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We present a novel approach for stochastic finite element (FE) modeling of electromagnetic fields in ferrites, combining a thin shell 
model (TSM) for highly permittive grain boundaries with a Voronoi-tessellation-based geometry generation algorithm. The TSM is 
validated in the case of a periodic grain structure in a linear 2-D time-harmonic case over a frequency range of 10 kHz – 1 GHz, and 
problems related to standard FE discretization are discussed. The TSM is then applied in a stochastic study for simulating the effect of 
varying grain structure on the effective resistivity, losses and reactive power densities of a ferrite core.
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I. INTRODUCTION

OFT FERRITES are commonly used for magnetic cores of 
power-electronic inductors. Despite their long-standing use, 

there is no consensus on their exact power loss mechanisms, in 
particular at high frequencies. The losses consist of quasi-static 
hysteresis losses as well as dynamic losses which are typically 
associated with both eddy currents and spin damping [1]. 
Dielectric losses and the resonant- or relaxation-type 
characteristics of the magnetization processes are also 
discussed in the literature [2].

The problem of estimating of ferrite losses is further 
complicated by their random grain structure. Stochastic 
analysis with realistic grain structures would be required in 
order to analyze the losses. However, sintered ferrites consist of 
grains sized 10 to 100 μm and separated by highly resistive and 
permittive boundaries with thicknesses in the range of 1 nm [1]. 
Accurate finite element (FE) discretization of such a multiscale 
problem would lead to prohibitively large systems of equations 
or bad-quality elements, such as the triangles shown in Fig. 1 
(a), whose corner angles grow towards 180° when the boundary 
thickness d decreases, resulting in inaccurate description of 
derivatives [3]. So far the modeling attempts have been based 
on lumped parameter models [4]-[6] or simplified deterministic 
and periodic grain structures [1], [7], [8] with non-realistic 
exaggerated dimensions to avoid discretizing the thin 
boundaries. It has not been studied, how well the 
electromagnetic properties of ferrites can be captured by such 
periodic geometries, and how much they might vary due to 
variations in the geometry. Although some attempts have been 
taken to imitate the random geometries of soft magnetic 
composites [9], similar approaches for ferrites seem to be 
missing.

This paper has two goals. First, we will develop a thin shell 
model (TSM) for the boundary layers so that the discretization 
problem related to thin layers is avoided. The TSM follows the 
idea of [10] and is validated by comparison against finely-
discretized geometries with unstructured and structured meshes 
in the case of a periodic grain structure. Secondly, we will 
develop a Voronoi-tessellation-based algorithm for generating 
geometries with random grain structures with a fixed average 

grain size. The stochastic properties of eddy-current losses and 
capacitive power densities in ferrites are then studied and 
compared to the periodic structures.

II.METHODS

A. Problem setting and formulations
Time-harmonic 2-D formulations are considered for both 

electrodynamic (ED) and electro-magnetodynamic (EMD) 
problems. In both settings, the electric field strength E, electric 
current density J = σE, and electric flux density D = εE are 
parallel to the xy-plane. The magnetic field strength H = Hz and 
flux density B = Bz = μHz point perpendicularly to the plane 
and can be handled as scalars H and B. All quantities are 
handled as peak-valued complex phasors. Since the small-
signal behavior of the materials is studied over a wide frequency 
range, linear material properties are assumed, so that the 
electrical conductivity σ, permittivity ε and permeability μ are 
independent of the field quantities. The considered calculation 
domains Ω are squares with side lengths L. The sides parallel to 
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Fig. 1. Examples of (a) unstructured and (b) structured meshes, as well as
(c) virtual discretization and (d) local coordinate system used for ferrite 
boundaries.



the x-axis are denoted Gtop, Gbottom and the sides parallel to the
y-axis Gleft, Gright. The calculation domains are divided into m =
k2 grains (k being an integer) with either a deterministic
arrangement into k ´ k equally sized squares or a random
arrangement with variable grain sizes. The grain and boundary
dimensions and material parameter values are adopted from [6]
with the exception that constant permittivity values are used
instead of frequency dependent ones. The material parameter
values are given in Table I.

TABLE I
CONSIDERED MATERIAL PARAMETERS AND DIMENSIONS

Parameter Value
Grain conductivity σ 117.6 S/m
Grain permittivity ε 350 ε0

Grain permeability μ 100 μ0

Boundary conductivity σ 5.3 mS/m
Boundary permittivity ε 100 ε0

Boundary permeability μ μ0

Average grain size sav 17 μm
Boundary layer thickness d 20 nm
ε0 and μ0 denote the permittivity and permeability of free space.

The ED formulation corresponds to a typical resistivity
measurement setup in which a sinusoidally alternating source
voltage V is applied over a ferrite sample and the total current
consisting of free charges and displacement current is measured.
The problem is given by
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where v is an electric scalar potential for which E = –Ñv, and
ω = 2πf is the angular excitation frequency. We are interested in
the effective resistivity
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which is complex-valued and frequency dependent due to the
permittive materials.

