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Abstract

We present a numerical method for modelling of coupled
magneto-mechanical behaviour and magnetic hysteresis
losses in electrical machine cores under mechanical stress. An
energy-based single-valued magneto-mechanical constitutive
law is coupled to the Jiles-Atherton model of hysteresis. The
material model is implemented in a 2-D finite element
method, which solves for both the magnetic vector potential
and mechanical displacement in the electrical machine core.
The model is applied to analyse stator shrink fitting in a
permanent-magnet synchronous machine and centrifugal
stress in a high-speed solid-rotor induction machine. The
losses  in  the  machines  are  shown  to  increase  due  to  the
consideration of the mechanical stress.

1 Introduction

The magnetic properties of ferromagnetic materials can be
significantly altered by mechanical loading, which causes
problems in design and analysis of electrical machines.
Electrical machine cores are subject to stresses and
deformations especially due to the manufacturing processes,
e.g. punching, welding and shrink-fitting of the core
laminations. In addition, thermal expansion, centrifugal forces
and magnetic fields give rise to additional stresses during the
operation of the machines. These stresses and deformations
affect both the magnetization and power-loss properties of the
core laminations, which is not taken into account in most of
the analysis methods used today. This lack of coupled
magneto-mechanical modelling tools is majorly associated
with the fact that calculations often overestimate the
efficiencies of the machines.

During the very recent years, an increasing amount of
research has been devoted to overcome the aforementioned
limitations [1]-[8]. In all the papers, finite element (FE)
analysis tools were used to evaluate the magnetic field and the
mechanical stress distributions in electrical machine cores.
However, due to the complexity of the magneto-mechanical
problem, the coupling between the magnetic and mechanical

fields has been mostly experimental in nature. In [1], [2], [4]
and [5], the magnetization properties and losses for a given
stress were interpolated from large sets of measurements for
parallel magnetic field and stress, while [5] and [8] replaced
the interpolation by simplified scalar expressions.

The experimental approaches face problems especially when
dealing with multiaxial fields. Depending on the location in
the core, many different combinations of flux-density vectors
and stress tensors, their magnitudes and relative orientations
are present. To apply the uniaxial measurement results, [2]
and [4] replaced the multiaxial stress by the Von Mises stress,
while [5], [6] and [8] applied the magneto-elastic equivalent
stress presented in [9]. However, the accuracy of these
models suffers from using a scalar reluctivity in the presence
of stress-induced anisotropy and from the application of
scalar type iron-loss models with vector fields.

On the other hand, truly multiaxial magneto-mechanical
material models are only starting to emerge. In [3], a
simplified multiscale model was applied in FE analysis of a
switched reluctance motor. In [7], also hysteresis losses were
considered. In our earlier works, we have also developed a
multiaxial energy-based single-valued (SV) constitutive law
to describe the coupled magneto-mechanical behaviour of
electrical steel sheets [10]. The model has also recently been
coupled to the Jiles-Atherton (JA) model of hysteresis for
modelling the effect of stress on the magnetic hysteresis
losses [11]. The models of [7] and [11] account for the stress-
induced phase shift between the magnetic field and
magnetization vectors, and also allow modelling the
hysteretic behaviour for vector magnetic fields with arbitrary
time variation.

In this paper we implement the magneto-mechanical material
model of [11] in a 2-D FE method for coupled magneto-
mechanical analysis of electrical machines. The model is
applied to evaluate the stator hysteresis losses in a 2.2-kW
permanent-magnet synchronous motor (PMSM) and the
effects of centrifugal stresses in the rotor of a 50-kW high-
speed solid-rotor induction motor (SRIM). The core losses of
the machines are shown to increase due to the consideration
of the mechanical stresses. In the PMSM stator, the main loss
mechanism is the direct effect of the stress on the hysteresis
losses, while in the SRIM, the stress-induced permeability
variation dominates.
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2 Methods

2.1 Magneto-mechanical material model

The material model has recently been presented in [11], and is
briefly summarised here. A Helmholtz free energy density ψ
is expressed as a function of five scalar invariants depending
on the flux-density vector B and the total strain tensor ε:
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where Bref = 1 T. The invariants allow simplifying the
multiaxial problem into a scalar problem of five variables. I1
and I2 describe purely elastic behaviour, and I4 purely
magnetic behaviour. I5 and I6 describe the magnetoelastic
coupling, and are written using the deviatoric strain

( )1 tr
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= -ε ε ε I% , (2)

in which I is the unit tensor. The expression for ψ(I1, I2, I4,
I5, I6) is given in the Appendix. The magnetic field strength
and the magneto-elastic stress are obtained as
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where σmag is the Maxwell stress tensor [11].

