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 
Abstract—An interior-permanent-magnet motor is modeled by 

a combined analytical-numerical approach, in which the 
relationships between the stator currents and flux linkages are 
identified with static finite-element (FE) analysis. In addition to 
the previous approaches using the current space vector as the 
state variable, new models are also developed using the flux-
linkage space vector, which leads to more convenient time-
integration of the voltage equations. In order to account for the 
zero-sequence effects in delta connection, the models also include 
either the zero-sequence flux or current as an additional state 
variable. Finally, the possibilities of deriving the required 
quantities as partial derivatives of the magnetic field energy are 
discussed. The energy-based approaches avoid inaccuracies 
related to torque computation and thus allow better satisfying the 
power balance in the state-space model. We show the ability of 
the developed state-space models to predict the currents and 
torque equally to a nonlinear time-stepping FE model with much 
less computational burden. The results are validated by means of 
measurements for a prototype machine in both star and delta 
connections. In addition, we also demonstrate the effect of the 
zero-sequence current on the torque ripple in case of a delta-
connected stator winding.  
 

Index Terms—Field energy, finite element methods, magnetic 
saturation, permanent magnet machines, reluctance machines, 
state-space methods, torque ripple, variable speed drives. 
 

I. INTRODUCTION 

ERMANENT-MAGNET (PM) synchronous machines 
with interior magnets have become popular in variable-

speed applications as both motors and generators. Their main 
advantages are high power densities, relatively simple 
construction, small rotor losses as well as the possibility of 
taking advantage of the reluctance torque owing to the 
magnetic saliency [1]. However, the spatial permeance 
harmonics due to the saliency and the interaction of the 
permanent magnet flux with the stator slotting also cause 
unwanted ripple in the electromagnetic torque of the machine 
[2]. The torque ripple typically deteriorates the properties of 
the application and may excite mechanical resonances. In 
addition, the harmonic effects complicate the modeling of the 
machine. 
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The voltage equations for a PM synchronous machine can be  
written as 

 s
d

R
dt

 
ψ

u i , (1) 

in which the column vectors u, i and ψ include either the 
phase-domain or two-axis components (in the stator frame of 
reference) of the voltage, current and flux linkage, 
respectively, and Rs is the resistance of a stator phase. When 
solving this system, the relationship between the current and 
flux linkage is usually expressed using analytical inductance 
functions, the simplest ones of which reduce to constant 
inductances when (1) is transformed into the rotor direct-
quadrature (d-q) frame of reference. This traditional d-q model 
only accounts for the fundamental spatial permeance variation 
and neglects magnetic saturation. Although more complicated 
functions for both higher-order permeance harmonics [3]-[6] 
and saturation [7]-[9] have been proposed, the problem is in 
general too dependent on the machine geometry and material 
properties to justify the validity of the analytical models if 
very accurate models are desired. Especially, design tools for 
control and estimation algorithms require accurate prediction 
of the nonidealities of the machines. 

Finite-element (FE) method (FEM) based models provide an 
alternative for the analytical approaches. While time-stepping 
FE models, such as [10] and [11], are able to more accurately 
account for the time harmonics, actual geometry, and the 
nonlinear material properties, they are generally too slow to be 
used for control design problems, which typically require 
simulation of tens or hundreds of supply periods. However, 
precalculated static FE results can be used in the state-space 
models to replace the analytical inductance functions. Such 
approaches have been starting to gain increasing attention 
during the recent years, although from quite a limited number 
of research groups so far [12]-[21]. Below, these approaches 
are briefly reviewed and discussed. 

In [12] and [13], phase-domain models were developed both 
for a healthy PM motor and for one with an inter-turn short 
circuit in one of the phase windings. The model was identified 
by obtaining the winding inductances, permanent-magnet flux 
and cogging torque from transient 2-D FE simulations. In [14], 
the approach was used for inductance calculation in a 
sensorless control application with an electromotive-force 
observer. The models of [12] and [13] neglected saturation 
based on the assumption that the total flux linkage of the 
windings is dominated by the PM flux. The same was assumed 
in [15] and [16] which used 2-D FEM to identify the linear 
inductances for both phase-domain and two-axis models of a 
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double-star interior-magnet machine. All the circuit models of 
[12], [13], [15], and [16] were implemented in the 
MATLAB/Simulink environment using look-up tables (LUT). 
In [17] and [18], saturation was also included in both phase-
domain and two-axis PM machine models which were 
implemented on a real-time FPGA simulator. 

