically. However, several 

other methods have also been developed and are being used. These methods are seen to have several accuracy issues related to the 

finite element discretization used in the air gap of the machine. In this paper, the effect of various finite element meshes in the air gap 

of the machine and the effect of the shape of the elements used to compute the torque are studied and discussed.  The paper carefully 

compares the torques obtained from a direct method and a method based on the power balance of the machine.   
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I. INTRODUCTION 

inite element method has been a very important tool for the 

design and analysis of electrical machines. Due to the 

advancement in the computing technology, it is gaining 

immense popularity among the developers and researchers all 

around the world. Torque computation  is  one of the  key  

issues  in  the  numerical  analysis  of  electrical  machines. 

Maxwell stress tensor method [1] is typically used in finite 

element analysis to calculate the torque. Coulomb’s method 

based on the principle of virtual work [2] is also commonly 

used for this purpose. [3] proposed a method based on the 

concept of a single element in the uniform part of the air gap 

of the electric machine, often referred to as ‘air-gap element’ 

or ‘macro element’, and claimed it to be relatively more 

accurate. A variant of Maxwell stress tensor method was 

proposed in [4] where the stress tensor is integrated over a 

volume in the air gap of the machine comprised by two 

concentric boundaries. Several other methods for the 

calculation of torque have also been developed, used and 

discussed in the literature, for example, method based on 

magnetic coenergy [5] and methods based on stored energy [6, 

7]. A semi-analytical method is presented in [8] in which the 

field is solved analytically and the numerically solved 

potential is used as a boundary condition. [9] presents two 

other methods, one of which is similar to the above described 

semi-analytical method while the other is based on the virtual 

work principle and segregates the average and pulsating 

torque components. These methods are tested for a brushless 

PM motor. Comparison between some numerical methods and 

analytical torque computation methods can also be found in 

the literatures [10, 11, 12].  

However, accuracy issues for several of these methods have 

been reported. For instance, [8, 9] describe the possible 

numerical errors in field calculations resulting in the 

inaccuracy in torque calculated with Maxwell stress tensor and 

Coulomb’s method and propose different ways to enhance 

their accuracies. The accuracy of ‘macro-element’ method is 

known to be dependent on the quality of the meshes in the 

stator and rotor [13]. In recent years a new formulation based 

on this method has been presented in [14] and is claimed to be 

computationally efficient and accurate. [15] also uses the same 

method to obtain maximum torque while optimizing the stator 

tooth shape. The torque calculated from the finite element 

analysis is desired to be independent on the type of mesh used 

in the air gap of the machine and shape of the elements used 

for torque computation but in practice, it is not true. 

In this paper we study the effect of certain variations of the 

finite element mesh in the air gap of the machine on the 

computed torque. Maxwell stress and Coulomb’s method give 

almost the same result when the torque is computed from a 

band confined between two concentric circles. Here, the 

torque is computed by the Coulomb’s method, given by (1). 
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The energy balance of the machine can also be used to 

calculate torque, in the case when the speed of the machine is 

kept constant. This method based on the energy balance of the 

machine is presented in this paper. Somewhat similar methods 

based on power and energy balance have been studied in [4, 

16]. To be able to use the energy balance method, it is very 

important to have a time integration scheme that is energy 

balanced. For this, the energy should be conserved in each 

time step. Detail study of the instantaneous power balance has 

been presented in [17]. Trapezoidal rule is known to conserve 

energy if the system under study is magnetically linear [18, 

19]. In this paper we first study the relative error in the energy 

balance of an electrical machine when the Trapezoidal rule 

and the Implicit Euler are used for time discretizations, which 

is followed by the study of the effect of different finite 

element mesh in the air gap of the machine on the torque 

computed from Coulomb’s method and the energy balance 

method.  
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II. ENERGY BALANCE 

A. Torque From Energy Balance 

This method is based on the principle of energy 

conservation in electrical machines. The power balance of an 

electrical machine in motoring mode is given by 
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where
inP is the input power,

lossP is the electromagnetic losses, 

fW is the energy of the electromagnetic field and
mTω is the 

power transmitted by the torque. 

