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Abstract—This paper deals with parameter identification for a numerical iron-loss model for electrical steel sheets. The
model comprises a solution for the eddy currents in the sheet thickness, a Jiles-Atherton hysteresis model and a dynamic
model for the excess eddy currents. We study if an accurate loss model can be obtained by estimating the parameter values
using only the 50-Hz single-valued magnetization and loss-density curves typically provided by electrical steel manufacturers.
The optimal parameter values are searched as a solution of an experimental-numerical inverse problem. The accuracy of
the loss prediction at higher frequencies is then quantified. It is found that if the conductivity of the material is not known,
the solution of the inverse problem is not unique. However, if the conductivity is known, the other loss-model parameters
can be recovered with good accuracy.

Index Terms—Electromagnetic inverse problems, iron losses, magnetic materials.

I. INTRODUCTION
Prediction of power losses in laminated magnetic cores

of electromagnetic devices has remained challenging up
to this date. The losses have traditionally been estimated
by Steinmetz’s experimental formula [1] or the statistical
loss-segregation theory of Bertotti [2]. Bertotti’s theory
segregates the losses into static hysteresis, macroscopic
or classical eddy-current and excess eddy-current losses.
For a sinusoidal flux density with an amplitude b̂ and
frequency ω = 2πf , the average iron-loss power density
over a full cycle is rather accurately given by the sum of
the three components, respectively:

p = fwhy(b̂) +
σd2

24
(ωb̂)2 + cex(ωb̂)

3

2 . (1)

Here why is the rate-independent hysteretic energy loss, σ
is the electrical conductivity, d the lamination thickness,
and cex is a coefficient describing the loss related to
the excess eddy currents. The classical eddy-current loss
given by the middle term is calculated analytically with
the assumption that the skin-effect in the lamination
thickness can be neglected [3].
In the case of non-sinusoidal supply, (1) as such

cannot be used. Instead, several more or less experi-
mental approaches have been presented for obtaining the
instantaneous losses during arbitrary time variation [4]–
[6]. However, coupling the iron losses to numerical anal-
ysis tools for electromagnetic devices requires modeling
not the instantaneous loss but the relationship between
average flux density b0(t) and the surface field strength
hs(t) in the sheet. If the skin effect is neglected, the
approach proposed in [7] can be used. The surface field
is divided into hysteretic, classical and excess parts as

hs = hhy (b0) +
σd2

12

∂b0
∂t

+ cex

∣∣∣∣∂b0∂t

∣∣∣∣
−0.5

∂b0
∂t

, (2)

which gives the average loss densities equally to (1) in
the case of sinusoidal b0(t). With higher frequencies,
however, the skin effect cannot be neglected, and the most
accurate results are obtained by numerically modeling the
actual physical behavior of the flux density in the lam-
ination [8]–[11]. Such models are derived starting from
the quasistatic Maxwell equations, which, assuming an
infinitely large core lamination, reduce to a 1-D diffusion
equation for the flux density b(z, t) and field strength
h(z, t) in the lamination thickness z ∈ [−d/2, d/2]:

∂2h(z, t)

∂z2
= σ

∂b(z, t)

∂t
. (3)

To account for all the three loss components in (1), the
local h (b (z, t)) relationship should include models for
both static hysteresis and the local excess eddy currents.
The static hysteresis part is most often modeled either by
a Preisach model [8], [9], [11] or a Jiles-Atherton (J-A)
model [10]. The Everett map required for the Preisach
model can be built from measured first-order reversal
curves (FORCs), which requires a lot of experimental
work. On the other hand, the Jiles-Atherton model makes
certain assumptions on the anhysteretic curve shape, but
still requires identification of five constants based on
static hystesis loop measurements. In addition, although
the conductivity of the lamination material may often be
known, identification of the excess loss coefficient cex
requires measurements at different frequencies. However,
the data provided by the electrical steel manufacturer
is typically limited to the single-valued magnetization
properties ĥ(b̂) and loss densities p(b̂) measured at 50-
Hz sinusoidal flux-density excitation (Fig. 1). Therefore,
the complete identification procedure for the parameters
of an iron-loss model is a rather complex process and
requires a big effort from the user [8], [12]. This is one
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Fig. 1. Typical single-valued magnetization and loss-density data
provided by electrical steel manufacturers (measured from the ring-core
setup described in Section II A).