The SV model is coupled to the JA model of hysteresis [12].
The model is summarised as

eff a= +H H M , (5)
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in which α and c are constant fitting parameters. Equation (6)
is used to denote that the relationship between Man and Heff
is the same as the relationship between M and H described
by the Helmholtz energy. The coercive field is determined
by the tensor parameter k, which is made dependent on the
deviatoric strain. An isotropic dependency leads to the
expression

( ) ( )2
0k a b= + +k ε I ε ε% % % , (10)

in which k0, a and b can depend at most on the scalar
invariants of ε% . In this paper, they are treated as constants.

The model parameters have been obtained by fitting to
measured uniaxial SV and hysteretic magnetization curves.
The parameters are given in the Appendix. Figure 1 (a) shows
that the model is able to correctly predict the magnetization
curves and hysteresis losses under uniaxial stresses and a
parallel magnetic field. In order to illustrate the multiaxial
behaviour, Figure 1 (b) shows the variation of the relative
permeability under uniaxial, equibiaxial, hydrostatic and pure
shear stresses. The magnitude of the stresses varies from 300
MPa compression (-) to 300 MPa tension (+). The results at
compression and at small tensile stress are consistent with
other recently presented multiaxial modelling results [13] and
measurements [14]. In addition, it is seen that high tensile
stress reduces the permeability from the zero-stress value, and
that the hydrostatic stress has little effect on the permeability,
which is consistent with magneto-elastic theories.
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Figure 1: (a) Comparison of measured and modelled
magnetization curves and hysteresis losses under uniaxial
stresses and a parallel magnetic field. (b) Modelling results on
the effect of different multiaxial stresses on the relative
permeability at a constant flux-density of 1.5 T
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2.2 Finite-element implementation

A 2-D cross section of a radial-flux electrical machine is
considered in the x-y plane. The partial differential equations
to be solved for in the iron core are

0Ñ × =B (11)
( ),H B ε JÑ ´ = (12)

( ) 0,Ñ × = Ñ × -σ B ε σ f , (13)

where J is the current density and σ0 and f are the initial stress
and body force distributions, respectively. The Cartesian unit
vectors are denoted x, y and z. To satisfy (11) strongly, a
magnetic vector potential A = Az is  used.  A  plane  strain
configuration is assumed. The strain is expressed as a partial
derivative of the in-plane displacement U = Uxx + Uyy and
handled with the Voigt notation:
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in which the last strain term is 2εxy.

This paper deals with both laminated and solid steel cores.
The eddy-current density is expressed as
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in which d = 0.5 mm is the lamination thickness, and κL and
κS denote the electrical conductivities. For the laminated steel,
(16) yields the classical low-frequency approximation for the
eddy currents. The conductivities used for the laminated and
solid steel are 3 MS/m and 4.4 MS/m, respectively.

The vector potential and the displacement are expressed with
nodal shape functions N =  [N1, N2, …] and nodal value
vectors a, ux and uy, respectively The discrete derivative
operations are written as
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Equations (12) and (13) are expressed weakly following the
Galerkin method. For brevity, the integration over the

solution domain is denoted with the angle brackets á·ñ, and
the eddy-current terms for the laminated and solid regions are
included in the same equation. The mass and damping of the
core are accounted for in the mechanical equations by
matrices M and C, respectively. The resulting 2nd-order
ordinary differential equation (ODE) system is reduced to a
1st-order ODE system by introducing additional equations to
the nodal displacement velocities v. The discrete coupled
system to be solved thus becomes
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The system is discretized in time with the implicit Euler
method and solved iteratively with the Newton-Raphson (NR)
method. The Jacobian matrix becomes
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After forming the equations, the system is transformed into
polar coordinates for easier handling of the boundary
conditions. The field equations are coupled to the voltage
equations of the stator and rotor windings in order to supply
the machine from a voltage source.  The rotor is rotated with
constant speed and the air gap is remeshed at every time step.
Linear FEs are used in all simulations. The hysteresis model
could be straightforwardly applied during the field solution by
calculating H and ¶H/¶B with the JA model. However, to our
experience, inclusion of hysteresis in the solution causes
convergence problems and doesn’t significantly affect the
accuracy.  Thus  only  the  SV  model  of  Section  2.1  is  used
during the solution of the FE equations, and the JA model is
applied at the post-processing stage to calculate the losses.