If the angular speed
mω  is assumed to be constant, the 

power balance expression given by (2) can be integrated for a 

certain period of time Δt to obtain an expression for the 

average torque of the machine  
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where the superscript 
a
 denotes the average value. 

The stator winding has been modeled as a filamentary 

winding without eddy currents. In this case, the resistive stator 

losses can be excluded from the power balance and the input 

power to the machine is calculated using the currents and the 

flux linkages of the stator phases 
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where
ki is the currents of phase k , 

ki and
kf are the flux 

linkages of phase k at the beginning and end of the period 

Δt . m is the number of phases.  

lossP  is obtained as 
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whereV is the volume of the solution region, E is the electric 

field strength, A is the magnetic vector potential, is the 

conductivity, u is the electric scalar potential and l is the length 

of the machine. The core losses are not included in the present 

study. 

The change in the magnetic field energy fW over the period 

of time is calculated from the magnetization curves of the 

materials and flux densities
0B and

1B at the beginning and the 

end of the period. 
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If one is interested in the instantaneous torque, the Δt  in 

Equation (4) can be equal to the length of one time step. For 

an average torque in the steady state of the machine, the time 

interval Δt  should be chosen to be at least one fundamental 

period of the machine.  The time derivatives are approximated 

by first order difference ratios and the time integrals in 

Equations (3) – (7) are summed up time-step by time-step. 

Over one time step, the input energy and the energy consumed 

by the resistive loss in the rotor cage are respectively, 
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where 0.5β =  for the Trapezoidal rule and 1β   for the 

Implicit Euler method. 

  

B. Validity of the Energy Balance 

It is important to know whether the numerically computed 

energy balance is valid. In case of electrical machines this can 

be done by studying the energy balance of the machine in the 

locked rotor condition. We consider a 4-pole, 50 Hz, 37 kW 

cage induction machine. The main parameters of the machine 

are given in Table I. A time stepping finite element analysis is 

performed. One period of the fundamental frequency is 

divided into 600 time steps and second order triangular 

elements are used for the study. In the locked rotor case, as the 

shaft power is zero, we can see if the input power is in good 

agreement with the resistive losses and the magnetic field 

energy. The relative error is calculated as 
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The Trapezoidal rule and the Implicit Euler method are both 

tested for the energy balance. Both linear and nonlinear 

magnetic properties of the core materials are used for each of 

the time integration methods. The absolute values of the 

relative error when the Trapezoidal rule is used are shown in 

Figure 1 and that when the Implicit Euler method is used are 

shown in Figure 2. The relative error is shown with respect to 

the number of time steps per period of the supply frequency. 

The error in the energy balance is relatively lower when the 
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Trapezoidal rule was used in the simulations. In the linear case 

the error is very small and does not change significantly if the 

length of the time step is reduced however, it has a decreasing 

trend in the nonlinear case. With higher number of time steps 

per period, the error in the nonlinear case reduces 

significantly. In the case when Implicit Euler was used, the 

order of the error for both linear and nonlinear case does not 

have much difference. However, these are very high compared 

to the result from the Trapezoidal rule. In the time-stepping 

finite element simulations of an electrical machines, one 

period of supply frequency is typically divided to around 400-

800 time steps. Results show that for this number of time 

steps, with Trapezoidal rule used, the energy balance is well 

fulfilled to allow torque computation based on it whereas the 

Implicit Euler does not well conserve the energy. In this paper 

we use both the time integration methods to see how the 

torque behaves. 