Instead of calculating the inductance functions using FEM, 
[19]-[21] directly identified the flux linkages of the windings 
as functions of the currents and the rotor angle. This would not 
be beneficial in the linear cases of [12], [13], [15], and [16] in 
which one inductance function describes the behavior for the 
whole range of currents. In general, however, it is easier to 
obtain the flux linkages than the inductances from the FE 
solution. Indeed, numerical inductance calculations require 
supplying current into one winding at the time, and still 
calculating the flux linkages of all the windings separately. In 
addition, the nonlinear case requires freezing the 
permeabilities of iron into the desired operation point, as also 
stated in [19]. 

A common feature for all the reviewed methods [12]-[21] is 
that they all use the currents as the state variables together 
with the (electrical) rotor angle αr. With this approach, (1) 
becomes 

 
   r r

s r
r

, ,d
R

dt

 



 

  
 

ψ i ψ ii
u i

i
, (2) 

in which ωr = dαr / dt is the rotation speed. The disadvantage 
of the current-based model (2) is that it requires calculating 
and inverting the differential inductance matrix ∂ψ / ∂i during 
the solution. On the contrary, choosing the flux linkage as the 
state variable results in  

  s r,
d

R
dt

 
ψ

u i ψ , (3) 

and thus removes the need for calculating or storing the partial 
derivatives yielding a simpler and faster solution. However, if 
skewing or other axial effects are to be modeled, the current-
based approach allows coupling multiple axial slices in the 
state-space model while employing data only from a single 2-
D FE model [21]. This is a significant advantage of the 
current-based models, since the slice model does not have to 
be implemented in FEM. The same is much more difficult 
with the flux-based model since continuity of the currents 
between the slices has to be ensured. 

Another important part of modeling the PM machines is the 
calculation of the electromagnetic torque. Several different 
approaches were applied in the reviewed papers. In [12], [13], 
and [15], the torque was obtained by calculating the flux-
current contribution assuming a linear material and summing 
to this the cogging torque determined by FE analysis, while 
[16] completely neglected the cogging torque. In a general 
nonlinear case, however, the torque should be obtained by the 
virtual work principle as a partial derivative of the magnetic 
field energy Wf or co-energy Wc with respect to the 
mechanical rotor angle, keeping the other variables constant: 

 
   f r c r

r r

, ,W W
T p p

 
 

 
  

 

ψ i
, (4) 

in which p is the number of pole pairs [22]. Another way is to 
directly interpolate the torque from precalculated FE results, 
as was done in [17]-[21]. 

Finally, [12]-[21] only focused on star-connected machines 
thus assuming that no zero-sequence current flows in the stator 
windings. Although plain delta connection is quite rarely used 
in variable-speed PM machines, recent attention has been 
given to multiple-step star-delta connected windings [23], [24] 
which can be used, e.g., for terminal voltage adjustment in 
variable-speed generators. For analysis of machines with such 
winding configurations, the zero-sequence current also needs 
to be considered. 

In this paper, we develop and compare FE-based state-space 
models for a 2.2-kW PM machine with the possibility of 
taking into account the effects of the zero-sequence current. 
Three different state-variable choices are studied. In current- 
and flux-based models (CBM and FBM, respectively), the 
space vectors and zero-sequence components of the stator 
current and flux linkage are used. In addition, a hybrid model 
(HM) is studied in which the flux-linkage space vector and the 
zero-sequence current are chosen as the state variables. In the 
case of the CBM, a slice model is implemented in order to 
model the skewed rotor of the test machine. In case of the 
FBM, we also study an energy-based model (FBME) in which 
the currents and electromagnetic torque are derived from the 
FE-calculated magnetic field energy instead of merely 
interpolating from the results stored in LUTs. The aim is to 
avoid errors in the torque calculation from the FE solution and 
thus better satisfy the power balance in the state-space model.  

