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Comparison of Finite-Element Based State-Space
Models for PM Synchronous Machines

Paavo Rasilo, Marc-Antoine Lemesle, Anouar Belahcen, Antero Arkkio, and Marko Hinkkanen

Abstract—An interior-permanent-magnet motor is modeled by
a combined analytical-numerical approach, in which the
relationships between the stator currents and flux linkages are
identified with static finite-element (FE) analysis. In addition to
the previous approaches using the current space vector as the
state variable, new models are also developed using the flux-
linkage space vector, which leads to more convenient time-
integration of the voltage equations. In order to account for the
zero-sequence effects in delta connection, the models also include
either the zero-sequence flux or current as an additional state
variable. Finally, the possibilities of deriving the required
quantities as partial derivatives of the magnetic field energy are
discussed. The energy-based approaches avoid inaccuracies
related to torque computation and thus allow better satisfying the
power balance in the state-space model. We show the ability of
the developed state-space models to predict the currents and
torque equally to a nonlinear time-stepping FE model with much
less computational burden. The results are validated by means of
measurements for a prototype machine in both star and delta
connections. In addition, we also demonstrate the effect of the
zero-sequence current on the torque ripple in case of a delta-
connected stator winding.

Index Terms—Field energy, finite element methods, magnetic
saturation, permanent magnet machines, reluctance machines,
state-space methods, torque ripple, variable speed drives.

1. INTRODUCTION

ERMANENT-MAGNET (PM) synchronous machines

with interior magnets have become popular in variable-
speed applications as both motors and generators. Their main
advantages are high power densities, relatively simple
construction, small rotor losses as well as the possibility of
taking advantage of the reluctance torque owing to the
magnetic saliency [1]. However, the spatial permeance
harmonics due to the saliency and the interaction of the
permanent magnet flux with the stator slotting also cause
unwanted ripple in the electromagnetic torque of the machine
[2]. The torque ripple typically deteriorates the properties of
the application and may excite mechanical resonances. In
addition, the harmonic effects complicate the modeling of the
machine.
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The voltage equations for a PM synchronous machine can be
written as

. dy

u=Ri-+ I @8
in which the column vectors u, i and w include either the
phase-domain or two-axis components (in the stator frame of
reference) of the voltage, current and flux linkage,
respectively, and Ry is the resistance of a stator phase. When
solving this system, the relationship between the current and
flux linkage is usually expressed using analytical inductance
functions, the simplest ones of which reduce to constant
inductances when (1) is transformed into the rotor direct-
quadrature (d-q) frame of reference. This traditional d-q model
only accounts for the fundamental spatial permeance variation
and neglects magnetic saturation. Although more complicated
functions for both higher-order permeance harmonics [3]-[6]
and saturation [7]-[9] have been proposed, the problem is in
general too dependent on the machine geometry and material
properties to justify the validity of the analytical models if
very accurate models are desired. Especially, design tools for
control and estimation algorithms require accurate prediction
of the nonidealities of the machines.

Finite-element (FE) method (FEM) based models provide an
alternative for the analytical approaches. While time-stepping
FE models, such as [10] and [11], are able to more accurately
account for the time harmonics, actual geometry, and the
nonlinear material properties, they are generally too slow to be
used for control design problems, which typically require
simulation of tens or hundreds of supply periods. However,
precalculated static FE results can be used in the state-space
models to replace the analytical inductance functions. Such
approaches have been starting to gain increasing attention
during the recent years, although from quite a limited number
of research groups so far [12]-[21]. Below, these approaches
are briefly reviewed and discussed.

In [12] and [13], phase-domain models were developed both
for a healthy PM motor and for one with an inter-turn short
circuit in one of the phase windings. The model was identified
by obtaining the winding inductances, permanent-magnet flux
and cogging torque from transient 2-D FE simulations. In [14],
the approach was used for inductance calculation in a
sensorless control application with an electromotive-force
observer. The models of [12] and [13] neglected saturation
based on the assumption that the total flux linkage of the
windings is dominated by the PM flux. The same was assumed
in [15] and [16] which used 2-D FEM to identify the linear
inductances for both phase-domain and two-axis models of a
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double-star interior-magnet machine. All the circuit models of
[12], [13], [15], and [16] were implemented in the
MATLAB/Simulink environment using look-up tables (LUT).
In [17] and [18], saturation was also included in both phase-
domain and two-axis PM machine models which were
implemented on a real-time FPGA simulator.