 
TABLE I 

TEST MACHINE PARAMETERS 

Parameter Value 

Number of poles 4 

Connection Star 

Rated Voltage [V] 400 

Supply frequency [Hz] 50 

Rated Current [A] 70 

Rated Torque [Nm] 240 

Rated Power [kW] 37 

 

III. METHOD OF ANALYSIS 

The effect of various finite element meshes is studied for 

the torque of a test machine, the main parameters of which are 

given in Table I. The whole mesh has 4494 elements and 9049 

number of nodes. The magnetic field in the core region of the 

machine is assumed to be two-dimensional. The three 

dimensional end winding fields are modeled approximately by 

adding the end-winding impedances to the circuit equations of 

the windings. For a linear problem, the core of the machine is 

considered to have a constant relative permeability of 1000 

and for a nonlinear problem the nonlinearity is modeled with a 

single-valued reluctivity curve. The movement of the rotor is 

taken into consideration by the moving-band technique.  

The machine reaches a steady state in a couple of periods of 

fundamental frequency if the time-stepping simulation is 

started from a time-harmonic solution as an initial condition. 

Three periods of 50 Hz frequency are simulated in the present 

study. The solution of the magnetic field in the cross-section 

of the machine is shown in Figure 3. Figure 4 shows four 

different arrangements of finite element mesh in the air gap 

consisiting of a single, double and triple layers with two 

different shapes of elements in the torque computation band.  

For a single layer mesh, both the torque computation and 

the movement of the rotor is done by using the same band of 

elements. But for double and triple layer mesh, the band of 

elements used for torque computation and the movement of 

rotor may be same or different. Altogether 14 different 

combinations of the number of layers, and the bands used for 

the torque computation and the rotor movement, as shown in 

Table II was made. We study the torque for all different mesh 

combinations and different shapes of the elements used in the 

computation. The effect of finite element discretization on 

factors such as harmonics is also presented in brief. 
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Fig. 1 Relative error in energy balance  (Trapezoidal rule) 
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Fig. 2. Relative error in energy balance (Implicit Euler) 

 

IV. RESULTS 

For all 14 combinations, the average torque was calculated. 

Figure 5 shows the average torques computed by the 

Coulomb’s method and the energy balance method for a linear 

case when the Trapezoidal rule is used for time integration. 

The average torque computed from Coulomb’s method varies 

with the variation in the type of mesh and the band used for 

rotation and torque computation. However, the energy balance 

method gives average torque that seems to be almost 

independent on such variations. It is noticeable that when the 

same band of elements is used both rotation and torque 

computation (combinations 1, 2, 5, 6, 10 and 14 in Table I), 

the average torques from both methods are very close. Figure 

6 shows the same for a nonlinear case.  

The results from the linear and nonlinear cases when the 

Implicit Euler was used are shown in Figure 7 and Figure 8 

respectively. Even when the Implicit Euler is used for time 

integration, the average torques computed from the Coulomb’s 

method varies with the change in the mesh combinations 

whereas that computed from the energy balance method is 

almost constant.  



0018-9464 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMAG.2014.2333491, IEEE Transactions on Magnetics

 4 

 
Fig. 3. Field solution of the test machine 
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Fig. 4. Finite element mesh in the air gap (a) one layered (b) two layered (c) 
three layered with right-angled triangular elements (d) three layered with 

equilateral triangular elements 

 

Torque computed from direct methods is dependent not 

only on the type of the finite element mesh but also on the 

shape and the size of the elements used in the torque 

computation band. For instance, the triangular elements in the 

middle band of Figure 4(c) are right-angled. The elements 

sides in each element can be shifted so that the element 

gradually becomes a equilateral triangle (Figure 4(d)). In this 

way, the effect of the change in the element shape on the 

computed torque can be studied. 
  

TABLE II 

DIFFERENT COMBINATIONS OF LAYERS AND BANDS USED FOR TORQUE 

COMPUTATION AND ROTOR MOVEMENT 

Combination 
Number of 

Bands 
Movement 

Band 
Torque 
Band 

1 1 1 1 

2 2 1 1 

3 2 1 2 

4 2 2 1 

5 2 2 2 

6 3 1 1 

7 3 1 2 

8 3 1 3 

9 3 2 1 

10 3 2 2 

11 3 2 3 

12 3 3 1 

13 3 3 2 

14 3 3 3 

 