The results of the developed state-space models are shown to 
correspond well to both time-stepping FE analysis and 
measurement results both in star and delta connections. Using 
both the time-stepping FE method and the developed state-
space model, we demonstrate the significant effect of the zero-
sequence current on the torque ripple of the machine. This 
effect is visible in the results of [23] and [24] but has not been 
properly discussed earlier. 

II. STUDIED MACHINE AND MEASUREMENT SETUP 

The machine used both in the simulations and for the 
experimental studies is a 2.2-kW, 370-V, 75-Hz, 6-pole 
interior-magnet PM machine. The FE mesh and some data and 
dimensions of the machine are given in Fig. 1 and Table I, 
respectively. The rotor of the machine consists of two axial 
modules of the same length, which have been phase shifted 
from each other by 5° (mechanical) to reduce the cogging 
torque. 

The machine is a prototype having a construction of a mass-
produced industrial motor which are applicable with both 690-
V and 400-V supplies. The machine thus has a full-pitched 
stator winding which can be connected either in star or delta, 
as desired. This offers an excellent possibility to study the 
zero-sequence effects and thus allows validation of the 
developed models in both star and delta connections. 

The phase currents of the machine were measured by current 
shunts to allow calculation of the zero-sequence current. By 
phase quantities (denoted by subscripts abc) we refer to the 
currents, voltages and flux linkages of the actual windings 
inside the machine, not the terminal quantities seen from the 
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in which the notation xy(0) means that the zero-sequence 
voltage equation can be neglected for the star connection. This 
makes the star-connected case only a special case of (7), in 
which the zero-sequence current is not included. The model 
requires storing the stator flux-linkage vectors calculated with 
FE analysis as 

  xy(0) xy(0),FE xy(0) r,ψ ψ i . (8) 

We implemented the current-based approach in the 
MATLAB/Simulink environment by deriving the three or six 
elements (assuming symmetry) of the Jacobian matrix ∂ψxy(0) / 
∂ixy(0), the vector ∂ψxy(0) / ∂αr, and the torque from the FE 
results and storing them in LUTs with linear interpolation. 
Since the rotor of our test machine is skewed, we also 
implemented the CBM by considering two axial slices and 
averaging the flux and torque over the slices as 

 
   xy(0),FE xy(0) r xy(0),FE xy(0) r

xy(0)

, , 15

2

ψ i ψ i
ψ

  




(9) 

where 15° is the skew angle in electrical degrees. 

2) Flux-based model (FBM) 

In this approach, ψxy, ψ0 and αr are chosen as the state 
variables. This allows solving the voltage equations as 

 xy(0)
xy(0) s xy(0)

d
R

dt
 

ψ
u i , (10) 

and requires storing only the FE-calculated currents as 
functions of the state variables as 

  xy(0) xy(0),FE xy(0) r,i i ψ , (11) 

which makes only two or three LUTs for the current plus one 
for the torque. 

The model without the zero-sequence current might again 
seem to be only a special case of (10), in which the zero-
sequence state and the corresponding equation are neglected. 
However, the FE results ixy0,FE(ψxy0, αr) required for the 
simulation of the delta-connected machine are not applicable 
for the simulation of the star-connected machine. This is due 
to the fact that the zero-sequence state variable is the flux 
linkage ψ0 which is nonzero also in the star connection. In 
order to use the same data and still force the zero-sequence 
current to zero in the star connection, we would need to 
iteratively solve i0,FE(ψxy0, αr) = 0 to find the correct value for 
ψ0, which would be very time consuming. Consequently, to 
simulate the star-connected machine, a new set of FE 
simulations with three variables had to be made in order to 
obtain ixy,FE(ψxy, αr). In addition, another state-space model 
with only three state variables then had to be implemented. 

In order to overcome the aforementioned disadvantage, and 
allow using a single model and the same FE data for both 
machine connections, we also study a case, in which the zero-
sequence current is used as the fourth state variable together 
with the two-axis flux linkage and the rotor angle. Due to the 
use of both flux linkage and the current as the state variables, 
we refer to the approach as the hybrid model. 