of the reasons why accurate physical modeling of power
losses has not become everyday routine for design and
research of electromagnetic devices.
Ideally, the loss models should be identifiable merely

from the manufacturer data without additional measure-
ments. In [13], this was attempted for the static hysteretic
part using a Preisach model and an analytical expression
for the FORCs. The excess losses were neglected and the
classical eddy-current losses were subtracted from the 50-
Hz loss-density data. Although the results were in good
agreement with the loss data from the manufacturer, the
predicted losses at higher frequencies were not compared
to measurements. In [4], loss tables for sinusoidal exci-
tation provided by the manufacturer were used to predict
losses in high-frequency power-electronic transformers
with arbitrary current waveforms. However, the applied
loss models were rather experimental in nature.
In this paper, we formulate the parameter identification

from the data of Fig. 1 as a coupled experimental-
numerical inverse problem [14], [15]. The 50-Hz magne-
tization and loss-density curves are physically modeled
by numerically solving (3). Hysteresis is modeled with a
J-A model in which the number of parameters is reduced
to three by interpolating the anhysteretic magnetization
curve from the 50-Hz measurements. The remaining five
parameters of the iron-loss model are solved by itera-
tively minimizing the difference between the simulations
and experiments with a standard ring-core setup. It is
found that the solution is non-unique if the conductivity
of the material is not known. However, with a known
conductivity, the parameters identified from the 50-Hz
data also give good prediction accuracy for the loss
densities at higher frequencies.

II. METHODS
A. Ring-Core Measurements

A standard ring-core setup was used to measure the 50-
Hz manufacturer-like curves for identification purposes

and high-frequency loss densities for validation purposes.
The core is stacked of 20 0.5-mm thick rings cut
with electrical discharge machining from non-oriented
M530/50A electrical steel. The conductivity of the ma-
terial is σ = 2.96 MS/m. The inner and outer radii of
the rings are 45 and 55 mm, respectively. The core is
equipped with both primary and secondary windings for
magnetic-field and flux-density measurements according
to IEEE Standard 393-1991. The measurements were
performed under controlled sinusoidal flux-density exci-
tation at several amplitudes and frequencies of 50, 100
200 and 300 Hz.

B. Numerical Iron-Loss Model

In the numerical solution of (3), the flux-density dis-
tribution in the lamination thickness is approximated by
a truncated cosine series:

b(z, t) =

Nb−1∑
n=0

bn(t)αn(z) (4)

with αn(z) = cos
(
2nπ z

d

)
. To fulfill (3) identically, the

field strength is expanded as

h̃(z, t) = hs(t)− σd2
Nb−1∑
n=0

∂bn(t)

∂t
βn(z), (5)

where hs(t) is the field strength on the lamination surface
and the functions βn(z) are defined so that βn(±d/2) =
0 and

αn(z) = −d
2 ∂

2βn(z)

∂z2
. (6)

With a finite number of terms in the series expansion, h̃
does not satisfy the constitutive material law h(b) which
is therefore expressed weakly with respect to the basis
functions as

1

d

∫ d/2

−d/2

[
h̃(z, t)− h(b(z, t))

]
αn(z)dz = 0 (7)

for n = 0, . . . , Nb − 1. Substituting (5) and solving
the surface field strength yields the following system
of equations describing the behavior of the field in the
lamination:⎡

⎢⎣
hs(t)
0
...

⎤
⎥⎦ =

1

d

∫ d/2

−d/2

h(b(z, t))

⎡
⎢⎣
α0(z)
α1(z)
...

⎤
⎥⎦ dz + . . .

. . .+ σd2C
∂

∂t

⎡
⎢⎣
b0(t)
b1(t)
...

⎤
⎥⎦ , (8)

in which C is a constant matrix.
The constitutive material law combines a static hys-

teresis model and the excess-loss model of (2) applied
locally in the lamination thickness:

h(b(z, t)) = hhy(b(z, t)) + . . .



. . .+ cex

∣∣∣∣∂b(z, t)∂t

∣∣∣∣
−0.5

∂b(z, t)

∂t
. (9)

The static hysteretic part is modeled with a J-A hysteresis
model [16]. In brief, the J-A model is described by the
following five (differential) equations:

m = cman + (1− c)mirr (10a)

heff = hhy + αm (10b)

man = ms

[
coth

heff
a
−

a

heff

]
(10c)

dmirr

dheff
=

man −mirr

kδ
, δ = sign

(
db

dt

)
(10d)

dhhy
db

= ν0

(
1 +

dm

dhhy

)
−1

, (10e)

in which m, man and mirr are the total, anhysteretic
and irreversible magnetizations, respectively, heff is an
effective field experienced by the domains, ν0 is the
vacuum reluctivity, and a, c, k, ms and α are the
constant parameters which should be identified from
measurements.
The behavior of an unidirectional magnetic field in

a ferromagnetic lamination is completely described by
(8)-(10e). In this work, the equations were solved with
a backward-Euler time-stepping scheme and using the
Newton-Raphson method for the nonlinear iteration.
Nb = 2 terms were used in the cosine series expansion
(4) for the skin-effect modeling.