Ideally, the torque should be independent on the shape of 

the elements but results show that the torque computed from 

the direct methods vary. For this purpose, a mesh with three 

layers of elements was used and the middle band was used for 

torque computation. The elements in this band were shifted 

gradually from equilateral ones to right-angled ones and back 

to the equilateral ones. Figure 9 shows the effect of the change 

in shape of the elements on the average torque when the 

Trapezoidal rule was used and the problem was linear. Figure 

10 shows the results when the problem was nonlinear. The 

horizontal axis represents the shift of the element sides scaled 

by the length of the element side. When the shift is zero, the 

shape of the elements correspond to right-angled ones and 

when the shift is ±0.5, the shape of the elements correspond to 

equilateral ones. The torque from Coulomb’s method varies 

with the change in the element shape. The torque from the 

energy balance seems to be independent on the shape of the 

elements. What is interesting here is the typical behaviour of 

the torque when the element shape is changed from the 

equilateral to the right-angled ones and back to the equilateral 

again. The average torques calculated from both methods are 

very close when the elements in the torque computation band 

are equilateral triangular elements. But the differences 

increase as the element shape changes to the right-angled 

ones. The difference between the maximum and the minimum 

torque however is not significantly large. One additional 

interesting feature in this case is that if an average of the 

average torques obtained from the Coulomb’s method for all 

different element shapes is calculated, the result is very close 

to the average torque from energy balance.  

For the same mesh, the effect of the element shape was also 

studied when the Implicit Euler method was used for time 

integration. Figure 11 and Figure 12 show the results for linear 

and nonlinear case respectively. Even in these cases the 

torques from the Coulomb’s method change similarly for 

different shapes of elements as in the previous case. The 

energy balance again gives the torque that is insensitive to the 
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change in element shapes. However, for none of the element 

shapes, the torque from these two methods matches. 

Next, the effect of such variation is studied for the case with 

a two-layered mesh in the air gap. In this case, it is not 

possible to use a layer of regular elements for torque 

computation as the number of slots in the stator and the rotor 

are different. Similar elements shift as was done for three-

layered mesh was studied. The results for a linear case using 

Trapezoidal rule are shown in Figure 13. Here again the torque 

computed from Coulomb’s method changes with the change in 

element shapes. But the difference in the torques is relatively 

larger than that in the earlier case. Again, the torque from the 

energy balance is seen to be independent from the shape of the 

elements. 
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Fig. 5. Average torques for different mesh combinations (Linear case; 

Trapezoidal Rule) 
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Fig.6 Average torques for different mesh combinations (Nonlinear case; 

Trapezoidal Rule) 
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Fig.7. Average torques for different mesh combinations (Linear case; 

Implicit Euler) 
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Fig.8. Average torques for different mesh combinations (Nonlinear case; 

Implicit Euler) 
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Fig. 9.  Effect of the shape of elements in average torques (Linear case; 

Trapezoidal Rule) 
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Fig. 10. Effect of the shape of elements in average torque (Nonlinear case; 

Trapezoidal Rule) 
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Fig. 11. Effect of the shape of elements in average torque (Linear case; 

Implicit Euler) 
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Fig. 12. Effect of the shape of the elements in average torques (Nonlinear 

case; Implicit Euler) 
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Fig. 13. Effect of the shape of elements in average torques when two layers 

of elements are used in the air gap 

 

The instantaneous variation of torque is shown in Figure 14. 

Since, the energy balance method gives average torques, the 

instantaneous variation was obtained by setting the period of 

integration equal to the time step size. This gives the average 

torques over the time step but the Coulomb’s method gives the 

torque at the end of the time step. This causes a small time 

shift between the instantaneous torques, which can be seen in 

the figure. The results presented in Figure 14 are from the 

simulation in which the mesh used is a two-layer mesh with 

the second band used for both rotation and torque 

computation.  

Harmonics are important when the torque of a machine is 

studied, especially when the machine is provided with a non-

sinusoidal supply, for instance, frequency converter supply. 