3) Hybrid model (HM) 

This approach tries to combine the advantages of the CBM 
and FBM by choosing ψxy, i0 and αr as the state variables. 
Now, calculation of the Jacobian matrix ∂ψxy / ∂ixy is not 
needed since the two-axis fluxes are known. On the other 
hand, the star connection can also be modeled by forcing the 
zero-sequence current to zero. With this approach, the two-
axis currents are known from the FE results as 

  xy xy,FE xy 0 r, ,i i i ψ , (12) 

and the state-space form of (1) thus becomes 

  xy
xy s xy,FE xy 0 r, ,

d
R i

dt
 

ψ
u i ψ . (13) 

In a similar manner, the zero-sequence flux linkage can be 
expressed as 

  0 0,FE xy 0 r, ,i   ψ , (14) 

after which the time-derivative in (6) becomes 

 

 

 

 

0,FE xy 0 r xy0

xy

0,FE xy 0 r 0

0

0,FE xy 0 r r

r

, ,

, ,

, ,
.

i dd

dt dt

i di

i dt

i d

dt

 

 

  



 




 








ψ ψ

ψ

ψ

ψ



  (15) 

After substituting ωr = dαr / dt and dψxy / dt from (13), the 
state-space form for i0 in delta connection becomes 

 
 0,FE 0,FE

s 0 xy s xy r
xy r0

0,FE 0/

R i R
di

dt i

 





 
  

 
 

 

u i
ψ

, (16) 

which together with (13) gives the complete state-space 
equations for this model. 

This approach was implemented by storing ixy,FE, the four 
partial derivatives in (16) and the torque in LUTs with linear 
interpolation. If the machine is star connected, i0 = 0 and the 
solution of (16) can be neglected, which corresponds to the 
FBM for the star-connected machine. 

4) Flux-based model with field energy (FBME) 

Although the torque, two-axis currents, the zero-sequence 
current or flux linkage as well as the required partial 
derivatives can be obtained from FE analysis and stored in 
separate LUTs, they can also be derived starting from the 
magnetic field energy and co-energy. In principle a field-
energy based model would allow avoiding any errors related 
to the computation of the electromagnetic torque from the FE 
solution [25] and thus possibly satisfy better the power 
balance during the simulations. 

We derive the quantities from the field energy when using 
the FBM. When a differential change is imposed into the 
phase-domain flux linkages, the corresponding change in the 
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field energy is 

 T
f a a b b c c abc abcdW i d i d i d d      i ψ . (17) 

If the phase quantities are expressed by multiplying the xy0-
components by the inverse of the Park transformation matrix 

 
xy0

2 1 1
1

0 3 3
3

1 1 1

T

  
 

  
 
 

, (18) 

we get 

  TT 1 1 T
f xy0 xy0 xy0 xy0 xy0 xy0

1 0 0
3

0 1 0
2

0 0 2

dW d di T T ψ i ψ 

 
    
  

. (19) 

Thus the xy0-components of the currents are obtained from 
the partial derivatives of the field energy as 

 
  T

f xy0 r
xy0

xy0

2 0 0
,1

0 2 0
3

0 0 1

W ψ
i

ψ

          
   

. (20) 

The electromagnetic torque is obtained from (4). Thus only 
the magnetic field energy Wf,FE is needed as the result of the 
FE analysis. A cubic-spline approximation is used for the field 
energy to make it differentiable. 

B. Finite-Element Model 

The FE model used for the identification of the torque and 
flux-current relations solves Ampere’s circuital law in the 2-D 
cross section of the machine using the magnetic vector-
potential formulation [11]. Nonlinear single-valued material 
properties are used for the iron, and the iron losses are 
neglected. Although static FE solvers are usually supplied by 
constant currents, the flux linkages can straightforwardly be 
enforced by adding extra equations for the xy0 components of 
the currents. In addition, the zero-sequence current can be 
easily imposed in the windings. The total FE systems for the 
identification of the CBM, FBM and HM, respectively, are  

   T T T
r pm x x y y 0 0,S a a f D i D i D i     , (21) 
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0 0 0

il
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


       
     
          
     
      

, (22) 
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        

, (23) 

in which a includes the nodal values of the magnetic vector 
potential, S(a,αr) is the magnetic stiffness matrix which 
depends on the solution and the rotor angle, fpm gives the 
source from the permanent magnets and l is the total axial 

length of the machine. Matrices Dx, Dy and D0 describe the 
xy0 components of the flux linkage, and are obtained as 
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 (24) 

in which Dk, k = 1, …, 3 give the flux linkages for the three 
phase windings, respectively. 