Instead of calculating the inductance functions using FEM,
[19]-[21] directly identified the flux linkages of the windings
as functions of the currents and the rotor angle. This would not
be beneficial in the linear cases of [12], [13], [15], and [16] in
which one inductance function describes the behavior for the
whole range of currents. In general, however, it is easier to
obtain the flux linkages than the inductances from the FE
solution. Indeed, numerical inductance calculations require
supplying current into one winding at the time, and still
calculating the flux linkages of all the windings separately. In
addition, the nonlinear case requires freezing the
permeabilities of iron into the desired operation point, as also
stated in [19].

A common feature for all the reviewed methods [12]-[21] is
that they all use the currents as the state variables together
with the (electrical) rotor angle o,. With this approach, (1)
becomes
upic ) di,  oylie) @)

oi dt oa,
in which @, = da, / dt is the rotation speed. The disadvantage
of the current-based model (2) is that it requires calculating
and inverting the differential inductance matrix Oy / 0i during
the solution. On the contrary, choosing the flux linkage as the
state variable results in

d

u:RSi(y/,ar)+d—y;, 3)
and thus removes the need for calculating or storing the partial
derivatives yielding a simpler and faster solution. However, if
skewing or other axial effects are to be modeled, the current-
based approach allows coupling multiple axial slices in the
state-space model while employing data only from a single 2-
D FE model [21]. This is a significant advantage of the
current-based models, since the slice model does not have to
be implemented in FEM. The same is much more difficult
with the flux-based model since continuity of the currents
between the slices has to be ensured.

Another important part of modeling the PM machines is the
calculation of the electromagnetic torque. Several different
approaches were applied in the reviewed papers. In [12], [13],
and [15], the torque was obtained by calculating the flux-
current contribution assuming a linear material and summing
to this the cogging torque determined by FE analysis, while
[16] completely neglected the cogging torque. In a general
nonlinear case, however, the torque should be obtained by the
virtual work principle as a partial derivative of the magnetic
field energy W; or co-energy W. with respect to the
mechanical rotor angle, keeping the other variables constant:

» oW (v, ) _, ow, (i,a,)
o oa

T=- ; “4)

T T

in which p is the number of pole pairs [22]. Another way is to
directly interpolate the torque from precalculated FE results,
as was done in [17]-[21].

Finally, [12]-[21] only focused on star-connected machines
thus assuming that no zero-sequence current flows in the stator
windings. Although plain delta connection is quite rarely used
in variable-speed PM machines, recent attention has been
given to multiple-step star-delta connected windings [23], [24]
which can be used, e.g., for terminal voltage adjustment in
variable-speed generators. For analysis of machines with such
winding configurations, the zero-sequence current also needs
to be considered.

In this paper, we develop and compare FE-based state-space
models for a 2.2-kW PM machine with the possibility of
taking into account the effects of the zero-sequence current.
Three different state-variable choices are studied. In current-
and flux-based models (CBM and FBM, respectively), the
space vectors and zero-sequence components of the stator
current and flux linkage are used. In addition, a hybrid model
(HM) is studied in which the flux-linkage space vector and the
zero-sequence current are chosen as the state variables. In the
case of the CBM, a slice model is implemented in order to
model the skewed rotor of the test machine. In case of the
FBM, we also study an energy-based model (FBME) in which
the currents and electromagnetic torque are derived from the
FE-calculated magnetic field energy instead of merely
interpolating from the results stored in LUTs. The aim is to
avoid errors in the torque calculation from the FE solution and
thus better satisfy the power balance in the state-space model.

The results of the developed state-space models are shown to
correspond well to both time-stepping FE analysis and
measurement results both in star and delta connections. Using
both the time-stepping FE method and the developed state-
space model, we demonstrate the significant effect of the zero-
sequence current on the torque ripple of the machine. This
effect is visible in the results of [23] and [24] but has not been
properly discussed earlier.

II. STUDIED MACHINE AND MEASUREMENT SETUP

The machine used both in the simulations and for the
experimental studies is a 2.2-kW, 370-V, 75-Hz, 6-pole
interior-magnet PM machine. The FE mesh and some data and
dimensions of the machine are given in Fig. 1 and Table I,
respectively. The rotor of the machine consists of two axial
modules of the same length, which have been phase shifted
from each other by 5° (mechanical) to reduce the cogging
torque.