However, in the present study the machine is supplied with 

sinusoidal voltage. The harmonic components of the torque 

were computed using discrete Fourier transform. The 

distortion d of the torque waveform was calculated from the 

dc component 0T and other larger harmonics iT  
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This study was done for two different cases. In the first 

case, the same band of elements was used for both rotation 

and the torque computation while in the second case different 

bands were used. Moreover, each case was studied for a two 

layered mesh and a three layered mesh which means that four 

different mesh combinations are studied. All the simulations in 

this case were done for a linear problem and the Trapezoidal 

rule was used for all time integrations. Figure 15 shows the 

distortion in torque with respect to the number of time steps 

per period used in the time–stepping simulation when 

calculated with Coulomb’s method. The numbers in the legend 

is the mesh combination as shown in Table II, for instance, 2-

2-1 means that the mesh used is a two layered mesh with 

second band used for rotation and first band used for the 

torque computation. It can be seen that the distortion is 

relatively higher when we use the same band of elements for 

both rotation and torque computation. This holds for both two 

layered and three layered mesh. The calculated distortion is 

slightly lower in the case when different bands of element are 

used for roation and torque computation. What should be 

noted here is that the total harmonic distortion in torque 

computed by Coulomb’s method is also dependent on the 

finite element mesh in the air gap. The energy balance method 

shows lower distortion in torque than other methods when the 

number of time steps per period is small, as shown in Figure 

16. This method requires smaller step size to accurately model 

the torque harmonics of the machine. The accuracy increases 

as the number of time steps per period increases. The choice 

of the band for rotation and torque computation did not affect 

the distortion. However, the results differ slightly for mesh 

with different number of layers of elements in the air gap. All 

the simulations were done for a full load slip.  
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Fig. 14. Time variation of torque 
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Fig. 15. Distortion of torque as a function of number of time step per 

period of 50 Hz supply frequency (Coulomb’s Method) 
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Fig. 16. Distortion of torque as a function of number of time step per 

period of 50 Hz supply frequency (Energy balance) 

 

V. DISCUSSION 

In the finite element analysis of induction machine, 

generally a mesh with two layers of elements are used in the 

air gap. This reduces the computation time, since the air gap of 

induction machine is narrow and descretizing it with three or 

more layers of elements will increase computation time and 

effort. However, use of three or more layers of elements 

ensures accuracy and therefore is recommended if the 

resources allow. The results of the study in this paper show 

that the numerical computation of the electromagnetic torque 

is dependent on the type of finite element mesh used for 

computation. The average torque computed from two methods 

Coulomb’s method and the energy balance method are very 

close when the same band of elements are used for rotation 

and torque computation. The choice of the torque computation 

band did not affect the torque from the energy balance 

method, but the torque from Coulomb’s method varied for 

different bands. The results also show that the torque is less 

sensitive to change in element shape in case of a three-layered 

mesh than the two-layered mesh. The shape of the elements 

used in the finite element simulation affects the torque if 

calculated from direct computation method. The above are 

true for both linear and nonlinear cases. Equilateral triangular 

elements gave best results. Additionally, the torque when 

computed from the regular band of elements gives better 

results than that using irregular band of elements. The energy 

balance method seems to be insensitive to the change in the 

type of mesh used in the air-gap and the shape of elements 

used in the torque computation band. This means that a 

relatively sparse finite element mesh can also result in an 

accurate torque computation when the energy balance method 

is used. This is very advantageous in terms of the computing 

resources and time needed. The time integration method used 

in the simulations however affects the torque calculated from 

the energy balance method. For instance,  in the results shown 

in Figures 11 and 12 when Implicit Euler was used for time 

integration, if an average of the average torques obtained from 

the Coulomb’s methods for all 20 element shapes is 

calculated, the result is not very close to the average torque 

from energy balance as it is in the case when the Trapezoidal 

rule is used, for example, in Figures 9 and 10. This is probably 

because the error in the energy balance for the Implicit Euler 

method was significantly higher than the error for the 

Trapezoidal rule. The energy balance is good when the 

Trapezoidal rule is used, therefore, the difference between the 

torque from energy balance method and the Coulomb’s 

method is quite small even when the number of time step is 

reduced. But this is not the case when the Implicit Euler is 

used. For instance, if 200 time steps per period is used in the 

simulation, the difference is 0.2283Nm for the Trapezoidal 

rule and 2.3859 Nm for Implicit Euler. 