Time-stepping FE simulations are used to verify the 
implemented state-space models. In the time-stepping FEM 
the system is supplied by the terminal voltages v, and the 
phase currents are solved in the system together with the 
vector potential: 

 
   T

r pm

T
s

, d

l dtR

S a a T 0 a fKD

i KD 0 i Qv0 KK

         
          

          
,(25) 

in which T is the damping matrix related to eddy currents in 
conducting regions and K and Q are related to the connection 
of the stator winding (p. 39 of [11]). In star connection, only 
two independent currents i = iab are solved, iabc = Kiab, and v = 
[vab, vbc]

T. In case of delta connection, i = iabc, v = [vab, vbc, 
vca]

T, and K is an identity matrix. In the latter case, the zero-
sequence current can flow freely. The torque is calculated 
from the FE solution with the Coulomb’s method [26]. 

The static FE simulations for the identification of the flux-
current relationships were performed for all required 
combinations of the four state variables ixy or ψxy, i0 or ψ0, and 
αr. The rms and zero-sequence values of the current and flux 
were discretized in seven equally distributed values, while 60 
values were used in the discretization of the space-vector and 
rotor angles (i.e. five steps per one stator slot pitch). For all 
combinations of the four state variables, this yielded 176400 
static FE simulations in total for one model. Each one of the 
three sets of simulations for the CBM, FBM and HM took 
approximately 30 hours with the 2nd-order FE mesh of Fig. 1. 

IV. APPLICATION AND RESULTS 

A. Application 

The test machine was simulated in several operation points 
in the motoring mode of operation with sinusoidal voltage 
supply. In Simulink, the simulations were done with the 
variable-step solver ode45 with a maximum time-step size 
corresponding to 80 steps per one supply period. The FE 
model was simulated using the trapezoidal time-integration 
rule with fixed step size of 80 steps per one supply period. 

In the state-space and time-stepping FE simulations the rotor 
angle was iterated so that the desired shaft powers were 
obtained. As a measure for the validity of the models, the 
power balance of the machine was calculated as 

 in out loss
p

in

P P P
r

P

 
 , (26) 

in which Pin and Pout are the input and output powers, i.e., the  
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V. DISCUSSION AND CONCLUSIONS 

After coupled with static FE simulation data, the 
implemented state-space models predict the currents and 
torques with the accuracy of a time-stepping FE model, but 
only in a fraction of computation time. This makes the coupled 
FE-state-space modeling an attractive alternative to FE 
analysis when mainly the terminal quantities and torque are of 
interest and long simulations or results in several operation 
points are desired. Possible applications for the discussed 
models include design and testing of control and estimation 
algorithms, as well as fast validation and identification of 
analytical machine models. The studied approaches are 
suitable for modeling of any kind of machines in which eddy 
currents do not play a significant role in the energy conversion 
process. These include DC machines, PM machines, 
synchronous and switched reluctance machines, as well as 
wound-rotor induction machines. 

As expected, derivation of both the torque and currents from 
the magnetic field energy yielded a consistent model in which 
the power balance is very well satisfied. Although the energy-
based model is somewhat slower than the models interpolating 
the quantities from look-up tables, it offers interesting 
possibilities from the implementation point-of-view, since no 
other variable than the field energy needs to be stored for the 
simulation. For example, a neural-network approach could be 
used to express the complicated dependency of the field 
energy on the state variables, which would allow analytical 
calculation of the required partial derivatives. 

No major differences were observed in the results of the 
different models. The biggest advantage of the current-based 
approach is the possibility to couple several axial slices 
together in order to model skewing and other axial effects, 
which are discussed in more details in [21]. The flux-based 
approach requires fewer lookup tables than the current-based 
model, but requires using different FE results for the star and 
delta connections. The hybrid model suits well for both 
connections but prevents using the energy-based derivations. 

The previously observed but not much discussed effect of 
the zero-sequence current on the torque ripple was 
demonstrated using FE analysis. In case of the studied 
machine, the zero-sequence also caused a significant increase 
in the losses in delta connection. These effects may need to be 
considered when electrically and thermally designing the 
machines described in [23], [24]. 
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