The machine is a prototype having a construction of a mass-
produced industrial motor which are applicable with both 690-
V and 400-V supplies. The machine thus has a full-pitched
stator winding which can be connected either in star or delta,
as desired. This offers an excellent possibility to study the
zero-sequence effects and thus allows validation of the
developed models in both star and delta connections.

The phase currents of the machine were measured by current
shunts to allow calculation of the zero-sequence current. By
phase quantities (denoted by subscripts abc) we refer to the
currents, voltages and flux linkages of the actual windings
inside the machine, not the terminal quantities seen from the
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outside of the machine. The meaning of the phase quantities is
thus independent of the connection of the windings. For
clarity, Fig. 2 presents the phase and terminal quantities for
both star and delta connections.

To determine the operation point of the machine, the rotation
speed was calculated directly from the supply frequency and
the torque was obtained with a double-bearing arrangement
and a piezoelectric force measurement. In addition, the root-
mean-squared (rms) terminal currents and voltages as well as
the terminal powers were recorded with a LEM Norma 6000
D power analyzer.

III. METHODS OF MODELING
A. State-Space Models and Choice of State Variables

We focus on solving (1) in the two-axis form and stator (x-y)
frame of reference. In addition to the two-axis quantities, also
the zero-sequence current and flux are considered. The zero-
sequence (subscript 0) is defined as the average value of the
phase quantities, e.g. for the flux linkage,

+yy, +
Vo :.ZQL__Egl__ZQL. )

In a three-phase machine, the zero-sequence flux linkage
arises from the spatial air-gap flux-density harmonics having
an order of multiple of three, which impose equal flux
linkages through each phase winding simultaneously. These
harmonics arise from magnetic saturation as well as the
interaction of the even permeance harmonics with the odd
magnetomotive force harmonics. The possibility for the
existence of the zero-sequence current is defined by the
winding connection. In the delta connection, the zero-
sequence current can flow freely, contrary to the star
connection with a floating star point, in which the zero-
sequence current does not have a return path.

When the machine is supplied by the line-to-line voltages,
the zero-sequence voltage is defined by the zero-sequence flux
in the star connection, and is zero in the delta connection.
Thus the zero-sequence voltage equation can be written as

in which the resistance Ry depends on the connection of the
stator winding. In the star connection with a floating star
point, the circuit is open (i.e. Ry = oo which leads to iy = 0) and
(6) can be neglected, while for the delta connection, Ry = R;
and u, = 0.

Due to the nonlinear dependency of the flux linkages and
currents on each other and the rotor angle, we avoid using
analytical inductance functions and express the relationships
between the currents iy, and the flux linkages .y using
results of 2-D static FE analysis. However, there are different
possibilities to choose the state variables for the model.
Below, the advantages of different choices are briefly
discussed. The main differences between the cases lie in the
amount of numerical data needed to be stored in lookup tables
(LUT) for the state-space model, the possibilities of modeling
both star and delta connections using the same FE data, as

Fig. 1 FE mesh of the studied machine.

TABLE I
DATA AND DIMENSIONS OF THE TEST MACHINE

Machine type motor
Power 2.2 kW
Voltage 370 V
Current 414 A
Displacement factor 0.926
Frequency 75 Hz
Connection delta
Number of pole pairs 3
Stator outer diameter 165 mm
Stator inner diameter 104 mm
Air gap 1 mm
Number of stator slots 36

Star connection Delta connection
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Fig. 2 Notation for the phase (abc) and terminal (123) voltages and currents
in star and delta connections.

well as the difficulties in derivation of the quantities from the
magnetic field energy.

1) Current-based model (CBM)

The currents were used as the state variables in all the
models of [12]-[21]. In the considered xy0-system, the state
variables of the current-based model are iy, iy and the rotor
angle o,. The advantage of choosing the currents as the state
variables is that the current supply is easy to implement in the
static FE analysis and that both star and delta connections can
be modeled, since the zero-sequence current can be forced to
zero in the former. The resulting state-space form of (1)
becomes

dixy0) _[ Wy
dt

oy xy(0) j %

-1
J (”xy(orRs"xym)‘a’r .
r

Oly(0)
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in which the notation xy(0) means that the zero-sequence
voltage equation can be neglected for the star connection. This
makes the star-connected case only a special case of (7), in
which the zero-sequence current is not included. The model
requires storing the stator flux-linkage vectors calculated with
FE analysis as