The EMD formulation corresponds to an excitation by a
time-varying magnetic field and is given by
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where T is the z-component of an electric vector potential T =
Tz for which J + jωD = Ñ ´ T, and Hs is the source field
imposed into the sample. In this case, we are interested in the
eddy-current loss density pcl as well as the rate-of-change of the
magnetic (qind) and electric (qcap) field energies averaged over
the domain:
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The eddy currents are obviously neglected in the ED
formulation. However, this formulation was chosen for
calculating ρeff, since imposing the source voltage is more
straightforward compared to the EDM formulation, where E is
a non-conservative vector field. Both formulations have been
chosen so that discretization with nodal elements is possible.

B. Standard finite element method
Standard Galerkin FE discretization of (1) and (3) with shape

functions Ni and nodal values v = (v1, v2, …) for v, t = (t1, t2, …)
for T and hs = (Hs, Hs, …) for (constant) Hs leads to

=Sv 0  and ( ) sjω jω+ = -S T t Th , (5)
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are the stiffness and damping matrices. The exponent of the
complex conductivity σ + jωε depends on formulation (1) or (3).
This standard FE formulation is simple to implement. The most
common practice is to use an unstructured mesh as shown in
Fig. 1 (a). However, as shown in [3], elements with corner
angles close to 180° typically lead to numerical errors in
description of derivatives, while similar problems are avoided
for right-angled elements shown in Fig. 1 (b). Right-angled
elements can be rather easily generated for periodic geometries
using structured meshes for the boundaries, but this will
become difficult if random grain structures are to be studied.

C. Thin shell model
To avoid the discretization problems related to the boundary

regions, a TSM is developed for solving (5) in the boundaries.
We first virtually discretize the boundaries with rectangular
elements whose edges are oriented perpendicularly to the
boundaries, like shown in Fig. 1 (c). Virtual discretization
means that the boundary elements and their coordinate
mappings are not considered in the surface integrations (6).
Instead, we assume the local coordinate system presented in Fig.
1 (d), describing the boundary layers as G ´ [0, d]. The
intersections of boundary lines shown by the white squares in
Fig. 1 (c) remain undiscretized, but this is assumed to have a
negligible effect on the field solutions.

After the virtual discretization, the FE matrices
corresponding to the boundary layers can be written as

( ) 1

Γ 0

Γ
d

j ji i
ij

N NN NS σ jωε dn d
u u n n

± é ¶ ¶ ùæ ö¶ ¶
= + +ê úç ÷¶ ¶ ¶ ¶ê úè øë û

ò ò  (7a)



Γ 0

Γ
d

ij i jT μ N N dn d
é ù

= ê ú
ë û
ò ò , (7b)

in which the surface integrations are separated into integrations 
parallel and perpendicular to the boundaries. The perpendicular 
integrations in the square brackets are performed analytically, 
and thus only the boundary lines G need to be discretized in the
FE model. Separate nodes and degrees of freedom for v and T 
are used at the two sides G– and G+. The TSM accounts for the 
displacement currents and, in the case of the EDM formulation, 
also the eddy currents in the boundaries.

D. Random geometries
Since the boundary surfaces do not need to be discretized, it 

becomes relatively easy to create random grain structures for 
stochastic studies using 2-D Voronoi tessellations, which is a 
popular technique for imitating polycrystalline microstructures 
in mechanics [11]. We first tessellate the xy-plane using a 
standard Voronoi tessellation with m randomly chosen seed 
points uniformly distributed in (0,1) ´ (0,1). The tessellation is 
then bound by the unit square [0,1] ´ [0,1]. As a result, m 
randomly arranged regions with areas Ai, i = 1, …, m such that 

1 1m
i iA= =å  are obtained, representing the grain structure. In the 

literature, the grain size of a simplified square grain is usually 
defined as the side length of the square [1], [6], [7]. We thus 
define the size si of region i as 0.5

i is A= , i.e., as the side length 
of a square with equal area. The average grain size in the 
randomly-generated geometry can be forced to a desired value 
sav by scaling the tessellated unit square with 1av / m

i ims s=å  . 
Such a scaling results into a calculation domain side length of 
approximately 0.5

av avL m s ks» =   contrary to a periodic 
structure in which 0.5

av avL m s ks= =  is exactly valid. 

III. RESULTS

A. Comparison of meshing approaches
We first consider a periodic grain structure similarly to [7], 

modeling 5 ´ 5 square grains of size sav = 17 μm with a d = 20 
nm boundary layer. In the ED case, ρeff is independent of the 
amplitude of V due to linearity. In the EMD case, an average 
flux density of amplitude of 0.1 T × (10 kHz / f)0.5 is forced 
through Ω, so that qind in (4b) remains approximately the same 
as at 0.1 T and 10 kHz independently of the frequency. In both 
the ED and EMD cases, 21 logwise spaced frequencies in the 
range of f Î [10 kHz, 1 GHz] are considered. 