C. Anhysteretic Magnetization

To our experience, one of the main disadvantages of
the J-A hysteresis model is its occasional inaccuracy
in modeling the shapes of the hysteresis loops. This is
mainly caused by the assumption of the hyperbolic cotan-
gent shape of the man(heff) relationship in (10c). Since
the material parameters are to be obtained by solving
an inverse problem by comparison to measurements, we
should be sure that the used hysteresis model is actually
able to describe the material correctly. Thus we avoid
using analytical expressions for the anhysteretic magne-
tization and instead replace the man(heff) relationship by
the m̂(ĥ) = ν0b̂(ĥ) − ĥ curve extracted from the 50-
Hz data used for the identification. This assumption is at
least as reasonable as the assumption of the coth-shape,
and allows reducing the total model parameters to five,
since a and ms are not needed.

D. Inverse-Problem Approach

After the anhysteretic magnetization curve is known,
the five parameters of the model are x = (σ, cex, c, k, α).
The identification of the parameters can be formulated as
an inverse problem in which the difference between the
measured and simulated 50-Hz ĥ(b̂) and p(b̂) curves is
minimized:

x̃ = argmin
x

F (x) (11a)

F (x) =

∥∥∥∥∥ ĥmeas(b̂)− ĥsim(x, b̂)

ĥmeas(b̂)

∥∥∥∥∥
2

+ . . .

. . .+

∥∥∥∥∥pmeas(b̂)− psim(x, b̂)

pmeas(b̂)

∥∥∥∥∥
2

. (11b)

This problem can be solved iteratively using global
optimization algorithms.
Since the full numerical model (8)-(10e) is too slow

to be used directly in the iterative procedure, a simple
Kriging surrogate model was first built for fast emulation
of the numerical model. The surrogate model was build
based on 200 iron-loss simulations with different param-
eter values chosen using the Latin hypercube sampling
method. After the optimal parameter values were solved
from the inverse problem with the surrogate model, the
full numerical model was ran with the obtained parameter
values to verify the results.

III. RESULTS
A. Unknown Conductivity

As the first attempt, the conductivity σ of the material
was assumed to be unknown and was identified together
with the other four parameters. The results are shown in
Fig. 2. The simulated 50-Hz ĥ(b̂) and p(b̂) curves are
very close to the measured ones. The rms errors between
the measurements and simulations are 22 A/m and 0.158
W/kg, respectively. Also the 50-Hz hysteresis loops seem
reasonable. However, the inverse problem solution gives
a conductivity of σ = 12.5 MS/m, which is a clearly too
large value for Fe-Si sheets. The effect of the exaggerated
conductivity value is seen as severe overestimation of the
losses at the higher frequencies.

B. Known Conductivity

Since fitting the conductivity lead to an unphysical
value and incorrect estimation of the losses at higher
frequencies, the next parameter identification was per-
formed by fixing the conductivity to the measured value
σ = 2.96 MS/m, while solving the remaining four
parameters x = (cex, c, k, α) from the inverse problem.
The results are shown in Fig. 3. Again, the simulated
50-Hz single-valued magnetization and loss curves seem
the be in good agreement with the measurements. The
rms errors, 45.8 A/m and 0.194 W/kg, are somewhat
larger than in the previous case. However, the 50-Hz
hysteresis loops match even better with the measured
ones. In addition, the high-frequency losses are estimated
very accurately when compared to the measurements.

IV. DISCUSSION AND CONCLUSION
The parameters of a numerical iron-loss model were

identified based on 50-Hz single-valued magnetization
and loss-density curves which are typically available
from electrical steel manufacturers. The identification
was formulated as an inverse problem aiming to mini-
mize the difference between measurements and numerical
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Fig. 2. Solution of the inverse problem with x = (σ, cex, c, k, α),
reconstructed 50-Hz hysteresis loops and high-frequency losses. The
solved conductivity and excess-loss coefficient are σ = 12.5 MS/m,
cex = 0.403 W/m3(s/T)1.5.

simulations. From the two studied cases, a better fit
was obtained when the electrical conductivity was left
unconstrained. However, this lead to an unphysically
large value for the conductivity and a clear overestimation
of the iron losses at higher frequencies. On the other
hand, a very good loss-prediction accuracy was given by
the parameter values obtained when the conductivity was
forced to the measured value. In this case, however, the
objective function was not in the minimum value.
Based on the results it is clear that the physically

most reasonable solution is not necessarily the optimum
from the objective-function point-of-view. In addition,
the classical eddy-current and excess losses cannot be
properly distinguished from each other at 50 Hz. Indeed,
based on the results of Figs. 2 and 3, the excess-loss
coefficient increases when the conductivity decreases.
This implies a non-uniqueness in the inverse-problem
solution if no a priori knowledge is available on the
conductivity.
In the future, a more systematic study should be

performed on the non-uniqueness and uncertainty related
to the inverse-problem solution. Since this paper only
focused on unidirectional excitation, the parameter iden-
tification results should also later be validated in the case
of rotating magnetic fields.
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Fig. 3. Solution of the inverse problem with x = (cex, c, k, α),
reconstructed 50-Hz hysteresis loops and high-frequency losses. The
conductivity is set to σ = 2.96 MS/m, the solved excess-loss coeffi-
cient is cex = 0.872 W/m3(s/T)1.5.
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