Vxy(0) = Vxy(0)FE (ixy(O) ) ar) . (3

We implemented the current-based approach in the
MATLAB/Simulink environment by deriving the three or six
elements (assuming symmetry) of the Jacobian matrix Oy )/
Oixy(), the vector Owyyq) / Ooy, and the torque from the FE
results and storing them in LUTs with linear interpolation.
Since the rotor of our test machine is skewed, we also
implemented the CBM by considering two axial slices and
averaging the flux and torque over the slices as

Yxy(0),FE (ixy(O) s ) + Yxy(0),FE (ixy(O) 0+ 15° )
2

Yxy(0) = ©

where 15° is the skew angle in electrical degrees.
2) Flux-based model (FBM)
In this approach, w,,, w, and «, are chosen as the state
variables. This allows solving the voltage equations as
Ay y0)
dt

(10)

= Uyy0) ~ Rslxy)»

and requires storing only the FE-calculated currents as
functions of the state variables as

Lyy(0) = Exy(0),FE (ny(O)?ar) ; (11)
which makes only two or three LUTs for the current plus one
for the torque.

The model without the zero-sequence current might again
seem to be only a special case of (10), in which the zero-
sequence state and the corresponding equation are neglected.
However, the FE results iyore(Wyyo, 0r) required for the
simulation of the delta-connected machine are not applicable
for the simulation of the star-connected machine. This is due
to the fact that the zero-sequence state variable is the flux
linkage w, which is nonzero also in the star connection. In
order to use the same data and still force the zero-sequence
current to zero in the star connection, we would need to
iteratively solve i pe(Wyyo, @) = 0 to find the correct value for
wo, which would be very time consuming. Consequently, to
simulate the star-connected machine, a new set of FE
simulations with three variables had to be made in order to
obtain iy, re(Wxy, o). In addition, another state-space model
with only three state variables then had to be implemented.

In order to overcome the aforementioned disadvantage, and
allow using a single model and the same FE data for both
machine connections, we also study a case, in which the zero-
sequence current is used as the fourth state variable together
with the two-axis flux linkage and the rotor angle. Due to the
use of both flux linkage and the current as the state variables,
we refer to the approach as the hybrid model.

3) Hybrid model (HM)

This approach tries to combine the advantages of the CBM
and FBM by choosing wy,, iy and o, as the state variables.
Now, calculation of the Jacobian matrix Ow,, / 0Oiy, is not
needed since the two-axis fluxes are known. On the other
hand, the star connection can also be modeled by forcing the
zero-sequence current to zero. With this approach, the two-
axis currents are known from the FE results as

iy = iy (Wxyoior @ ) (12)
and the state-space form of (1) thus becomes
dy : .
d:y = Uyy _Rslxy,FE (‘/’xy3109ar)' (13)

In a similar manner, the zero-sequence flux linkage can be
expressed as

Yo =¥orE (nyﬂio’ar)s (14)
after which the time-derivative in (6) becomes
dy, Wore (y/xy’i07ar) dyy .
dt oYy dt
oy Wy lg, ;
N 0,FE< xy>to r)ﬂ+... (15)

0i dt

. o FE (ley’iO’ar) da,
oa dr

T

After substituting o, = do, / dt and dyy, / dt from (13), the
state-space form for iy in delta connection becomes

. OV rE
Xy _Rslxy)+ aa’ 28

dﬁ _ '/Ixy r (16)
dt dw o px / i ’

which together with (13) gives the complete state-space
equations for this model.

This approach was implemented by storing iy, e, the four
partial derivatives in (16) and the torque in LUTs with linear
interpolation. If the machine is star connected, iy = 0 and the
solution of (16) can be neglected, which corresponds to the
FBM for the star-connected machine.

4) Flux-based model with field energy (FBME)

Although the torque, two-axis currents, the zero-sequence
current or flux linkage as well as the required partial
derivatives can be obtained from FE analysis and stored in
separate LUTs, they can also be derived starting from the
magnetic field energy and co-energy. In principle a field-
energy based model would allow avoiding any errors related
to the computation of the electromagnetic torque from the FE
solution [25] and thus possibly satisfy better the power
balance during the simulations.