In Fig. 2, ρeff obtained with the structured and unstructured 
meshes and the TSM are compared. pcl and qcap cannot be 
similarly visualized, since they vary within several decades 
over the frequency range. Instead, Fig. 3 shows the ratios of pcl 
and qcap obtained with the unstructured mesh and the TSM with 
respect to those obtained with the structured mesh. Differences 
in qind are negligible. Both in Fig. 2 and Fig. 3, the TSM 
corresponds accurately to the results obtained with the 
structured mesh, and the results obtained with the unstructured 
mesh deviate slightly from the two.

Fig. 4 shows the current distributions in the EMD case 
obtained with each mesh and the TSM. At 10 kHz, the grains 
behave as insulated while at 100 MHz, the capacitive 

boundaries allow currents to flow over the whole domain. The 
TSM results correspond well to those obtained with the 
structured mesh. In the case of the unstructured mesh, slight 
oscillation is seen in the field lines at 100 MHz.

B. Stochastic studies
We next apply the TSM to study the sensitivity of ρeff, pcl and 

qcap to the grain structure by creating 100 random geometries 
with m = k2 = 400 grains, keeping the average grain size fixed 
to sav = 17 μm. The results are compared to those obtained from 
a 20 ´ 20 periodic grain structure. The periodic geometry
consists of 38599 nodes and 62158 triangular elements. The 
random geometries contain 38225 – 39401 nodes and 61349 – 
63642 elements. Series calculation of the 100 ́  21 = 2100 time-
harmonic simulations for the random geometries took about 45 
min in the ED case and 2.5 h in the EMD case using an in-house 
MATLAB-based solver on a laptop with a 2.8 GHz CPU and 32 
GB RAM. The time includes the reading of the mesh files and 
the preprocessing required for doubling the boundary lines.

In Fig. 5, the real and imaginary parts of ρeff are plotted for 
each 100 geometries, highlighting the minimum and maximum 

Fig. 2. ED formulation: Real and imaginary parts of the effective resistivity ρeff

of a 5 ´ 5 grain structure modeled with the two meshes of Fig. 1 (a) and (b) 
and comparison to the TSM.

Fig. 3. EMD formulation: Ratios of eddy-current losses pcl and capacitive 
power densities qcap calculated with the unstructured mesh and TSM with 
respect to those calculated with the structured mesh in a 5 ´ 5 grain structure.

Fig. 4. EMD formulation: Current distributions ||J + jωD|| in one quarter of the 
solution region at 10 kHz (top) and 100 MHz (bottom) obtained from the 
unstructured (left) and structured (center) meshes and the TSM (right).



values. The variation range is rather small. Some deviations 
between the random and periodic geometries are observed in 
the real part at low frequencies and in the imaginary part at the 
dispersion region. The measurements digitized from [6] are 
provided as reference, and a good correspondence is observed.

Fig. 6 shows the ratios of pcl and qcap obtained from the 
random geometries with respect to those obtained from the 
periodic geometry. Quite large deviation is observed within the 
random geometries. It is notable that pcl obtained from the 
random geometries is 20-50 % higher than the one obtained 
from the periodic geometry at f < 10 MHz. For qcap, the 
difference is 20-40 %. The variation reduces at f > 100 MHz. 
For comparing the eddy-current losses against the results in [7], 
we scale them to a constant peak flux density of 10 mT, 
obtaining losses of 0.46 μJ/m3, 48 μJ/m3 and 95 mJ/m3 at 10 
kHz, 1 MHz and 100 MHz, respectively. The latter two values 
correspond roughly to those reported in Fig. 13 of [7], although 
the material parameters used in this paper are somewhat 
different.

IV. DISCUSSION AND CONCLUSION

The main advantage of the developed thin-shell model is its 
usability in the modeling of random geometries, in which the 
generation of structured meshes with good quality elements 
would be difficult. According to the results of Fig. 5, the random 
grain structures do not cause very much deviation in the 
effective resistivity. However, the results obtained from the 
random grain structures deviate slightly from those obtained 
from the periodic square grain structure with the same grain size. 

According to Fig. 6, the random grain structure causes 
somewhat significant variations in the eddy-current losses and 
capacitive power densities below 10 MHz. The results also 
differ from those obtained from a periodic grain structure. 
However, at low frequencies, the eddy-current losses and 
capacitive power dissipation are very small and do not 
significantly contribute to the total losses or powers. The 
inductive power density was not affected by the grain structure. 

Here the random geometries were scaled so that the average 
of the square roots of the individual grain areas was equal to the 
side length of the square grains in the periodic geometries, 
which was fixed to 17 μm based on [6]. In practice, the scaling 
could be chosen based on microscope images of real materials, 
and square grains with a suitably chosen side length could be 
used to approximate the behavior of the random geometries.
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Fig. 5. ED formulation: Real and imaginary parts of the effective resistivity ρeff

from 100 randomly generated geometries with compared to the ones obtained 
from a periodic geometry and the measurements of [6]. The inset shows an 
example of a random geometry with 400 grains.

Fig. 6. EMD formulation: Ratios of eddy-current losses pcl and capacitive power 
densities qcap obtained from 100 random geometries to those obtained from a 
periodic grain structure.
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