3 Application and results

3.1 Test machines

Two different electrical machines are simulated. The first
machine is a 2.2-kW permanent-magnet synchronous motor
(PMSM) and is used to evaluate the effect of shrink fitting on
the stator losses. The second one is a 50-kW high-speed solid-
rotor induction motor (SRIM) and is used to evaluate the
effect of centrifugal stress on the eddy-current losses in the
rotor. The rated datas and some dimensions of the machines
are given in Table 1.
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Only the smallest required symmetry sector is solved, which
means only one pole for each machine. The vector potential
is fixed to zero on the outer boundary of the stator. The
tangential displacement is fixed to zero at the outer boundary
of the stator in the PMSM and at the outer boundary of the
rotor steel in the SRIM. At the edges of the symmetry sector,
antiperiodic and periodic boundary conditions are applied for
the vector potential and the displacement, respectively.

3.2 Shrink fitting in permanent magnet machine

In  shrink  fitting,  the  outer  boundary  of  the  PMSM stator  is
displaced radially inwards due to the pressure caused by the
frame.  Displacements  of  0–50  μm  are  considered.  In  the
magneto-mechanical simulation, the radial displacement
cannot be fixed since the machine has to be able to deform
due to the magnetostriction. Thus, a purely mechanical
simulation is first performed by fixing the vector potential to
zero and the radial displacement of the stator boundary to the
desired value. The obtained shrink-fitting stress distribution
is  then  used  as  the  source σ0 to the magneto-mechanical
problem according to (13). Figure 2 shows the shrink-fitting
stress distribution in the stator core at 50-μm radial
compression.

Figure 3 (a) compares the simulated and measured terminal
currents of the machine at different loads. The results
without shrink fitting and at 50-μm compression are given.
The shrink fitting increases the terminal currents especially
at small loads when the magnetization properties have a
more significant effect on the current. When shrink-fitting is
considered, the simulated currents are closer to the measured
ones.  Figure  3  (b)  shows  the  increase  in  the  total
electromagnetic losses of the machine due to 20- and 50-μm
radial compressions. The losses comprise the stator copper
losses, the hysteresis and eddy-current losses in the stator
and rotor iron as well as the eddy-current losses in the
magnets. At no-load the electromagnetic losses increase up
to 19.8 %, but at the rated load the increase drops to 2.9 %.

The stator hysteresis loss is the most affected loss
component due to the shrink fitting. The effect of the shrink-
fitting stress on the hysteresis loss is twofold. First of all, the
application of stress changes the permeability distribution in
the core, which causes the flux-density distribution B(x,y) to
differ from the zero-stress case. Due to the roughly quadratic

Data PMSM SRIM
Power 2.2 kW 50 kW
Voltage 370 V 400 V
Connection delta star
Speed 1500 rpm 100 000 rpm
Number of pole pairs 3 1
Stator outer diameter 165 mm 167 mm
Rotor outer diameter 102 mm 70 mm
Air gap 1 mm 3 mm

Table 1: Ratings and dimensions of the test machines.

Figure 2: Shrink-fitting (Von Mises) stress distribution in the
PMSM at 50-μm radial displacement.
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Figure 3: (a) Effect of the shrink-fitting on the terminal
current of the PMSM and comparison to measurement results.
(b) Increase in the total losses at two different shrink-fitting
lengths compared to the unstressed case.
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dependency of the hysteresis loss on PB(x,y)P, more uneven
flux-density distributions lead to increased core losses even if
a stress-dependent hysteresis model was not considered. On
the other hand, the deformation of the core also has a direct
effect on the hysteresis losses as seen from Figure 1 (a). To
analyse in what proportions these two phenomena affect the
stator hysteresis losses, we perform the following study.

Let {B0, ε0} denote the coupled field solution that has been
obtained without shrink fitting and {B1, ε1} the one that has
been obtained with shrink fitting. By applying the hysteresis
model in a post-processing manner, we are able to calculate
the hysteresis losses with all the four solution combinations
{B0, ε0}, {B1, ε0}, {B0, ε1}, and {B1, ε1}. Figure 4 shows the
losses  in  each  case.  It  is  seen  that  the  change  in  the  flux
density distribution (case {B1, ε0})  changes  the  loss  only  a
little while the most dominant effect is the direct effect of the
strain on the hysteresis loop (case {B0, ε1}). This justifies also
the application of the hysteresis model only in the post-
processing stage of the calculation.