We derive the quantities from the field energy when using
the FBM. When a differential change is imposed into the
phase-domain flux linkages, the corresponding change in the
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field energy is
17)

If the phase quantities are expressed by multiplying the xy0-
components by the inverse of the Park transformation matrix

dVVf = iad‘//a +ibdl//b +icdl//c = i;)cdl//abc :

2 -1 -1
T, :% 0 V3 3, (18)
1 1 1
we get
1 00
aw; _’xyo (T ) xyodV’xyo % 0 10 ixTyodV/xyo~ (19)
00 2

Thus the xy0-components of the currents are obtained from
the partial derivatives of the field energy as

200 T
io=1lo 2 0 M (o) 20
xy0 3 a

00 1 V0

The electromagnetic torque is obtained from (4). Thus only
the magnetic field energy Wipg is needed as the result of the
FE analysis. A cubic-spline approximation is used for the field
energy to make it differentiable.

B. Finite-Element Model

The FE model used for the identification of the torque and
flux-current relations solves Ampere’s circuital law in the 2-D
cross section of the machine using the magnetic vector-
potential formulation [11]. Nonlinear single-valued material
properties are used for the iron, and the iron losses are
neglected. Although static FE solvers are usually supplied by
constant currents, the flux linkages can straightforwardly be
enforced by adding extra equations for the xy0 components of
the currents. In addition, the zero-sequence current can be
easily imposed in the windings. The total FE systems for the
identification of the CBM, FBM and HM, respectively, are

S(a,a.)a= f, +Di +D/i +Dji,, 1)
S(a,a,) -D! -D! -D]|a Som
D, 0 00 [l V| o
m, 0 0 0 |li| |v
D, o 0o 0 |li] [w
S(a,a,) -D! -D! 0 a f.n + D/,
S [ P B P
D, 0 0 0|4 v,
ID, 0 0 —1|w] 0

in which a includes the nodal values of the magnetic vector
potential, S(a,a;) is the magnetic stiffness matrix which
depends on the solution and the rotor angle, f,n gives the
source from the permanent magnets and / is the total axial

length of the machine. Matrices Dy, D, and D, describe the
xy0 components of the flux linkage, and are obtained as

ZD cos[ (k- 1))
ZD sm( (k- 1)]
_EZ;D"

in which Dy, k=1, ..., 3 give the flux linkages for the three
phase windings, respectively.

Time-stepping FE simulations are used to verify the
implemented state-space models. In the time-stepping FEM
the system is supplied by the terminal voltages v, and the
phase currents are solved in the system together with the
vector potential:

S(a,a,) —(KD)T al T 0ld|a|_[fm

0 RKK" | i IKD 0 |dt|i Qv

in which 7 is the damping matrix related to eddy currents in

conducting regions and K and Q are related to the connection

of the stator winding (p. 39 of [11]). In star connection, only

two independent currents i = i, are solved, iy, = Ki,, and v =

[Vabs Voe]'. In case of delta connection, i = ie, ¥ = [Vaps Voos

vca]T, and K is an identity matrix. In the latter case, the zero-

sequence current can flow freely. The torque is calculated
from the FE solution with the Coulomb’s method [26].

The static FE simulations for the identification of the flux-
current relationships were performed for all required
combinations of the four state variables iy, or w,y, iy or o, and
o,. The rms and zero-sequence values of the current and flux
were discretized in seven equally distributed values, while 60
values were used in the discretization of the space-vector and
rotor angles (i.e. five steps per one stator slot pitch). For all
combinations of the four state variables, this yielded 176400
static FE simulations in total for one model. Each one of the
three sets of simulations for the CBM, FBM and HM took
approximately 30 hours with the 2"*-order FE mesh of Fig. 1.

24

} A(25)

IV. APPLICATION AND RESULTS

A. Application

The test machine was simulated in several operation points
in the motoring mode of operation with sinusoidal voltage
supply. In Simulink, the simulations were done with the
variable-step solver ode45 with a maximum time-step size
corresponding to 80 steps per one supply period. The FE
model was simulated using the trapezoidal time-integration
rule with fixed step size of 80 steps per one supply period.

In the state-space and time-stepping FE simulations the rotor
angle was iterated so that the desired shaft powers were
obtained. As a measure for the validity of the models, the
power balance of the machine was calculated as

P RJU ROSS
r= P.t , (26)

in

in which Pj, and P, are the input and output powers, i.e., the
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Fig. 3 Measurement and simulation results on a) terminal currents in both star and delta connections and b) zero-sequence currents in delta connection.

active electrical and mechanical powers in the motoring mode
of operation, respectively. P includes the losses, meaning
only the resistive losses in the state-space models but also the
eddy-current losses in the permanent magnets and the shaft in
the time-stepping FE model. However, these eddy-current
losses are very small.