It has also been seen that the total harmonic distortion in the 

torque is also dependent on the type of mesh used in the air 

gap. When computed with the Coulomb’s method, the torque 

seems to have more distortion if the torque is computed from 

the same band that is used for rotation. The torque may have 

slightly higher ripples. This is because when the mesh is 

changed at every time step, the corresponding element matrix 

is not continous which may causes jump in the torque. This 

can however be minimized by using finer elements.  

The effect of the mesh in the air gap of the machine is the 

prime interest in this paper. Now the important question is if 

the torque computation is affected only by the finite element 

discretization in the air gap of the machine or also due to that 

of the whole problem area? To answer this question, the 

machine cross-section was discretized with a fine mesh 

consisting of 13228 elements and 27701 nodes, as shown in 

Figure 17. The main idea was to see if there was any change in 

the torque computed by both the methods used and if yes, how 

much. To get more reference, the fine mesh was refined to get 

an extra fine mesh with 15556 elements and 31361 nodes. A 

time-stepping finite element simulation was performed with 

600 time steps per period of supply frequency and three 

periods were simulated. The comparison of the results from 

the normal mesh, fine mesh and extra fine mesh are shown in 

Table III. Both the fine and extra fine mesh were simulated for 

a linear and non-linear case using both the time-integration 

rules.  
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Fig. 17. Fine mesh in a quarter of the machine cross-section 
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TABLE III 

AVERAGE TORQUES COMPUTED FOR NORMAL MESH, FINE MESH AND EXTRA-FINE MESH 

 

 

From the results it is clear that when Trapezoidal rule is 

used, for the fine mesh the difference between the torque from 

Coulomb’s method and energy balance method decreases and 

for the extra fine mesh, these two torques are even more close. 

But the result is opposite when the Implicit Euler is used. In 

this case, the difference increases with mesh refinement. 

These results suggest that when the energy is conserved, that 

is for the Trapezoidal rule both Coulomb’s method and energy 

balance give same torque if the effect of the meshing is 

minimized but for Implicit Euler it is not true. It is also seen in 

Table III that the torque from energy balance is less sensitive 

to the meshing. For instance, if we consider the non-linear 

case the torque from the energy balance with extra fine mesh 

differ by 0.0367 by that with a normal mesh while the torque 

from Coulomb’s method differ by 0.3938. 

The torques obtained from the numerical torque 

computation methods were also compared with that obtained 

from the actual measurement. For this purpose, torques of 

three induction machines with different power ratings was 

measured. Each machine was simulated at the same operating 

point as in the measurements and the average torque was 

calculated using two-layered mesh in the air gap. The results 

from the measurements and the simulation are shown in Table 

IV. Torques from both the numerical methods show a quite 

good agreement with the measured results. 
 

TABLE IV 

COMPARISON WITH THE MEASUREMENT 

Rated Power 

(kW) 

Measured 

(Nm) 

Coulomb’s 

Torque (Nm) 

Energy Balance 

Torque (Nm) 

15 100.40 100.5822 100.2766 

30 118.20 118.3106 118.1973 

37 238.10 238.5136 238.1564 

 

VI. CONCLUSION 

This paper studies the torque computation in the numerical 

analysis of the electrical machine for different types of 

possible mesh combinations in the air gap of the machine. 

Coulomb’s method of virtual work is used to compute torque 

and is compared to a method based on the energy balance of 

the machine. The effect of different types of mesh and the 

shape of the elements in torque computation is studied. The 

energy balance provides a reliable method for torque 

computation but it can only be applied when the torque 

transmits a significant part of the input power. It is not valid 

for a locked rotor condition and may also have an accuracy 

problem at no load condition. It gives fairly good results if the 

time integration method has relatively lower order of error in 

the energy balance.  
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