3.3 Centrifugal stress in high-speed machine

The  second  machine  is  a  high-speed  SRIM  designed  for  a
milling cutter application. The rotor is made of high-strength
construction steel, and the center part of the rotor has been
left hollow to allow attaching the cutter blade. This,
however, significantly increases the centrifugal stress
compared to a solid cylinder. The rotor surface is coated
with a 1-mm copper layer, in which most of the rotor losses
occur.

The magnetization properties of the rotor steel have only
been  measured  at  zero  stress.  In  order  to  identify  the
magneto-mechanical model, the stress-dependent B-H curves
measured for the FeSi steel (Figure 1 (a)) were first scaled so
that the zero-stress curve corresponds to the one measured
for the rotor steel. The magnetomechanical model was then
fitted to these scaled stress-dependent B-H curves.

The centrifugal force is added to (13) as a body force density
f(r) = ρrω2r, where ρ = 7800 kg/m3 is the mass density of the
steel, ω is the mechanical angular speed of the rotor, and r
and r are the radial coordinate and the radial unit vector,
respectively. Figure 5 shows the resulting centrifugal stress
distribution at 100 000 rpm.

The SRIM was simulated both with and without the
centrifugal stress. An initial state for the time-stepping
simulations was calculated with a time-harmonic solution, in
which the slip was selected so that the output power was the
rated 50 kW. The supply voltage waveform contains one
120° voltage pulse per one half cycle. Figure 6 segregates
the total electromagnetic losses and shows how the loss
components change due to the inclusion of the centrifugal
stress in the simulations. As expected, the mostly affected
loss component is the eddy-current loss in the rotor iron.
This means that contrary to Figure 4, the change of the
permeability distribution due to the stress dominates in the
SRIM. However, most of the rotor losses occur in the copper

coating, whose losses are not much affected. The rotor
hysteresis losses are negligible. The change in the stator
copper losses is partly caused by the fact that since the slip is
constant for both simulations, the powers are slightly
different, 48.9 and 49.9 kW without and with centrifugal
stress, respectively.

3.3 Computational performance

The FE model converges and performs reasonably well. The
PMSM model consisted of 580 linear elements, from which
389 belonged to the laminated regions. The machine was
simulated for 4 periods with 1000 time steps per period. On
average, 5 NR iterations were required per time step, and the
simulation time was about 0.255 s/step. The SRIM model
consisted of 2656 linear elements, from which 1648 belonged
to the solid rotor. The machine was simulated for 4 periods
with 400 time steps per period. On average, 3 NR iterations
were required per time step, and the simulation time was
about 1.65 s/step.

Figure 5: Centrifugal (Von Mises) stress distribution in the
SRIM at 100 000 rpm.
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Figure  6:  Segregation  of  the  SRIM  losses  and  their  change
due to the consideration of the centrifugal stress.
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4 Discussion and conclusion

A finite-element implementation of a coupled multiaxial
magneto-mechanical model was presented and applied to
analyse the performance and losses in a permanent magnet
machine and in a high-speed solid rotor induction machine.

The effects of the stress on the performance of the two
machines could be seen as rather small, and a question might
arise if coupled magneto-mechanical modelling is really
needed. However, based on the literature, there seems to be
large variations in the effects of the mechanical loading on the
magnetization properties between different material grades.
Thus it is difficult to generalize the results to other machines
or materials. Nevertheless the developed model has been
found as a suitable tool to account for the magneto-
mechanical effects in electrical machines. The material model
presented in Section 2.1 and [11] has been developed in a
very general form, and thus its parameters should be rather
easy to fit also for other materials.
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Appendix

The Helmholtz energy is expressed using the five invariants
as
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The expression is the same as was used in [11] except for the
scaling of the parameters. Discussion on the form of (20) can
be found in [10] and [11].

The parameters used in Fig. 1 are λ = 145 GPa, m = 68.3 GPa,
nα = 9, nβ = 2, nγ = 1, α0,…,8 = 27.3, -79.5, 598, -1436, 1815, -
1293, 523, -112, and 9.93 J/m3, β0,1 = -189 kJ/m3 and 106
MJ/m3, and γ0 = 851 MJ/m3, k0 = 76.5 A/m, a = -0.274, and b
= 0.432.