B. Comparison of Models and Measurements

We first verify the state-space models by comparison to
measurements with the test machine. Fig. 3 a) shows the
simulated and measured rms terminal currents in both star and
delta connections with different loads while b) shows the rms
zero-sequence currents in delta connection. A good
correspondence is observed to the measurement results, which
verifies the FE model and the state-space models derived from
the static FE results. The FBME slightly exaggerates the
terminal currents in delta connection, and the skewing is seen
to slightly reduce the zero-sequence current at higher loads.

Fig. 4 compares the rated-load phase-current waveforms and
spectrums in delta connection. All the models produce almost
identical phase current waveforms, which correspond very
well to the measured waveform. The effect of skewing can be
seen to be negligible. In the spectrum, the third-harmonic
component corresponds to the zero-sequence current.

The measured and simulated rated-load results and the
simulation times are more carefully compared in Table II. All
the state-space models predict the terminal currents and
powers equally to the FE model in a fraction of computation
time. Indeed, the non-skewed CBM, FBM and HM,
respectively, are 350, 860 and 570 times faster than the FE
model in the star connection and 350, 680 and 570 times faster
in the delta connection. Modeling two slices in the CBM
reduces the speed by 30 %. The FBME performs poorer than
the other models because of the online differentiation of the
energy but, as initially expected, satisfies the power balance
better.

Opposite to the simulations, the measured terminal power is
greater in star connection than in delta connection. This is
most likely caused by the fact that the iron losses are smaller

—— Measured
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| ===CBM nonskewed

Phase current (A)
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Fig. 4 Comparison of measured and simulated phase-current waveforms and
spectrums in the rated operation point in delta connection.

in delta connection since the phase voltage is sinusoidal and
the zero-sequence flux is smaller.

C. Zero-Sequence Effects

As is clearly visible in Table II, the machine has a much
higher torque ripple in delta connection than in star
connection. Fig. 5 compares the torque spectrums in both
cases and shows that especially the sixth-harmonic torque
component increases significantly in delta connection. Notable
is that in case of this machine, the sixth harmonic is a much
more severe problem than the cogging torque, which is seen as
the 12" harmonic and is efficiently reduced by the skewing.

Using time-stepping FE analysis we demonstrate that the
increase in the sixth-harmonic torque component is caused by
the zero-sequence current. The machine is simulated in both
star and delta connections with open stator terminals. In both
cases the current space vector is zero, and thus the differences
in the torque waveforms between the two cases are caused by
the zero-sequence current which is present in delta connection
but not in star. With open terminals, the zero-sequence flux
arises only from the magnetic saturation, and thus we
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TABLE II
RATED-LOAD RESULTS OF THE MEASUREMENTS, STATE-SPACE MODELS AND TIME-STEPPING FE MODEL IN BOTH STAR AND
DELTA CONNECTIONS (WITH 80 TIME STEPS PER SUPPLY PERIOD AND TOTAL TIME OF 20 PERIODS IN THE SIMULATIONS)

Connection / Quantities / Simulation el IO
results Measured | CBM CBM FBM FBME HM FEM
Number / type of lookup tables - 12 (linear) 6 (linear) 3 (linear) 1 (cubic) 3 (linear) -
Terminal current (A) 2.40 2.23 2.22 2.23 2.22 2.23 2.22
Zero-sequence current (A) - - - - - - -
Active power (kW) 2.57 2.35 2.34 2.37 2.36 2.37 2.35
o | Power factor 0.96 0.95 0.96 0.96 0.96 0.96 0.95
£ | Displacement factor - 0.948 ind 0.955 ind 0.958 ind 0.956 ind 0.958 ind 0.960 ind
E Torque (Nm) 14.0 14.0 14.0 14.0 14.0 14.0 14.0
£ | Torque THD (%) - 1.20 1.63 1.38 1.40 1.38 1.60
2 | Resistive losses (W) - 161 159 160 160 160 159
% Mechanical power (kW) 2.20 2.20 2.20 2.20 2.20 2.20 2.20
Pole angle - 35.3° 27.7° 28.0° 27.9° 28.0° 28.0°
Power balance error - -0.59 % -0.60 % 0.28 % -0.08 % 0.23 % -0.37%
Total simulation time (s) - 0.50 0.39 0.21 1.42 0.31 177
Time per time step (ms) - 0.31 0.24 0.13 0.89 0.20 111
Relative to real time - 1.89 1.46 0.77 5.31 1.17 666
Number / type of lookup tables - 20 (linear) 10 (linear) 4 (linear) 1 (cubic) 7 (linear) -
Terminal current (A) 3.89 3.89 3.87 3.88 4.08 3.89 3.86
Zero-sequence current (A) 0.67 0.80 0.84 0.77 0.69 0.74 0.77
Active power (kW) 2.41 2.36 2.36 2.39 2.39 2.39 2.37
= | Power factor 0.96 0.89 0.89 0.91 0.88 0.91 0.91
-E Displacement factor - 0.947 ind 0.954 ind 0.961 ind 0.916 ind 0.962 ind 0.960 ind
g Torque (Nm) 14.0 14.0 14.0 14.0 14.0 14.0 14.0
£ | Torque THD (%) - 4.28 4.91 4.41 5.34 4.58 4.78
: Resistive losses (W) - 184 184 181 195 180 179
S | Mechanical power (kW) 2.20 2.20 2.20 2.20 2.20 2.20 2.20
2 [Pole angle - 35.2° 27.5° 27.3° 27.0° 27.4° 27.4°
Power balance error - -0.99 % -0.97 % 0.20 % -0.09 % 0.42 % -0.37 %
Total simulation time (s) - 0.50 0.39 0.26 6.54 0.31 177
Time per time step (ms) - 031 0.24 0.16 4.09 0.20 111
Relative to real time - 1.89 1.45 0.98 24.5 1.17 664
100 m—Star
T 1 14//1_Nm CBM skewed £ st === Delta
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Fig. 5 Comparison of simulated torque spectrums in star (Y) and delta (A)
connections.

exaggerate the saturation of the machine for this simulation by
increasing the remanence flux density of the magnets up to 4 T
in order to have clear differences between star and delta
connections. The simulation results for both the instantaneous
torque and field energy are shown in Fig. 6. Both the torque
and energy have significant sixth-harmonic components in
delta connection when the zero-sequence current flows in the

Time {ms)

Fig. 6 FE-simulated torque and field energy in open-circuit operation in star
and delta connections and exaggerated PM remanence.

windings. In the delta-connected case the average torque is
negative since the resistive losses are supplied through the
shaft.

In addition to the torque ripple, the zero-sequence current
increases the losses of the machine. As seen from Table II, the
modeled resistive losses are 12-22 % higher in delta
connection than in star connection.
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V. DISCUSSION AND CONCLUSIONS

After coupled with static FE simulation data, the
implemented state-space models predict the currents and
torques with the accuracy of a time-stepping FE model, but
only in a fraction of computation time. This makes the coupled
FE-state-space modeling an attractive alternative to FE
analysis when mainly the terminal quantities and torque are of
interest and long simulations or results in several operation
points are desired. Possible applications for the discussed
models include design and testing of control and estimation
algorithms, as well as fast validation and identification of
analytical machine models. The studied approaches are
suitable for modeling of any kind of machines in which eddy
currents do not play a significant role in the energy conversion
process. These include DC machines, PM machines,
synchronous and switched reluctance machines, as well as
wound-rotor induction machines.

As expected, derivation of both the torque and currents from
the magnetic field energy yielded a consistent model in which
the power balance is very well satisfied. Although the energy-
based model is somewhat slower than the models interpolating
the quantities from look-up tables, it offers interesting
possibilities from the implementation point-of-view, since no
other variable than the field energy needs to be stored for the
simulation. For example, a neural-network approach could be
used to express the complicated dependency of the field
energy on the state variables, which would allow analytical
calculation of the required partial derivatives.

No major differences were observed in the results of the
different models. The biggest advantage of the current-based
approach is the possibility to couple several axial slices
together in order to model skewing and other axial effects,
which are discussed in more details in [21]. The flux-based
approach requires fewer lookup tables than the current-based
model, but requires using different FE results for the star and
delta connections. The hybrid model suits well for both
connections but prevents using the energy-based derivations.

The previously observed but not much discussed effect of
the zero-sequence current on the torque ripple was
demonstrated using FE analysis. In case of the studied
machine, the zero-sequence also caused a significant increase
in the losses in delta connection. These effects may need to be
considered when electrically and thermally designing the
machines described in [23], [24].
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